Switch-Mode DC-DC Converters – Course Outline

Part 0. Introduction
 a. Scope of course
 b. Linear Regulator
 c. Modern Power Conversion Systems Requirements

Part 1. PWM
 a. Inductor

Part 2. Basic topologies: BUCK, BOOST, BUCK-BOOST, DCM operation
 a. Buck converter
 i. Operation modes
 ii. Voltage transfer function
 iii. Current modes (CCM, DCM)
 b. Capacitor current
 c. Boost converter
 i. Operation modes
 ii. Voltage transfer function
 d. Buck-Boost converter
 e. Comparison between topologies
 f. Average Simulation of PWM Converters
 i. The Switched Inductor Model (SIM) (CCM)
 ii. The Generalized Switched Inductor Model (GSIM) Model
 iii. Implementation (BUCK, BOOST, BUCK-BOOST)
 iv. Parasitics
 v. SPICE compatibility
 vi. Discontinuous Model (DCM)
 vii. Combined GSIM model

Part 3. Magnetics Design
 a. Important magnetic equations
 i. Faraday’s law
 ii. Ampere’s law
 b. Magnetic losses
c. Ideal Transformer
d. Skin effect
e. Proximity effect
f. Transformer design
g. Inductor design
h. Cores
i. Distributed gap core

Part 4. Isolated Converters (FORWARD and FLYBACK)

a. DC current issue
b. Forward Converter
 i. Voltage transfer function
 ii. Magnetizing Inductance Problem
 iii. Transformer Reset
 iv. Reset of Forward

c. Coupled inductor
d. Flyback converter
 i. Voltage across primary
 ii. Voltage transfer function
 iii. Multiple outputs
 iv. Features

Part 5. Losses and Efficiency

a. Conduction Losses
b. Switching Elements
c. Diodes
 i. Conduction losses
 ii. Recovery
 iii. Power Switches
 iv. MOSFET
 v. IGBT
d. Capacitors
 i. Practical Caps
ii. Philips ceramic capacitors
iii. Specifications
iv. Implications
v. Losses

Part 6. Output Voltage Ripple, Parasitic Effects, Snubbers
 a. Output voltage ripple
 b. Diodes reverse recovery
 c. Diode forward recovery
 d. Parasitic effects: Internal delay
 e. Snubbers
 i. Designing the Snubber Components
 ii. Diode Snubber (clamp)
 iii. Switch Snubbers
 iv. Reset
 v. Lossless snubbing

Part 7. Advanced topologies (Half Bridge, Full Bridge, Push-Pull, C’uk, SEPIC)
 a. Half Bridge - HB
 b. Full Bridge - FB
 c. Reset of Forward, HB, FB
 d. Push-Pull
 e. Forward, HB, FB, PP
 f. C’uk Converter and Isolated C’uk
 g. SEPIC Converter

Part 8. Drivers
 a. Driver Requirements
 b. Required Drive
 c. Gate Drivers
 i. Commercial drivers
 ii. High-Side Drive
 iii. Potential offset + floating C supply
 iv. Turn “off”
Part 9. Current Sensing
 a. Resistor
 b. Current transformer
 c. Pulse Current transformer Design
 i. Resistor reset
 ii. Reset – Clamp
 iii. Measuring DC current
 d. DC Current transformer

Part 10. Power Converters Control Technique
 a. The Dynamic Problem
 i. Control
 ii. Modulator
 iii. Oscillator
 b. Complete controller Voltage Mode (VM)
 c. Bode Plot
 i. Design problem
 ii. Stability
 d. Current Feedback
 e. PCM & ACM
 f. Parasitic effects: PCB trace resistance
 i. Interfering signal injection
 ii. Inductive coupling
 iii. Stray inductance