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Abstract—This paper considers the problem of estimating the
parameters of two-dimensional (2-D) moving average random
(MA) fields. We first address the problem of expressing the
covariance matrix of nonsymmetrical half-plane, noncausal, and
quarter-plane MA random fields in terms of the model parame-
ters. Assuming the random field is Gaussian, we derive a closed-
form expression for the Cramér–Rao lower bound (CRLB) on
the error variance in jointly estimating the model parameters. A
computationally efficient algorithm for estimating the parameters
of the MA model is developed. The algorithm initially fits a 2-D
autoregressive model to the observed field and then uses the
estimated parameters to compute the MA model. A maximum-
likelihood algorithm for estimating the MA model parameters is
also presented. The performance of the proposed algorithms is
illustrated by Monte-Carlo simulations and is compared with the
Cramér–Rao bound.

Index Terms—Maximum likelihood, moving average random
fields, parameter estimation, random fields.

I. INTRODUCTION

T HE PROBLEM of estimating the parameters of a two-
dimensional (2-D) real-valued discrete and homogeneous

moving average (MA) random field from a single observed
realization of it is of great theoretical and practical impor-
tance. For example, it arises in the problem of estimating the
parameters of the purely indeterministic component of natural
textures in images [11] as well as in image segmentation and
restoration problems (e.g., [12]).

More specifically, in [11], we presented a texture model
based on the 2-D Wold-type decomposition of homogeneous
random fields [2]. In this framework, the texture field is
assumed to be a realization of a regular homogeneous random
field, which can have a mixed spectral distribution. The
texture is represented as a sum of purely indeterministic,
harmonic, and a countable number of evanescent fields. The
harmonic and evanescent components of the field result in the
structural attributes of the observed realization, whereas the
purely indeterministic component is the structureless, “random
looking” component of the texture field.

It is shown in [3] (see also [2]) that any 2-D purely
indeterministic random field has a unique white innovations-
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driven nonsymmetrical half plane (NSHP) MA representation.
In general, the MA model support has infinite dimensions.
However, in the texture modeling problem, we have found
(see, e.g., [10] and [11]) that in many cases, the spectral
density function of the purely indeterministic component is
smooth and has small dynamic range (i.e., no sharp peaks).
This property suggests that the purely indeterministic com-
ponent can be well modeled using afinite supportNSHP MA
model. On the other hand, modeling the purely indeterministic
component by a 2-D autoregressive (AR) model may require
larger supports, and hence, a less compact parameterization of
the field is obtained. Thus, in those cases where the covariance
function of the purely indeterministic component of the field
rapidly decays to zero, a finite support NSHP MA model would
generally provide a more compact representation of the purely
indeterministic field. We note that many of the existing texture
analysis and synthesis algorithms employ 2-D AR models for
texture modeling (see, e.g., [7]–[9]). These AR models produce
efficient parameterization of the purely indeterministic field
when its spectral density function contains high peaks and has
large dynamic range.

The general problem of estimating the parameters of random
fields has received considerable attention. Most approaches for
estimating the parameters of purely indeterministic random
fields concentrate on fitting 2-D AR models to the observed
field. In general, three types of AR models that differ in the
model support definition are in use. These are the noncausal
(NC), nonsymmetrical half-plane (NSHP), and quarter-plane
(QP) AR models. Least squares solution of the set of 2-D
normal equations that corresponds to each of the different
models is a method widely used in various image process-
ing applications like image restoration and segmentation. A
Levinson-type algorithm for solving the set of 2-D normal
equations of a continuous support NSHP AR model is derived
in [5]. A recent analysis of the problem of estimating the
parameters of 2-D noncausal Gauss–Markov random fields
can be found in [6]. The asymptotic Cramér–Rao bound for
the parameters of a Gaussian purely indeterministic field was
derived by Whittle [4]. More recently, this general derivation
was specialized for the case of noncausal AR models and
NSHP AR models in [13].

In this paper, we concentrate on finding estimation algo-
rithms for 2-D MA random fields and on establishing bounds
on the achievable estimation accuracy of the MA model
parameters, given a finite dimensional observed realization. We
propose a computationally efficient algorithm for estimating
the parameters of MA random fields using afinite dimension,
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single observed realizationof this field. The algorithm is an
extension to two-dimensions of Durbin’s “MA by AR” method
[1] for estimating the parameters of scalar MA processes. The
algorithm has two stages. In the first stage, a 2-D NSHP
AR model is fit to the observed field using a least squares
solution of the 2-D normal equations or alternatively by using
a finite support version [10] of Marzetta’s [5] Levinson-type
algorithm. In the second stage, the estimated parameters of
the AR model are used to compute the parameters of the
MA model through a least squares solution of a system of
linear equations. The overall algorithm is computationally
efficient.

We also address here the problem of expressing the co-
variance matrix of the observed field in terms of the MA
model parameters. Then, assuming the MA field is Gaussian,
we employ this result to establish bounds on the achiev-
able accuracy in jointly estimating the parameters of the
MA modeled purely indeterministic random field. We derive
closed form exact expression for the Cram´er-Rao lower bound
(CRLB) on the achievable estimation accuracy. Using the
expressions of the covariance matrix in terms of the MA model
parameters, we then derive a maximum likelihood algorithm
for these. The previously derived “MA by AR” algorithm is
used for initialization of the multidimensional search involved
in the maximum likelihood estimation (MLE) algorithm. Since
the MLE method requires an iterative and computationally
intensive procedure, it becomes computationally prohibitive
even for moderate size data fields. However, as we show in this
paper, as the data size increases, the “MA by AR” algorithm
becomes less biased and, therefore, offers an increasingly
attractive alternative to ML estimation.

In [14], we consider the general problem of establishing
bounds on the achievable accuracy in jointly estimating the pa-
rameters of a real valued, 2-D, homogeneous random field with
mixed spectral distribution from a single observed realization
of it. However, in [14], we restricted our attention to the case
in which the purely indeterministic component of the random
field is a white noise field. Thus, the derivation presented here
provides a generalization of the lower bound derived in [14]
for the case of an arbitrary purely indeterministic component.

The paper is organized as follows. In Section II, we consider
the problem of representing the covariance matrix of the
observed MA field in terms of the MA model parameters.
The result is derived first for an NSHP MA model and then
extended to the cases of noncausal MA model and quarter-
plane model. In Section III, a closed-form expression for the
CRB on the error variance in jointly estimating the MA
model parameters is derived. In Section IV, we develop the
computationally efficient “MA by AR” estimation algorithm.
Section V presents the ML algorithm for estimating the MA
model parameters. In Section VI, we present some numeri-
cal examples. The performance of the proposed algorithms
is illustrated by Monte Carlo simulations and is compared
with the Craḿer–Rao bound. We investigate the effects of
both the data size and the dimensions of the support of the
approximating AR model on the bias and error variance of
the proposed algorithms. In Section VII, we present some
concluding remarks.

II. THE PARAMETRIC REPRESENTATION OF THE

MA FIELD AND ITS COVARIANCE MATRIX

Let be a real-valued, regular, and
homogeneous random field, such that its spectral distribution
function is absolutely continuous. Let us define a total order
on the discrete lattice such that

iff

(1)

Then, can be uniquely represented by

(2)

where , and
is the innovations field of with respect to the total-
order definition (1), [3]. is a white noise field.
The random field is called purely indeterministic
random field. We therefore conclude that the most general
model of any regular random field, whose spectral distribution
function is absolutely continuous, is the innovations-driven,
NSHP support MA model (2).

In practice, the observed random field is of finite di-
mensions. Hence, let , where

, be the observed random
field. The MA model (2) is, in general, of infinite dimensions.
In this paper, we restrict our attention to MA models of finite-
dimensional NSHP support. Next, we elaborate on expressing
the covariance matrix of the observed 2-D MA random field
in terms of the model parameters.

Assumption 1:The purely indeterministic field is a real-
valued MA field, whose model is given by (2) with

, where
, and are a priori known. The

driving noise of the MA model is a zero mean, real-valued
white noise field with variance Thus, (2) is replaced by

(3)

The parameter vector of the observed field is
given by

(4)

Let us stack the columns of the observed field into the vector
form

(5)

Similarly, let the driving noise vector be defined by

(6)
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Let denote a -dimensional row vector of zeros. In
addition, let

...
...

(7)

and

(8)

Note that is a -dimensional
row vector.

Define the banded Toeplitz matrix

(9)

where for , and
Finally, we define the block matrix
in (10), shown at the bottom of the page.

Thus, we can rewrite the observations (3) in the form
The covariance matrix of the observed field is given

in terms of the MA model parameters by

(11)

Note that (10) and (11) are made valid for any type of
support of the MA model simply by redefining and
In the following, we list two important examples, namely, the
noncausal and quarter-plane models.

The Noncausal MA Model:Consider the 2-D MA model of
(3), where we redefine its support so that

and Let

...
...

...
...

(12)

and

(13)

Here, is a -dimensional row
vector. Define to be the banded
Toeplitz matrix

(14)

where for , and
Finally, is an block matrix defined
similarly to (10) with replaced by

The Quarter Plane MA Model:Consider the 2-D MA
model of (3), where we redefine its support so that

and Let

...
...

(15)

and

(16)

In the case of QP support,is a -
dimensional row vector. Define to be the

banded Toeplitz matrix

(17)

where for , and
Finally, is the block matrix in (18),
shown at the bottom of the page.

III. T HE CRAMÉR–RAO BOUND

ON THE MA M ODEL PARAMETERS

Assume that the driving noise of the NSHP MA model
is a zero mean, real-valued Gaussian white noise field with
variance Hence, the observed field is also
Gaussian. The general expression for the Fisher information

... (10)

... (18)
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matrix (FIM) of a real, zero mean, Gaussian process is given
by (e.g., [16])

(19)

where is the observation vector covariance matrix, and
denotes the entry of the matrix

Note that

(20)

where is a -
dimensional row vector whose element
equals one, whereas all its other elements are zero. Hence

(21)

where is the up-shift matrix

otherwise.
(22)

Taking the partial derivatives of with respect to the MA
model parameters, we have

(23)

where is defined in (24), shown at the bottom of the
page. In addition

(25)

Substituting (11), (23), and (25) into (19), we obtain a
closed-form expression for the FIM of 2-D Gaussian MA
random fields.

In many cases, we are interested not only in estimating
the MA model parameters but in estimating some function of
these parameters, such as the spectral density function of the
observed field. Having estimated the model parameters, the
spectral density of the field can be computed using its known
functional dependence on the (estimated) parameters

(26)

where

(27)

Next, we derive the CRB on the spectral density of the field.
The spectral density function of the MA field is a differentiable

function of the parameter vector Hence, e.g., [15], the CRB
on is related to the CRB of by

CRB CRB (28)

where the column vector is defined by

(29)

Taking the partial derivatives of with respect
to the parameters in, we have

(30)

(31)

IV. 2-D MOVING AVERAGE PARAMETER ESTIMATION

The parameter estimation algorithm that we present in this
section is an extension to two dimensions of the algorithm
proposed by Durbin [1] for estimating the parameters of scalar
MA processes. The idea is to fit a NSHP AR model to the
observed field and then using the estimated AR parameters to
estimate the MA model parameters.

It was shown by Whittle [4] that any purely indeterministic
random field whose spectral density is analytic in some
neighborhood of the unit bicircle and strictly positive on the
unit bicircle can be represented by a NSHP AR model of
generally infinite dimensions. This result was later extended
and was shown to hold even under milder conditions [3].
Hence, any 2-D purely indeterministic MA random field that
satisfies the foregoing conditions can be fit with a NSHP
AR model. Since parameter estimation algorithms of 2-D
AR random fields are available (e.g., [5]), we employ such
an algorithm as the first step of the proposed procedure for
estimating the parameters of the MA field.

Let be defined similarly to , and let
be the NSHP support of the MA field AR model. In

general, is of infinite dimensions. In practice, we must
choose finite values for and , and hence, an approximation
error is introduced. It is obvious that such a method is
necessarily inconsistent, even if the covariance function of
the observed field isa priori known since no MA field can
be exactly modeled by a finite support AR model. However,
the bias of the estimates can be made arbitrarily small by
sufficiently increasing the support of the AR model
Therefore, we choose and such that and ,
i.e., the finite support of the AR model is chosen to be much
larger than that of the MA model. More specifically, let the

... (24)
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2-D finite support MA model of the data be given by (3), and
let the approximated finite support NSHP AR model of the
same field be given by

(32)

Define

(33)

and

(34)

where We therefore have the approximate relation

(35)

Let

(36)

Similarly, let

(37)

(38)

(39)

and

(40)

We can now set the following linear system of equations by
equating the coefficients of identical powers of

(41)

where is the approximation error vector, and we haveas
the block matrix, shown in (42) at the bottom of the page.

Each of the blocks of is a Toeplitz matrix. The structure of
the blocks is given as

...
...

...
...

...
...

...
. . .

...

(43)

and for

...
...

...
...

...
...

...
. . .

...

(44)
Note that the matrices are all

-dimensional matrices. In addition, let be
the sub-block of consisting of its

lower rows, and let be the lower
right sub-block of Similarly, let be the

lower right sub-block of , and

(45)

The MA model parameters can now be found by minimizing
the sum of the squared approximation error. The solution to
this linear least squares problem is

(46)

In the actual solution for the MA model parameters, the
parameters of the AR model are replaced by their

...
...

. . .
...

...
...

...
...

...

...
...

. . .
...

(42)
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estimated values, which have been obtained by solving the
corresponding set of 2-D normal equations using theestimated
covariance function.

Finally, note that the proposed algorithm is derived using no
a priori assumptions regarding the probability density function
of the observed field. It is, therefore, applicable to Gaussian
MA fields, as well as to non-Gaussian ones.

V. THE MAXIMUM LIKELIHOOD ESTIMATOR

The main advantage of the “MA by AR” algorithm of the
previous section is that it requires only the solution of two
sets of linear systems of equations [one to estimate the AR
parameters by solving the set of 2-D normal equations and
the other the solution (46) to (41)]. In particular, there is
no need for an iterative solution. However, as indicated in
Section IV, the estimates are biased and inconsistent. Hence,
improved estimation algorithms are required in cases where the
performance of the “MA by AR” algorithm is not acceptable.
The “MA by AR” algorithm can then serve to initialize a more
sophisticated algorithm. One such estimator is the maximum
likelihood estimator (MLE) for Gaussian MA fields, which
we derive in this section.

Since the observed field is Gaussian, the log-
likelihood function of the observations is given by

(47)

The MLE of the field parameters is found by maximizing
with respect to the MA model parameters. Since

this objective function is highly nonlinear in the problem
parameters, the maximization problem cannot be solved an-
alytically, and we must resort to numerical methods. In order
to avoid the enormous computational burden of an exhaustive
search, we used the following two-step procedure. In the
first stage, we obtain a suboptimal initial estimate for the
parameters of the MA model by using the algorithm described
in Section IV. In the second stage, we refine these initial
estimates by an iterative numerical maximization of the log
likelihood function. In our experiments, we used the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton opti-
mization method [17], [18]. This algorithm requires evaluation
of the first derivative of the objective function at each iteration.

Next, we derive expressions for the first derivatives of the
objective function (47) with respect to In general

(48)

where is the th element of
Hence, using (11), (23), and (25), we obtain

(49)

(50)

TABLE I
SQUARED ROOTS OF THECRB ON THE PARAMETERS OF THETWO FIELDS

Fig. 1. Spectral density function of Field I.

As is well known, this type of iterative optimization proce-
dure converges to a local maximum and does not guarantee
global optimality, unless the initial estimate is sufficiently
close to the global optimum. As we show in Section VI,
the initial estimates provided by the “MA by AR” algorithm
proposed in Section IV appear to provide a good initial starting
point (i.e., one that leads to convergence to the global max-
imum). The performance of the ML algorithm is discussed
in more detail in Section VI and is compared with the CRB,
which was derived earlier.

VI. NUMERICAL EXAMPLES

To gain more insight into the performance of the proposed
algorithms relatively to the CRB, we resort to numerical
evaluation of some specific examples. We present several such
examples, which illustrate the dependence of the algorithms
bias and error variance on the dimensions of the support of
the approximating AR model and on the size of the observed
data field.

Example 1: Consider the two NSHP MA fields with sup-
port , whose parameters are listed in Table I. In this
example, we evaluate the CRB on the error variance in
estimating the models parameters, as well as the bound on the
error variance in estimating the spectral densities of the two
fields. The dimensions of the observed field, for both models,
are relatively small: The squared roots of the
CRB on the parameters of the two models are listed in Table I.

The spectral density function of Field I is depicted in Fig. 1,
and the CRB on the error variance in estimating the spectral
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Fig. 2. CRB on the spectral density function of Field I.

Fig. 3. Spectral density function of Field II.

density is depicted in Fig. 2. The spectral density function
of Field II is depicted in Fig. 3, and the bound on the error
variance in estimating the density is depicted in Fig. 4. Note
that in both examples, the shape of the bound as a function of
frequency matches the shape of the MA field spectral density
function. In order to further investigate the dependence of the
CRB on the shape of the spectral density, we depict in Fig. 5
the normalized CRB for Field I, i.e., the ratio of the squared
root of the CRB to the spectral density function of the MA
field. Note that the estimation of the MA field spectral density
function is relatively less accurate in frequency regions where
the spectral density function is close to zero than in regions
of higher spectral density.

Example 2: Consider Field I—the NSHP MA field with
support from Example 1. Using 100 Monte Carlo runs,
we investigate the performance of the proposed “MA by AR”
estimation algorithm, as well as that of the ML algorithm,

Fig. 4. CRB on the spectral density function of Field II.

Fig. 5. Ratio of the square root of the CRB to the spectral density function
for Field I.

which is initialized using the “MA by AR” algorithm. Three
approximating NSHP AR models with different supports are
considered. Table II lists the bias and standard deviation of
the estimates for each of the supports, as well as the square
root of the CRB. Note, however, that since the “MA by AR”
estimation algorithm is found to be biased, the parameters
estimation error variances are not comparable with the CRB,
which is the lower bound on any unbiased estimator of the
model parameters.

From the results summarized in Table II, we conclude that
for the “MA by AR” algorithm, increasing the dimensions
of the approximating AR model support reduces the bias
of the estimated MA model parameters and increases the
standard deviation of the estimation error. The overall effect
of increasing the dimensions of the approximating AR model
support is a smaller mean squared error. The ML algorithm is
slightly biased, due to the small dimensions of the observed
field. However, its bias is considerably lower than that of the
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TABLE II
ESTIMATION RESULTS OF FIELD I MA M ODEL PARAMETERS USING DIFFERENT NSHP
AR SUPPORTS, FOR THE “MA BY AR” AND THE MAXIMUM LIKELIHOOD ALGORITHMS

TABLE III
ESTIMATION RESULTS OF FIELD I MA M ODEL PARAMETERS

FOR DIFFERENT DATA SIZES, USING THE “MA BY AR” A LGORITHM

“MA by AR” algorithm, which is used for its initialization.
Hence, the mean squared error (MSE) in estimating the model
parameters using the ML algorithm is smaller than the MSE
of the “MA by AR” algorithm.

Note that since the dimensions of the observed data field are
relatively small, increasing and so that ,
rather than (7, 7), does not have a considerable effect on the
bias nor on the variance of the estimation error for the “MA
by AR” algorithm. Since the “MA by AR” algorithm provides
the initial conditions for the ML algorithm, it is clear that
no improvement in the accuracy of the ML algorithm can be
expected. The reason for the lack of performance gain when
and are increased from to
is the large error in estimating the covariance function of
the field using small data size. In order to further illustrate
this point, we have repeated the experiment using 100 Monte
Carlo runs for a observed field. The support
of the approximating AR model was chosen to be
The estimation results for both data sizes are compared in
Table III. It is clear that the bias and variance of the estimates
drop sharply when the dimensions of the observed field are
larger since the estimates of the covariance function are more
accurate.

Finally, we note that in cases where the data size is not
very small, the ML algorithm computational and storage
requirements (due to the dimensions of the covariance matrix)
make it impractical. On the other hand, the “MA by AR”
algorithm is considerably less complex with respect to both
the computations and storage requirements. Since its bias
decreases with the increase in the data size, the “MA by AR”
algorithm is much more useful in these cases.

VII. CONCLUSIONS

In this paper, we studied the problem of estimating the
parameters of 2-D MA random fields. We first addressed
the problem of expressing the covariance matrix of various
types of MA random fields in terms of the model parameters.
This derivation was then employed to derive a maximum
likelihood algorithm and the CRB on the error variance in
jointly estimating the model parameters for Gaussian MA
fields. A suboptimal “MA by AR” algorithm for estimating the
parameters of the MA model was developed. This algorithm
has low computational complexity but is biased. The bias
decreases when increasing the dimensions of the observed
field or the dimensions of the approximating NSHP AR
model support. It was demonstrated that the “MA by AR”
estimator is a good choice for implementing the initialization
phase of the maximum likelihood algorithm. Furthermore,
as the data size increases, the maximum likelihood method
becomes computationally prohibitive, whereas the “MA by
AR” algorithm becomes less biased and, therefore, offers an
increasingly attractive alternative to ML estimation.
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