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Abstract

Communications over power lines in the frequency range above 2 MHz, commonly referred to

as broadband (BB) power line communications (PLC), is a central communications scenario for smart

power grids. BB-PLC channels are characterized by a dominant colored non-Gaussian additive noise,

as well as by periodic variations of the channel impulse response and the noise statistics, induced by

the mains voltage. In this work we study the fundamental rate limits for multiple input-multiple output

(MIMO) BB-PLC channels, modeled as periodic channels with additive non-Gaussian noise and finite

memory. We present bounds on the capacity of these channels by exploiting a bijection with time-

invariant MIMO channels of extended dimensions. We illustrate the resulting fundamental limits in a

numerical analysis corresponding to practical MIMO BB-PLC channels.

I. INTRODUCTION

Power line communications (PLC) is an emerging technology which utilizes the existing power

grid infrastructure for data transmission. PLC systems operating in the frequency range of 2−100

MHz are commonly referred to as broadband (BB) PLC. In order to improve performance, BB-

PLC systems may utilize all three wires of the indoor power transmission network to realize

multiple transmit and receive ports, giving rise to multiple input-multiple output (MIMO) BB

PLC scenarios [1]. The resulting MIMO channel exhibits periodicity in both the channel impulse

response (CIR) as well as in the noise statistics. In particular, the CIR in MIMO BB-PLC channels

is typically modeled as a multipath channel [2] with periodic variations [3], [4], where the channel

outputs contain crosstalk from other wires [1], [5], while MIMO BB-PLC noise is generally

modeled as a temporally correlated [2], [6], [7], spatially correlated [1], [8], cyclostationary
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[9] multivariate process. Furthermore, MIMO BB-PLC noise is typically non-Gaussian [2], [6],

[10], where common models for the marginal probability density function (PDF) of BB-PLC

noise include the Nakagami-m distribution [10] and the Gaussian mixture (GM) distribution [6].

Consequently, MIMO BB-PLC channels fall into the class of MIMO periodic channels with

additive non-Gaussian noise and finite memory.

The unique model of MIMO BB-PLC channels introduces several major challenges when

attempting to characterize their capacity. To avoid handling the technical difficulties, previous

works which attempted to characterize the fundamental rate limits for BB-PLC channels used

very simplified models which do not capture many of the special characteristics of these channels:

The work [7] evaluated the capacity of BB-PLC channels by modeling them as having a linear

time-invariant (LTI) CIR with additive colored stationary Gaussian noise; the work [4] modeled

BB-PLC channels as linear, periodically time-varying (LPTV) channels with additive white

Gaussian noise (AWGN), and evaluated the achievable rate by using a transmission scheme

which utilizes orthogonal frequency division multiplexing (OFDM) signalling. Other related

works are [11], which characterized the capacity of PLC channels in the narrowband frequency

range (0 − 500 kHz), modeled as periodic channels with finite memory in which the noise

is additive and Gaussian, and [12], which studied the capacity of periodic MIMO channels

where again the noise was additive and Gaussian. We emphasize that [4], [7], [11], [12] derived

expressions assuming Gaussian noise. Previous works on the capacity of channels with additive

non-Gaussian noise, e.g., [13], [14], considered channels with memoryless and fixed CIR with

i.i.d. non-Gaussian noise, and are thus not applicable to the characterization of the fundamental

rate limits of MIMO BB-PLC channels. To the best of our knowledge, the fundamental limits

for MIMO BB-PLC channels, accounting for the the periodic variations of the CIR and of the

noise statistics, as well as for the non-Gaussianity and the temporal correlation of the noise,

have not been characterized to date.

Main Contributions: In this work we study the fundamental rate limits for discrete-time

(DT) MIMO periodic channels with additive non-Gaussian noise and finite memory, which is

the common model for MIMO BB-PLC channels. We note that when the noise is not a Gaussian

process, obtaining a closed-form expression for the capacity is generally not a simple task, even

for memoryless channels, and often times the approach is to characterize upper and lower bounds

on the capacity, see, e.g., [15, Ch. 7.4]. To facilitate the derivation of such bounds, we first

derive bounds on the capacity of a general LTI MIMO channel with additive stationary non-



Gaussian noise. Then, we prove that the capacity of finite-memory periodic MIMO channels

with additive non-Gaussian noise can be obtained from the capacity of LTI MIMO channels with

additive stationary non-Gaussian noise having extended dimensions compared to those of the

original periodic MIMO channel, via a proper selection of the parameters of the extended LTI

channel. Lastly, we apply the bounds on the capacity of the extended LTI model to obtain the

corresponding bounds for the MIMO BB-PLC channel. This approach yields capacity bounds

which depend on the PDF of the noise process only through its entropy rate and autocorrelation

function. We use the derived bounds to numerically evaluate the capacity of practical MIMO BB-

PLC models, and demonstrate that, in the high signal-to-noise ratio (SNR) regime, the achievable

rate of cyclostationary Gaussian signaling is within a small gap of capacity. We also show that

assuming the noise is Gaussian may result in significantly underestimating the capacity.

The rest of this paper is organized as follows: Section II formulates the problem; Section

III derives the capacity bounds, and Section IV presents numerical examples; Lastly, Section V

provides concluding remarks.

II. PROBLEM DEFINITION

Notations: We use upper-case letters, e.g., X , to denote random variables (RVs), and lower-

case letters, e.g., x, to denote deterministic values. Column vectors are denoted with boldface

letters, e.g., x for a deterministic vector and X for a random vector; the i-th element of x (i ≥ 0)

is denoted with (x)i. We use Sans-Sarif fonts to denote matrices, e.g., A, the element at the i-th

row and the j-th column of A is denoted with (A)i,j , the all-zero k × l matrix is denoted with

0k×l, and the n×n identity matrix is denoted with In. Complex conjugate, transpose, Hermitian

transpose, Euclidean norm, determinant, stochastic expectation, covariance, differential entropy,

and mutual information are denoted by (·)∗, (·)T , (·)H , ‖·‖, |·|, E{·}, Cov(·), h(·), and I(·; ·),

respectively, and a+ denotes max {0, a}. The sets of non-negative integers, integers, and of real

numbers are denoted by N , Z , and R, respectively. All logarithms are taken to base-2. Lastly,

for any sequence y[i], i ∈ Z , and integers b1 < b2, yb2b1 is the column vector obtained by stacking[
(y[b1])T , . . . , (y[b2])T

]T and yb2 ≡ yb20 .

Definitions: We shall use of the following definitions:

Definition 1 (MIMO channel with finite-memory). A DT nr × nt MIMO channel with finite

memory consists of an input sequence X[i] ∈ Rnt , i ∈ N , an output sequence Y[i] ∈ Rnr , i ∈ N ,

an initial state vector S0 ∈ S0 of finite dimensions, and a sequence of PDFs
{
p (Yn|Xn,S0)

}∞
n=0

.



Definition 2 (Code). An [R, l] code with rate R and blocklength l ∈ N consists of: 1) A message

set U , {1, 2, . . . , 2lR}. 2) An encoder el which maps each message u ∈ U into a codeword

xl−1
(u) =

[
x(u) [0] ,x(u) [1] , . . . ,x(u) [l − 1]

]
. 3) A decoder dl which maps the channel output yl−1

into a message û ∈ U . The encoder and decoder operate independently of the initial state.

The set
{
xl−1

(u)

}2lR

u=1
is referred to as the codebook of the [R, l] code. Assuming U is uniformly

selected from U , the average probability of error, when the initial state is s0, is:

P l
e (s0)=

1

2lR

2lR∑
u=1

Pr
(
dl
(
Yl−1

)
6= u

∣∣U=u,S0 =s0

)
.

Definition 3 (Achievable rate). A rate Rc is called achievable if, for every ε1, ε2 > 0, there

exists a positive integer l0 > 0 such that for all integer l > l0, there exists an [R, l] code which

satisfies sup
s0∈S0

P l
e (s0) < ε1, and R ≥ Rc − ε2.

Definition 4 (Capacity). Capacity is defined as the supremum of all achievable rates.

Model and Problem Formulation: We consider a DT MIMO BB-PLC channel modeled

as a linear, non-Gaussian, MIMO periodic channel (LNGMPC) with ñr receive ports and ñt

transmit ports. Let m̃ be a non-negative integer which represents the length of the memory of the

channel, p̃G be a positive integer which represents the period of the CIR, and p̃W be a positive

integer which represents the period of the noise statistics. Let W̃[i] ∈ Rñr be a real-valued,

ñr-dimensional, zero-mean, strict-sense cyclostationary, non-Gaussian additive noise. Thus, for

any set of k integer indexes {il}kl=1, k > 0, the joint PDF of W̃[i1],W̃[i2], . . . ,W̃[ik] is equal

to the joint PDF of W̃[i1 + p̃W],W̃[i2 + p̃W], . . . ,W̃[ik + p̃W]. Since the channel memory

is m̃, then noise vectors which are more than m̃ instances apart are mutually independent, i.e.,

∀i1, i2, l1, l2 ∈ N such that i2 > i1 + l1 +m̃, the random vectors W̃i1+l1
i1

and W̃i2+l2
i2

are mutually

independent. We further assume that there is no deterministic dependence between instances of

W̃[i], i.e., @i0 for which W̃[i0] can be expressed as a linear combination of
{
W̃[i]

}
i 6=i0

. Let{
G̃[i, τ ]

}m̃
τ=0

denote the LPTV CIR of the MIMO BB-PLC channel, G̃[i, τ ] ∈ Rñr×ñt . The

periodicity of the CIR implies that G̃[i, τ ] = G̃[i + p̃G, τ ], ∀i ∈ Z, τ ∈ {0, 1, . . . , m̃}. The

input-output relationship for the LNGMPC with input codeword length l̃ is given by

Ỹ[i] =
m̃∑
τ=0

G̃[i, τ ]X̃[i− τ ] + W̃[i], i ∈ {0, 1, . . . , l̃ − 1}, (1)

where the initial state of the channel (i.e., prior to the beginning of reception) is given by



S̃0 =
[(
X̃−1
−m̃
)T
,
(
W̃−1
−m̃
)T]T . The channel input is subject to a time-averaged power constraint

P̃ , as in [11, Eq. (7)]:
1

l̃

l̃−1∑
i=0

E

{∥∥∥X̃ [i]
∥∥∥2
}
≤ P̃. (2)

Letting p̃ be the least common multiple of p̃G and p̃W which satisfies p̃ > m̃, we obtain that the

CIR and the statistics of the noise of the LNGMPC (1) are periodic with a period p̃, hence we

refer to p̃ as the period of the channel. We also note that while the above model was stated for

real signals, complex (baseband) channels can be accommodated by representing all complex

vectors and matrices using real vectors and matrices.

In the following section we study the capacity of LNGMPCs, defined in (1)–(2), denoted CP.

III. THE CAPACITY OF LNGMPCS

Our main result is the characterization of upper and lower bounds on the capacity of LNGMPCs,

defined in (1)–(2). This result is obtained via three steps: First, in Subsection III-A, we define a

general LTI nr×nt MIMO channel with stationary non-Gaussian noise, to which we refer as the

linear non-Gaussian MIMO channel (LNGMC). We express the capacity of the LNGMC as a

limit of the mutual information between its input and its output when the blocklength increases

to infinity. Next, in Subsection III-B, We derive computable upper and lower bounds on the

capacity of the LNGMC, which are stated in terms of the CIR, and of the entropy rate and

autocorrelation function of the noise. Lastly, in Subsection III-C, we prove that the capacity

of the LNGMPC can be obtained as the capacity of an equivalent p̃× p̃ LNGMC, and use the

bounds derived in Subsection III-B to state the corresponding capacity bounds for the LNGMPC.

A. The Capacity of the LNGMC

We begin with the definition of the LNGMC: Let m be a non-negative integer which represents

the length of the memory of the channel, and let {G[τ ]}mτ=0 denote a set of m+1 real-valued nr×nt

CIR matrices. Additionally, let W[i] ∈ Rnr be a multivariate, real-valued, strict-sense stationary

non-Gaussian additive noise process, whose mean is zero and whose temporal dependence spans

a finite interval of length m, i.e., ∀i1, i2, l1, l2 ∈ N such that i2 > i1 + l1 +m, the random vectors

Wi1+l1
i1

and Wi2+l2
i2

are mutually independent. For the transmission of a block of l symbols,

{X[i]}l−1
i=0, the input-output relationship is defined as

Y[i] =
m∑
τ=0

G[τ ]X[i− τ ] + W[i], i ∈ {0, 1, . . . , l − 1}, (3)



where the initial state of the channel is given by S0 =
[(
X−1
−m
)T
,
(
W−1
−m
)T ]T . The channel input

is subject to a time-averaged power constraint P , i.e.,

1

l

l−1∑
i=0

E
{
‖X [i]‖2} ≤ P. (4)

The capacity of the LNGMC defined above is stated in the following proposition:

Proposition 1. The capacity of the LNGMC defined in (3), subject to (4), is given by

CL = lim
n→∞

1

n
sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P
I
(
Xn−1;Yn−1|X−1

−m=0nt·m
)
.

[A proof is given in Appendix A]

Comment 1. Previous works on the capacity of finite-memory channels with Gaussian noise,

e.g., [20], obtained a capacity result in the frequency domain, by transforming the channel into a

set of parallel independent channels, for which capacity is expressed as an explicit integral. When

the noise is non-Gaussian, switching to the frequency domain results in the noise components at

different frequency bins having statistical dependence (even if the noise samples are independent

in the time domain). For this reason, our analysis is carried out in the time domain, and the

capacity is stated in terms of an asymptotic limit. Nonetheless, the bounds on the capacity of

LNGMCs, derived in Prop. 2, are stated in closed-form (not as limiting expressions) in the

frequency domain.

Prop. 1 implies that the capacity of the LNGMC can be computed by setting X−1
−m = 0nt·m.

We note that setting the signal component in the initial state to zero was stated as a model

assumption in [20] and [21], which studied the capacity of point-to-point channels with memory

and Gaussian noise.

B. Bounds on the Capacity of the LNGMC

Next, based on the capacity expression in Prop. 1, we derive upper and lower bounds on

CL, which depend on the PDF of the non-Gaussian noise W[i] only through its autocorrelation

function, CW[τ ] , E
{
W[i+ τ ]

(
W[i]

)T}, and its entropy rate, H̄W , lim
l→∞

1
l
h
(
Wl−1

)
. Note

that the strict-sense stationarity and finite memory of W[i] imply that H̄W = h (W[m]|Wm−1)

[17, Ch. 12.5].



In the statement of the bounds we make use of the following additional definitions: For

any ω ∈ [−π, π), we define the nr×nt matrix G′(ω) ,
m∑
τ=0

G[τ ]e−jωτ , and the nr×nr matrix

C′W(ω) ,
m∑

τ=−m
CW[τ ]e−jωτ , and we let

{
α′k(ω)

}nr−1

k=0
and

{
λ′k(ω)

}nt−1

k=0
denote the eigenvalues

of G′(ω)
(
G′(ω)

)H and of
(
G′(ω)

)H(
C′W(ω)

)−1
G′(ω), respectively. Next, let H̄G,W denote the

entropy rate of a zero-mean nr×1 multivariate Gaussian process whose autocorrelation function

is equal to CW[τ ]. From [22, Sec. III] the entropy rate H̄G,W can be expressed as

H̄G,W =
1

4π

π∫
ω=−π

log |2πeC′W(ω)| dω. (5a)

Let CG denote the capacity of the channel defined in (3) when the noise W[i] is Gaussian, subject

to the constraint (4) and to setting X−1
−m = 0nt·m. In [21, Eqn. (9)] the capacity of LTI MIMO

channels with additive stationary Gaussian noise was characterized1, assuming X−1
−m = 0nt·m.

Using [21, Eqn. (9)] we can write

CG =
1

4π

nt−1∑
k=0

π∫
ω=−π

(
log
(
∆′ · λ′k(ω)

))+

dω, (5b)

where ∆′ is set s.t. 1
2π

nt−1∑
k=0

π∫
ω=−π

(
∆′ − (λ′k(ω))−1

)+

dω=P .

We next state an upper bound and two lower bounds on the capacity of the LNGMC using

H̄W, H̄G,W, and CG. These bounds are stated in the following proposition:

Proposition 2. The capacity of the LNGMC defined in (3), subject to the constraint (4), satisfies

CG ≤ CL ≤ CG + H̄G,W − H̄W. (6a)

Moreover, if nr = nt and G[0] is invertible, then CL satisfies

CL ≥
nt

2
log

2πeP

nt

· 2
1

2π·nt

nt−1∑
k=0

π∫
ω=−π

log(α′k(ω))dω
+2

2
nr
H̄W

− H̄W. (6b)

[A proof is given in Appendix B]

1We note that [21, Thm. 1] is stated for a per-codeword power constraint. However, it follows from [21, Sec. 3.1] and from
[15, Ch. 7.3] that the proof of [21, Thm. 1] also holds subject to the time-averaged power constraint (4).



C. Capacity Analysis for LNGMPCs

In order to obtain bounds on the capacity of LNGMPCs, we first prove that any LNGMPC

can be equivalently represented as an LNGMC, and then apply the capacity bounds derived for

LNGMCs in Prop. 2 to bound the capacity of the equivalent representation. To that aim, define

the p̃ · ñr× 1 random vector WDCD

[
ĩ
]
, W̃

(ĩ+1)·p̃−1

ĩ·p̃ , and additionally, define two p̃ · ñr× p̃ · ñt

matrices, GDCD[0] and GDCD[1], as follows:

GDCD[0],



G̃[0, 0] · · · 0 · · · 0
... . . . . . . ...

G̃[m̃, m̃] · · · G̃[m̃, 0] · · · 0
... . . . . . . ...

0 · · · G̃[p̃−1, m̃] · · · G̃[p̃−1, 0]


,

GDCD[1],



0 · · · 0 G̃[0, m̃] · · · G̃[0, 1]
...

... . . . ...

0 · · · 0 0 G̃[m̃−1, m̃]
...

...
...

...

0 · · · 0 0 · · · 0


.

As WDCD

[
ĩ
]

is given by the decimated components decomposition (DCD) [23] of W̃[i], the

strict-sense cyclostationarity of W̃[i] induces a strict-sense stationarity for WDCD

[
ĩ
]
. Using

these definitions, we construct an LNGMC with a p̃ · ñt × 1 input XDCD

[
ĩ
]

and a p̃ · ñr × 1

output YDCD

[
ĩ
]
, which satisfies the following input-output relationship for a sequence of l

channel inputs:

YDCD

[
ĩ
]
=

1∑
τ̃=0

GDCD [τ̃ ]XDCD

[̃
i−τ̃

]
+WDCD

[
ĩ
]
, (7)

ĩ ∈ {0, 1, . . . , l−1}, where the channel input to the LNGMC (7) has to satisfy an average power

constraint
1

l

l−1∑
ĩ=0

E
{∥∥XDCD

[
ĩ
]∥∥2
}
≤ PDCD = p̃ · P̃. (8)

Since p̃ > m̃, the initial state of the LNGMC is S0,DCD =
[
XT

DCD[−1],WT
DCD[−1]

]T . The

relationship between the capacity of the LNGMPC in (1)–(2), denoted CP, and the capacity of

the LNGMC in (7)–(8), denoted CDCD, is stated in the following theorem:



Theorem 1. The capacity of the LNGMPC defined in (1), subject to (2), satisfies

CP =
1

p̃
CDCD. (9)

[A proof is given in Appendix C]

Next, using Thm. 1 and Prop. 2, we derive lower and upper bounds on the capacity of

the LNGMPC. To that aim, define the p̃ · ñr × p̃ · ñr autocorrelation function CWDCD
[τ̃ ] ,

E
{
WDCD

[
ĩ+ τ̃

] (
WDCD

[
ĩ
])T }

, the entropy rate H̄WDCD
, lim

n→∞
1
n
h
(
Wn−1

DCD

)
, the p̃·ñr×p̃·ñt

matrix G′DCD(ω),
1∑̃

τ=0

GDCD[τ̃ ]e−jωτ̃ , and the p̃·ñr×p̃·ñr matrix C′WDCD
(ω),

1∑
τ̃=−1

CWDCD
[τ̃ ]e−jωτ̃ .

Additionally, let
{
α′DCD,k(ω)

}p̃·ñr−1

k=0
and

{
λ′DCD,k(ω)

}p̃·ñt−1

k=0
be the eigenvalues of G′DCD(ω)

(
G′DCD(ω)

)H
and of

(
G′DCD(ω)

)H(
C′WDCD

(ω)
)−1

G′DCD(ω), respectively, and also let H̄G,WDCD
denote the

entropy rate of a zero mean p̃ · ñr× 1 Gaussian process with autocorrelation function CWDCD
[τ̃ ].

H̄G,WDCD
can be computed via (5a) with C′WDCD

(ω) instead of C′W(ω). Lastly, let CDCD,G be

the capacity of the LNGMC (7) when the noise WDCD

[
ĩ
]

is assumed to be Gaussian with

autocorrelation function CWDCD
[τ̃ ]. Thus, CDCD,G is obtained using (5b) with p̃ · ñt, λ′DCD,k(ω),

and PDCD replacing nt, λ′k(ω), and P , respectively. Noting that GDCD[0] has a full rank if and

only if G̃
[̃
i, 0
]

has a full rank for every ĩ ∈ {0, 1, . . . , p̃− 1} , P̃ , then, by combining Thm. 1

with Prop. 2, the following bounds on CP are obtained:

Corollary 1. The capacity of the LNGMPC defined in (1), subject to (2), satisfies

1

p̃
CDCD,G≤CP≤

1

p̃

(
CDCD,G+H̄G,WDCD

−H̄WDCD

)
. (10a)

Moreover, if ñr = ñt and G̃
[
ĩ, 0
]

is non-singular for every ĩ ∈ P̃ , then CP also satisfies

CP ≥
ñt

2
log

(
2πeP̃

ñt

· 2
1

2π·p̃·ñt

p̃·ñt−1∑
k=0

π∫
ω=−π

log(α′DCD,k(ω))dω
+ 2

2
p̃·ñr

H̄WDCD

)
− 1

p̃
H̄WDCD

. (10b)

Comment 2. Note that (6b) also lower bounds the achievable rate of the LNGMC with stationary

Gaussian input. This implies that (10b) constitutes a lower bound on the achievable rate of

LNGMPCs with cyclostationary Gaussian input. Consequently, when (10b) coincides with the

upper bound in (10a), then cyclostationary Gaussian inputs are optimal.



IV. NUMERICAL EXAMPLES

In this section we numerically evaluate the capacity bounds derived in Section III for MIMO

BB-PLC channels. As BB-PLC channels exhibit a broad range of frequency responses and noise

power values, depending on the topology of the power line network and on the appliances

connected to the network, [2], [7], [10], we consider a wide range of SNRs.

We consider a passband 2×2 MIMO BB-PLC channel. The multivariate LPTV CIR G̃[i, τ ] is

generated using the method proposed in [5] for generating MIMO BB-PLC channels: Specifically,

we first generate four real LPTV CIRs with period p̃G = 240 and memory length m̃ = 4 using

the channel generator proposed in [3], and denote the generated channels as
{
g̃k[i, τ ]

}4

k=1
. Then,

setting ρ = 0.9, the multivariate LPTV CIR is obtained via

G̃[i, τ ] =

1 ρ

ρ 1

1/2  g̃1 [i, τ ] g̃2 [i, τ ]

g̃3 [i, τ ] g̃4 [i, τ ]

1 ρ

ρ 1

1/2

.

The additive multivariate noise is a temporally and spatially correlated cyclostationary GM

process generated as follows: First, we generate a real i.i.d. 2 × 1 GM process Ũ[i] whose

PDF is a weighted sum of three Gaussian PDFs N
(
[5, 4]T , 5 · I2

)
, N

(
[−8,−16]T , 2 · I2

)
, and

N
(
[−19, 4]T , I2

)
, with weights {0.7, 0.2, 0.1}, respectively. Then, we generate a multivariate

LPTV spectral shaping filter, F̃[i, τ ], with period p̃W = 120 (i.e., p̃ = 240) and memory length

m̃ = 4, based on the method described in [8] for constructing a spectral correlation profile

for MIMO BB-PLC channels: Let ρW(ω) be a 2π-periodic function representing the spectral

variations in the spatial correlation. Following [8, Fig. 5], we set ρW(ω) = 0.7− |ω|
2π

for |ω| < π.

Let s[i, ω] be the instantaneous power spectral densitys (PSDs), corresponding to the ’heavily

disturbed’ profile based on [9]. Finally, we set

F̃′[i, ω] =

 1 ρw (ω)

ρw (ω) 1

1/2 s [i, ω] 0

0 s [i, ω]

1/2

,

and F̃[i, τ ]= 1
2π

π∫
ω=−π

F̃′[i, ω]ejωτdω. The noise signal W̃[i] is obtained as the output of the LPTV

filter F̃[i, τ ] whose input is Ũ[i].

Defining SNR = P̃

1
p̃

p̃∑
i=1

E

{
‖W̃[i]‖2

} , we depict in Fig. 1 the capacity bounds for the MIMO BB-

PLC channel vs. SNR. Note that the lower bound in (10b) is much tighter than the lower bound

in (10a) for the entire SNR region, indicating the significant mismatch induced by assuming
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Fig. 1. Capacity comparison. MIMO BB-PLC channel.

that the noise is Gaussian. We also note that the gap between the maximal lower bound and the

upper bound in Fig. 1 varies from 3.05 bps/Hz at SNR of 0 dB to 0.45 bps/Hz at high SNRs. We

conclude that by using cyclostationary Gaussian inputs, it is possible to obtain an achievable rate

which is very close to capacity at high SNRs. Finally, we note that for the considered channel,

a 2×2 MIMO BB-PLC system utilizing a frequency band of 100 MHz, as in the ITU-T G.9963

standard [24], can achieve data rates approaching one Gbps at high SNRs.

V. CONCLUSIONS

In this paper we derived upper and lower bounds on the capacity of MIMO BB-PLC channels,

modeled as finite-memory periodic MIMO channels with additive non-Gaussian noise. The

capacity bounds derived depend on the noise distribution only through its entropy rate and

autocorrelation function. Our numerical evaluations demonstrate the tightness of the proposed

bounds at high SNRs, and illustrate the significant loss resulting from assuming that the noise

is Gaussian in the computation of the capacity. We conclude that the Gaussian noise assumption

may lead to inherently suboptimal schemes.

APPENDIX

A. Proof of Proposition 1

The information stability of stationary channels with finite memory, in which the input and

the output are taken from discrete and finite alphabets, was shown in [25], see also [18, Sec.

1.5]. This results also holds for arbitrary alphabets, see, e.g. [19, Thm. 6]. In the following



we provide a detailed proof of Proposition 1, namely, we prove the information stability of

LNGMCs, without using information-spectrum arguments.

The following definitions are used in the sequel:

Definition A.1 (A memoryless channel). A channel with input X[i], output Y[i], and initial state

S0, is called memoryless2 if for every l ∈ N ,

p
(
Yl−1|Xl−1,S0

)
=

l−1∏
i=0

p (Y[i] |X[i]) . (A.1)

Definition A.2 (An n-block memoryless channel). A channel with input X[i], output Y[i], and

initial state S0, is called n-block memoryless if for every positive integer b

p
(
Yn·b−1|Xn·b−1,S0

)
=

b∏
b′=1

p
(
Yn·b′−1
n·(b′−1)

∣∣Xn·b′−1
n·(b′−1)

)
.

Def. A.2 is a specialization of the definition of n-block memoryless broadcast channels,

introduced in [26, Eq. (8)], to point-to-point channels. Note that codewords of any length can

be transmitted over n-block memoryless channels, however, when the length of the codeword

is an integer multiple of the channel block memory n, then the average probability of error is

independent of the initial state S0 [26, Sec. II]. This follows since the output of the channel

corresponding to the transmitted codeword is independent of the initial channel state, by the

definition of the channel.

The outline of the proof is as follows:

• First, for a given n > m we construct an n-block memoryless non-Gaussian MIMO channel

(n-MNGMC) based on the LNGMC by considering the last n−m vector channel outputs

of each n-block: The output of the n-MNGMC at time i ∈ N is defined as the output of

the LNGMC if the remainder of the division of i by n, denoted ((i))n, satisfies ((i))n ≥ m,

while for ((i))n < m the output of the n-MNGMC is set to “not defined”. The n-MNGMC

is subject to the power constraint (4) on the channel input, similarly to the LNGMC.

• Next, in Lemma A.1 we characterize the capacity of the n-MNGMC.

• Then, we show that the capacity of the LNGMC can be obtained as the capacity of the

n-MNGMC by taking n→∞. This step is carried out in Lemmas A.2–A.5.

2The general notion of memoryless channels as in, e.g., [34, Sec. II-A], requires that p
(
Y[i]|Yi−1,Xi,S0

)
= p (Y[i]|X[i])

for all i ∈ N . When no feedback to the transmitter is present, the general definition specializes Def. A.1. Since we assume that
no feedback is present, we use (A.1) as the definition for memorylessness, as in [15, Ch. 7.1].



• Lastly, in Lemma A.6 we show that in the asymptotic regime of n → ∞, the capacity of

the n-MNGMC coincides with Prop. 1.

The capacity of the n-MNGMC is stated in the following lemma:

Lemma A.1. The capacity of the n-MNGMC is given by

CM
n = sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1

m

)
. (A.2)

Proof: In order to obtain the capacity of the n-MNGMC, we first show that (A.2) denotes the

maximum achievable rate for the n-MNGMC when considering only codes whose blocklength

is an integer multiple of n, i.e, [R, b · n] codes, where b ∈ N . Then, we show that any rate

achievable for the n-MNGMC can be achieved by considering only codes whose blocklength is

an integer multiple of n.

Let us consider the n-MNGMC constrained to using only codes whose blocklength is an integer

multiple of n. In this case, we can represent the n-MNGMC as an equivalent n ·nt×(n−m) ·nr

MIMO channel (i.e., without loss of information), via the following assignments: Define the input

of the transformed channel to be the n · nt × 1 vector Xeq [ i′ ] , X
(i′+1)·n−1
i′·n , i′ ≥ 0, and the

output of the transformed channel to be the (n − m) · nr × 1 vector Yeq [ i′ ] , Y
(i′+1)·n−1
i′·n+m .

The transformation between the inputs and the outputs of the original n-MNGMC and of the

transformed MIMO channel is clearly bijective, and thus, the capacity of the transformed MIMO

channel is equal to the capacity of the original n-MNGMC, as long as the power constraint of

the equivalent channel is obtained from that of the original channel as

1

l′

l′−1∑
i′=0

E
{
‖Xeq [ i′ ]‖2

}
≤ n · P, (A.3)

which follows since the n-MNGMC is constrained to using codes whose blocklength is n · l′,

l′ ∈ N . Note that the power constraint (A.3) is an average power constraint, the transmitter in

the transformed channel has n times more antennas than the transmitter in the n-MNGMC, and

the receiver in the transformed channel has (n −m) times more antennas than the receiver in

the n-MNGMC. Since the n-MNGMC is n-block memoryless, it follows that the transformed

MIMO channel is memoryless, hence, from [15, Ch. 7.3] we obtain that its achievable rate, for a

given distribution on the input Xeq, is given by I (Xeq;Yeq) = I (Xn−1;Yn−1
m ). As the original

power constraint (4) becomes (A.3), and as each channel use in the transformed MIMO channel



corresponds to n channel uses in the n-MNGMC, it follows that the maximal achievable rate

of the n-MNGMC, measured in bits per channel use, subject to the restriction that only codes

whose blocklength is an integer multiple of n are allowed, is given by (A.2).

It remains to show that any rate achievable for the n-MNGMC can be achieved by considering

only codes whose blocklength is an integer multiple of n: Consider a rate Rs that is achievable

for the n-MNGMC and fix ε1 > 0 and ε2 > 0. From Def. 3 it follows that ∃l0 > 0 such that

∀l > l0 there exists an [R, l] code which satisfies Def. 3. Thus, by setting b0 as the smallest

integer for which b0 · n ≥ l0, it follows that for all integer b > b0 there exists an [R, b · n] code

which satisfies Def. 3, which implies that the rate Rs is also achievable when considering only

codes whose blocklength is an integer multiple of n. It thus directly follows that (A.2) is the

maximum achievable rate for the n-MNGMC.

Next, we define

CL
n (s0) , sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1

∣∣S0 = s0

)
. (A.4)

Lemma A.2 upper bounds CL using CL
n (s0):

Lemma A.2. For every ε1 ∈ (0, 1), ε2 > 0, the capacity of the LNGMC satisfies

CL ≤
1

1− ε1
inf

s0∈S0
CL
n (s0) +

1

(1− ε1)n
+ ε2. (A.5)

Proof: We prove the lemma by showing that any rate Rc achievable for the LNGMC satisfies

Rc ≤ lim inf
n→∞

CL
n (s0) for any initial state s0. By definition, if R is achievable for the LNGMC

then, for every ε1, ε2 > 0 and for all sufficiently large n, there exists an [R1, n] code, i.e., a

code with rate R1, blocklength n, and a message set U containing 2nR1 messages, where each

transmitted message U is uniformly selected from U , such that Def. 3 is satisfied. Let Û denote

the estimate of U at the receiver. Fix an initial state s0 ∈ S0, and recall that from Fano’s

inequality [17, Sec. 2.10] it follows that

H
(
U |Yn−1,S0 = s0

)
≤ 1 + Pr

(
U 6= Û

∣∣∣S0 = s0

)
nR1

(a)

≤ 1 + ε1 · nR1, (A.6)

where (a) follows from Def. 3 since Pr
(
U 6= Û

∣∣∣S0 = s0

)
≤ sup

s0∈S0
Pr
(
U 6= Û

∣∣S0 = s0

)
≤ ε1.



Therefore,

I
(
U ;Yn−1

∣∣S0 = s0

)
= H (U |S0 = s0)−H

(
U |Yn−1,S0 = s0

)
(a)

≥ H (U |S0 = s0)− 1− ε1 · nR1

(b)
= nR1 − 1− ε1 · nR1, (A.7)

where (a) follows from (A.6), and (b) follows since U is uniformly distributed over U and

independent of S0, thus H (U |S0 = s0) = H (U) = nR1. Combining Def. 3 and (A.7) leads to

Rc − ε2 ≤
I (U ;Yn−1|S0 = s0) + 1

n (1− ε1)
,

thus,

(1− ε1) (Rc − ε2)− 1

n
≤ 1

n
I
(
U ;Yn−1

∣∣S0 = s0

)
(a)

≤ sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1

∣∣S0 = s0

)

= CL
n (s0) , (A.8)

where (a) follows from the data processing lemma [17, Ch. 2.8] as U |S0 = s0 ↔ Xn−1|S0 =

s0 ↔ Yn−1|S0 =s0 form a Markov chain. Dividing both sides of (A.8) by 1− ε1 yields

Rc ≤
CL
n (s0)

1− ε1
+

1

n(1− ε1)
+ ε2, ∀s0 ∈ S0,

hence,

CL = supRc

(a)

≤ inf
s0∈S0

{
CL
n (s0)

1− ε1
+

1

n(1− ε1)
+ ε2

}
=

1

1− ε1
inf

s0∈S0
CL
n (s0) +

1

(1− ε1)n
+ ε2, (A.9)

where (a) follows from the following proposition: Suppose that A and B are nonempty sets of

real numbers such that a ≤ b ∀a ∈ A and b ∈ B. Then, supA ≤ inf B.3 Note that (A.9)

coincides with (A.5).

3Proof: Fix b ∈ B. Since a ≤ b for all a ∈ A, then b is an upper bound on A, thus, b ≥ supA. This inequality implies that
supA is a lower bound on B, hence supA ≤ inf B.



Lemma A.3. For all n > 2m, the capacity of the n-MNGMC satisfies inf
s0∈S0

CL
n (s0) ≤ n+2m

n
CM
n+2m.

Proof: Note that for every n > 2m and for every distribution on Xn+2m−1, it follows from

the mutual information chain rule [17, Ch. 2.4] that the input and output of the LNGMC satisfy

I
(
Xn+2m−1;Yn+2m−1

m

)
=I
(
Xn+2m−1;Y2m−1

m

)
+I
(
Xn+2m−1;Yn+2m−1

2m

∣∣Y2m−1
m

)
=I
(
Xn+2m−1;Y2m−1

m

)
+I
(
X2m−1;Yn+2m−1

2m

∣∣Y2m−1
m

)
+I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣X2m−1,Y2m−1
m

)
≥ I

(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣X2m−1,Y2m−1
m

)
= I

(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣X2m−1
m ,Y2m−1

m ,Xm−1
)

(a)
= I

(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣X2m−1
m ,W2m−1

m ,Xm−1
)
, (A.10)

where (a) follows from the definition of the LNGMC in (3). Applying the definition of condi-

tional mutual information [15, Ch. 2.4] to the expression in (A.10), we can write:

I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣X2m−1
m ,W2m−1

m ,Xm−1
)

=

∫
s̃0∈S0

x̃m−1∈Rm

I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
= s̃0,X

m−1 = x̃m−1
)
pS0,Xm−1

(
s̃0, x̃

m−1
)
ds̃0dx̃

m−1.

Next, we note that from the generalized mean value inequality for integration [33, Ch. 9.10.2],

it follows that for any input distribution on Xn+2m−1, there exist ŝ0 ∈ S0 and x̂m−1 ∈ Rm such

that4∫
s̃0∈S0

x̃m−1∈Rm

I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
= s̃0,X

m−1 = x̃m−1
)
pS0,Xm−1

(
s̃0, x̃

m−1
)
ds̃0dx̃

m−1

= I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
= ŝ0,X

m−1 = x̂m−1
) ∫
s̃0∈S0

x̃m−1∈Rm

pS0,Xm−1

(
s̃0, x̃

m−1
)
ds̃0dx̃

m−1

= I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
= ŝ0,X

m−1 = x̂m−1
)

(A.11)

By plugging (A.11) into (A.10) we conclude that for the input and output of the LNGMC it

4Note that the mean value theorem for integration requires the integral to be defined over a finite interval. However, as∫
s̃0∈S0

pS0 (s̃0) ds̃0 =1, it follows that the PDF approaches 0 for ‖s̃0‖→∞, therefore, the integral can be approached arbitrarily

close by considering a finite 2m-dimensional volume, i.e., integrating over ‖s̃0‖≤Ω for sufficiently large Ω, instead of over
S0, see also [35, Discussion after Eq. (B.15)].



follows that for every n > 2m and for every distribution on Xn+2m−1, ∃ŝ0 ∈ S0, x̂m−1 ∈ Rm,

such that

I
(
Xn+2m−1;Yn+2m−1

m

)
≥ I

(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
= ŝ0, X

m−1 = x̂m−1
)
. (A.12)

Next, for CL
n (s0), defined in (A.4), we write

CL
n (s0)= sup

p(Xn−1): 1
n

n−1∑
i=0
E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1

∣∣S0 =s0

)
(a)
= sup

p(Xn+2m−1
2m ): 1

n

n+2m−1∑
i=2m

E{‖X[i]‖2}≤P

1

n
I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
=s0

)
, (A.13)

where (a) follows from the fact that the LNGMC has an LTI CIR with a memory length of

m (3), combined with the fact that W[i] is strict-sense stationary, as well as the definition

of the initial state S0 =
[(
X−1
−m
)T
,
(
W−1
−m
)T]T : These characteristics imply that the conditional

probability function of the channel output given the channel input is invariant to index shifting,

i.e., p
(
Yn−1

∣∣Xn−1
−m = x,W−1

−m = w
)

= p
(
Yn+2m−1

2m

∣∣Xn+2m−1
m = x,W2m−1

m = w
)

for all x ∈

Rnt·(n+m), w ∈ Rnr·m. By combining (A.13) and (A.12), and recalling that (A.12) holds for any



distribution of Xn+2m−1, it follows that for any distribution of X2m−1

inf
s0∈S0

CL
n (s0)

= inf
s0∈S0

 sup

p(Xn+2m−1
2m ): 1

n

n+2m−1∑
i=2m

E{‖X[i]‖2}≤P

1

n
I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
=s0

)
(a)
= inf

s0∈S0
x̃m−1∈Rm


sup

p(Xn+2m−1
2m |X2m−1=x̃2m−1):

1
n

n+2m−1∑
i=2m

E{‖X[i]‖2}≤P

1

n
I
(
Xn+2m−1

2m ;Yn+2m−1
2m

∣∣ {X2m−1
m ,W2m−1

m

}
=s0,X

m−1= x̃m−1
)


(b)

≤ sup

p(Xn+2m−1): 1
n

n+2m−1∑
i=2m

E{‖X[i]‖2}≤P, 1
2m

2m−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn+2m−1;Yn+2m−1

m

)
, (A.14)

(c)

≤ sup

p(Xn+2m−1): 1
n+2m

n+2m−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn+2m−1;Yn+2m−1

m

)

=
n+2m

n
CM
n+2m, (A.15)

where (a) follows since introducing the conditioning into the PDF in the supremum (note that

x̃2m−1
m in the conditioning in the PDF p

(
Xn+2m−1

2m |X2m−1 = x̃2m−1
)

is taken from s0) as well as

adding the conditioning in the mutual information does not change the search space of the input

distributions and consequently the value of the supremum does not change, (b) follows from

(A.12), and (c) follows since the set over which the supremum is evaluated contains the set over

which the supremum is evaluated in (A.14),
{
p (Xn+2m−1) : 1

n+2m

n+2m−1∑
i=0

E
{
‖X [i]‖2} ≤ P

}
⊇{

p (Xn+2m−1) : 1
2m

2m−1∑
i=0

E
{
‖X [i]‖2} ≤ P, 1

n

n+2m−1∑
i=2m

E
{
‖X [i]‖2} ≤ P

}
, hence the supremum

can only be increased. It follows from (A.15) that inf
s0∈S0

CL
n (s0) ≤ n+2m

n
CM
n+2m.

Lemma A.4. The capacity of the LNGMC, CL, satisfies sup
n>m

CM
n ≤ CL.

Proof: We will show that for any n > m, any rate Rc achievable for the n-MNGMC, is

also achievable for the LNGMC, i.e., for any ε1, ε2 > 0, then, taking l to be sufficiently large, it

is possible to construct an [R1, l] code for the LNGMC such that Def. 3 is satisfied. The proof

follows the same reasoning as that of [26, Lemma 2]: We first show that the statement of the

lemma holds for l which are integer multiples of n, following which we prove that this statement



is true for all sufficiently large integer l.

Fix n > m and consider a rate Rc, achievable for the n-MNGMC. Then, by definition, for

any ε1, ε2 > 0, ∃b0 sufficiently large, such that for all integer b > b0, there exists an [R1, b · n]

code for the n-MNGMC with an average error probability which satisfies Def. 3, and code rate

which satisfies

R1 ≥ Rc −
ε2
2
. (A.16)

We denote this code by CM
b·n. Note that, by the definition of the n-MNGMC, the code CM

b·n

considers only the last b ·n−m channel outputs out of each b ·n channel outputs when decoding

the message.

Next, apply the code CM
b·n to the LNGMC. Note that the code rate is unchanged. Since the

decoder considers the last b · n−m channel outputs out of each b · n channel outputs, the error

probability is also the same as that of the n-MNGMC. It thus follows that for Rc achievable

for the n-MNGMC, then for sufficiently large codelengths l = b · n, there exists a code for

the LNGMC with a rate which is arbitrarily close to Rc, and with an arbitrarily small error

probability for all s0.

We next use the coding scheme of the n-MNGMC to construct a coding scheme for the

LNGMC, for any sufficiently large integer value of l ∈ N : Let l = b ·n+a, where b is a positive

integer and a ∈ {0, 1, . . . , n − 1}. We construct an [R2, l] code for the LNGMC by appending

a arbitrary symbols to the codewords of CM
b·n. The decoder discards the last a channel outputs.

Clearly, for any s0, the error probability is the same as that of the code CM
b·n since the decoder

operates on the same received symbols. The code rate R2 is obtained by

R2 = R1
b · n

b · n+ a

(a)

≥
(
Rc −

ε2
2

) b · n
b · n+ a

,

where (a) follows from (A.16). Thus, for sufficiently large b, i.e., b > max
{

2a(Rc−ε2)
nε2

, b0

}
, it

follows that R2 ≥ Rc − ε2. Consequently, if Rc is achievable for the n-MNGMC, then for any

ε1, ε2 > 0 we can find a sufficiently large value of l0 ∈ N , such that for any l > l0 we can

construct an [R2, l] code for the LNGMC, which satisfies R2 > Rc − ε2 and the probability

of error is less than ε1. This implies that Rc is an achievable rate for the LNGMC and hence,

CM
n ≤ CL for all n > m, from which it follows that sup

n>m
CM
n ≤ CL.

Lemma A.5. The capacity of the LNGMC satisfies CL = lim
n→∞

CM
n .



Proof: By combining Lemmas A.2-A.4 we conclude that for every ε1 ∈ (0, 1), ε2 > 0, and

n > 2m it holds that:

sup
n>m

CM
n

(a)

≤ CL

(b)

≤ 1

1− ε1
inf

s0∈S0
CL
n (s0) +

1

(1− ε1)n
+ ε2

(c)

≤ 1

1− ε1
n+ 2m

n
CM
n+2m +

1

(1− ε1)n
+ ε2, (A.17)

where (a) follows from Lemma A.4; (b) follows from Lemma A.2; and (c) follows from Lemma

A.3. As (A.17) is satisfied for all n > 2m, it follows from [36, Thm. 3.19] that

CL ≤ lim inf
n→∞

(
1

1− ε1
n+ 2m

n
CM
n+2m +

1

(1− ε1)n

)
+ ε2

=
1

1− ε1
lim inf
n→∞

CM
n + ε2. (A.18)

Since ε1, ε2 can be made arbitrarily small, (A.18) implies that

CL ≤ lim inf
n→∞

CM
n . (A.19)

Lastly, it follows from the definition of lim sup [28, Def. 5.4] that lim sup
n→∞

CM
n ≤ sup

n>m
CM
n . Since

lim inf
n→∞

CM
n ≤ lim sup

n→∞
CM
n , it follows from (A.17) that CL = lim

n→∞
CM
n , and that the limit exists.

Lemma A.6. For n→∞, the capacity of the n-MNGMC satisfies

lim
n→∞

CM
n = lim

n→∞
sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1|X−1

−m = 0nt·m
)
. (A.20)

Proof: Note that for any distribution of Xn−1, n > m, it follows from the mutual information

chain rule that

I
(
Xn−1;Yn−1

m |X−1
−m=0nt·m

)
≤I
(
Xn−1;Yn−1|X−1

−m=0nt·m
)
. (A.21)



It thus follows from Lemma A.1 that

CM
n = sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1

m

)
(a)
= sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1

m |X−1
−m=0nt·m

)

≤ sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1|X−1

−m=0nt·m
)
, (A.22)

where (a) follows since given Xn−1, Yn−1
m is independent of X−1

−m, and fixing X−1
−m does not

change the supremum over the PDF p (Xn−1). Next, we note that the definition of the LNGMC

(3) and the strict-sense stationarity of W[i] imply that the conditional probability function of the

channel output given the channel input is invariant to index shifting, i.e., p
(
Yn−m−1

∣∣Xn−m−1
−m =

x
)

= p
(
Yn−1
m

∣∣Xn−1 = x
)

for all x ∈ Rnt·n. Therefore,

sup

p(Xn−m−1): 1
n−m

n−m−1∑
i=0

E{‖X[i]‖2}≤P

1

n−m
I
(
Xn−m−1;Yn−m−1|X−1

−m=0nt·m
)

= sup

p(Xn−1
m ): 1

n−m

n−1∑
i=m

E{‖X[i]‖2}≤P

1

n−m
I
(
Xn−1
m ;Yn−1

m |Xm−1 =0nt·m
)

(a)
= sup

p(Xn−1
m ): 1

n−m

n−1∑
i=m

E{‖X[i]‖2}≤P

1

n−m
I
(
Xn−1;Yn−1

m |Xm−1 =0nt·m
)

(b)

≤ sup

p(Xn−1): 1
m

m−1∑
i=0

E{‖X[i]‖2}≤P, 1
n−m

n−1∑
i=m

E{‖X[i]‖2}≤P

1

n−m
I
(
Xn−1;Yn−1

m

)
(c)

≤ sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n−m
I
(
Xn−1;Yn−1

m

)

=
n

n−m
CM
n , (A.23)

where (a) follows since h
(
Yn−1
m |Xn−1

m ,Xm−1 = 0nt·m
)

= h
(
Yn−1
m |Xn−1,Xm−1 = 0nt·m

)
, thus

I (Xn−1
m ;Yn−1

m |Xm−1 =0nt·m) = h
(
Yn−1
m |Xm−1 = 0nt·m

)
− h

(
Yn−1
m |Xn−1

m ,Xm−1 = 0nt·m
)

=

h
(
Yn−1
m |Xm−1 = 0nt·m

)
− h

(
Yn−1
m |Xn−1,Xm−1 = 0nt·m

)
= I (Xn−1;Yn−1

m |Xm−1 =0nt·m); (b)

follows since the set of distributions of Xm−1 which satisfy 1
m

m−1∑
i=0

E
{
‖X [i]‖2} ≤ P includes the



deterministic assignment Xm−1 =0nt·m; and (c) follows since
{
p (Xn−1) : 1

n

n−1∑
i=0

E
{
‖X [i]‖2} ≤

P
}
⊇
{
p (Xn−1) : 1

m

m−1∑
i=0

E
{
‖X [i]‖2} ≤ P, 1

n−m

n−1∑
i=m

E
{
‖X [i]‖2} ≤ P

}
, hence the supremum

can only be increased. Letting n→∞ in (A.22) and (A.23) proves the lemma.

Combining Lemmas A.5 and A.6 completes the proof of Proposition 1.

B. Proof of Proposition 2

To prove the proposition, we first prove the upper bound in (6a), and then we prove the lower

bounds in (6a) and (6b). To that aim, we define

Sn ,
1

n
sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P
I
(
Xn−1;Yn−1|X−1

−m=0nt·m
)
.

We begin by stating an identity which will be used in the sequel: Prop. 1 implies that the

capacity of the LNGMC can be computed by setting X−1
−m = 0nt·m. Hence, by defining the

l · nr × l · nt matrix G̃l such that

G̃l,



G[0] · · · 0 · · · 0
... . . . . . . ...

G[m] · · · G[0] · · · 0
... . . . . . . ...

0 · · · G[m] · · · G[0]


, (B.1)

and setting X−1
−m = 0nt·m, the output of the LNGMC for blocklength l can be expressed as

Yl−1 = G̃lX
l−1 + Wl−1. (B.2)

In order to prove the upper bound in (6a), let WG[i] be a zero-mean Gaussian process with an

autocorrelation function CW[τ ], defined in Subsection III-A, s.t. WG[i] is mutually independent

of the channel input. Note that

1

n
I
(
Xn−1;Yn−1|X−1

−m = 0nt·m
)

=
1

n
h
(
Yn−1|X−1

−m = 0nt·m
)
− 1

n
h
(
Wn−1

)
=

1

n

(
h
(
Yn−1|X−1

−m = 0nt·m
)
− h

(
Wn−1

G

) )
+

1

n
h
(
Wn−1

G

)
− 1

n
h
(
Wn−1

)
. (B.3)



Consequently

Sn =
1

n
sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

(
h
(
Yn−1|X−1

−m = 0nt·m
)
−h

(
Wn−1

G

) )
+

1

n
h
(
Wn−1

G

)
− 1

n
h
(
Wn−1

)
.

Since, for a given correlation function, Gaussian distribution maximizes the differential entropy

[17, Thm. 8.6.5], h (Yn−1) is maximized for a Gaussian distribution of Yn−1 with the same first

and second-order moments as the original vector Yn−1. By letting
{
YG[i]

}n−1

i=0
be a Gaussian

process with the same first and second-order statistical moments as
{
Y[i]

}n−1

i=0
, we have that

lim
n→∞

1

n
sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P
h
(
Yn−1|X−1

−m = 0nt·m
)
− h

(
Wn−1

G

)
(a)

≤ lim
n→∞

1

n
sup

Cov(Xn−1):Tr
(

Cov(Xn−1)
)
≤nP

h
(
Yn−1
G |X−1

−m = 0nt·m
)
− h

(
Wn−1

G

) (b)
= CG, (B.4)

where Tr(·) denotes the trace of a matrix, (a) follows from [17, Thm. 8.6.5], and since the

differential entropy of a Gaussian random vector depends only on its covariance matrix [17, Thm.

8.4.1], hence the supremum is carried out over the covariance of the input; and (b) follows from

[21, Lemma 3], noting that h
(
Yn−1
G |X−1

−m = 0nt·m
)
−h

(
Wn−1

G

)
denotes the mutual information

between the input and the output of an LTI MIMO channel with additive Gaussian noise Wn−1
G

and Gaussian output Yn−1
G = G̃nX

n−1 +Wn−1, as in (B.2). Plugging (B.3)–(B.4) into Prop. 1

yields

CL = lim
n→∞

Sn < CG + lim
n→∞

(
1

n
h
(
Wn−1

G

)
− 1

n
h
(
Wn−1

))
=CG + H̄G,W − H̄W, (B.5)

which proves the upper bound in (6a).

The lower bound in (6a) follows since it can be concluded from [32], [15, Thm. 7.4.3]5, that

for a given noise covariance matrix, then Gaussian noise is the worst-case noise distribution

in terms of capacity, i.e., it results in the smallest capacity. Specifically, the supremum of

I
(
Xn−1;Yn−1|X−1

−m = 0nt·m
)

= I
(
Xn−1; G̃nX

n−1 +Wn−1
)

over all input distributions is lower

bounded by the mutual information between the channel inputs and the channel outputs in

which the additive non-Gaussian noise is replaced with an additive Gaussian noise with the

5While [15, Thm. 7.4.3] is stated for scalar channels, the same proof also applies to MIMO channels.



same second-order moments as that of the non-Gaussian noise. Consequently, in the limit of

n→∞, the lower bound in Eq. (6a) directly follows from Prop. 1.

Next, from (B.2) we note that since both Xn−1 and Wn−1 are independent of X−1
−m, then

h
(
Yn−1|X−1

−m=0nt·m
)

=h
(
G̃nX

n−1+Wn−1
) (a)

≥ n · nr

2
log

(
2

2h(G̃nXn−1)
n·nr +2

2h(Wn−1)
n·nr

)
, (B.6)

where (a) follows from the entropy power inequality [17, Thm. 17.7.3]. Thus, we have that

Sn = sup

p(Xn−1): 1
n

n−1∑
i=0

E{‖X[i]‖2}≤P

1

n
I
(
Xn−1;Yn−1|X−1

−m = 0nt·m
)

= sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

1

n
h
(
Yn−1|X−1

−m = 0nt·m
)
− 1

n
h
(
Wn−1

)
(a)

≥ sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

nr

2
log

(
2

2h(G̃nXn−1)
n·nr + 2

2h(Wn−1)
n·nr

)
− 1

n
h
(
Wn−1

)
, (B.7)

where (a) follows from (B.6). Note that for any positive constants a1, a2, a3 and a real constant

t, the function log (a12a2t + a3) is monotonically increasing w.r.t. t, therefore

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

nr

2
log
(

2
2

n·nr
h(G̃nXn−1) + 2

2
n·nr

h(Wn−1)
)

=
nr

2
log

2

sup

p(Xn−1): 1nE{‖Xn−1‖2}≤P
2

n·nr
h(G̃nXn−1)

+ 2
2

n·nr
h(Wn−1)

 . (B.8)

Next, consider Eq. (B.8): Note that when nt = nr and G[0] is invertible, it follows from (B.1)

that G̃n is also invertible, hence, by letting Mn·P be the set of nt × nt positive semi-definite

real symmetric matrices CX such that Tr (CX) ≤ n · P , we have that

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

2

n · nr

h
(
G̃nX

n−1
)

(a)
=

2

n · nr

log |G̃n|+
2

n · nr

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

h
(
Xn−1

)
(b)
=

1

n · nr

log |G̃n|2 +
1

n · nr

sup
Cov(Xn−1)∈Mn·P

log (2πe)n·nr
∣∣Cov

(
Xn−1

)∣∣
=

1

n · nr

log |G̃nG̃Tn |+ log (2πe) +
1

n · nr

sup
Cov(Xn−1)∈Mn·P

log
∣∣Cov

(
Xn−1

)∣∣ , (B.9)

where (a) follows from [17, Eq. (8.71)], and (b) follows from [17, Thm. 8.6.5]. Since Cov (Xn−1)

is positive semi-definite, it follows from the inequality of the arithmetic and geometric means

[28, Pg. 326] that |Cov (Xn−1)| ≤
(

1
n·nt

Tr
(

Cov (Xn−1)
))n·nt

, and thus 1
n·nt

log |Cov (Xn−1)|≤



log
(

1
n·nt

Tr
(

Cov (Xn−1)
))

. Consequently,

1

n · nt

sup
Cov(Xn−1) ∈Mn·P

log
∣∣Cov

(
Xn−1

)∣∣ ≤ sup
Cov(Xn−1)∈Mn·P

log

(
1

n · nt

Tr
(

Cov
(
Xn−1

) ))
(a)

≤ log

(
P

nt

)
, (B.10)

where (a) follows since log(·) is monotonically increasing over R+. Note that for Cov (Xn−1)=

P
nt
· In·nt the right hand side of (B.10) is obtained with equality. Plugging this assignment into

(B.9), and recalling that nt =nr, yields

sup
p(Xn−1): 1

n
E{‖Xn−1‖2}≤P

2

n · nr

h
(
G̃nX

n−1
)

=
1

n · nr

log |G̃nG̃Tn |+ log (2πe) + log

(
P

nt

)

=log

(
2πe

P

nt

)
+

1

n · nr

log |G̃nG̃Tn |. (B.11)

Combining (B.11), (B.8), and (B.7) results in Sn≥ nr

2
log

(
2πeP
nt
·2

1
n·nr

log |G̃nG̃Tn |+2
2

n·nr
h(Wn−1)

)
−

1
n
h (Wn−1), for any n. Lastly, we note that in the limit as n → ∞, it follows from the

extension of Szego’s theorem to block-Toeplitz matrices [21, Appendix A.2], [29, Thm. 5] that

lim
n→∞

1
n

log
∣∣∣G̃nG̃Tn ∣∣∣ = 1

2π

nt−1∑
k=0

π∫
ω=−π

log (α′k(ω)) dω, therefore, since 2t is continuous w.r.t. t ∈ R,

letting n tend to infinity in (B.7), it follows from Prop. 1 and [28, Pg. 224] that

CL = lim
n→∞

Sn

≥ lim
n→∞

nr

2
log

(
2πeP

nt

· 2
1

n·nr
log |G̃nG̃Tn | + 2

2
n·nr

h(Wn−1)
)
− 1

n
h
(
Wn−1

)
=
nr

2
log

2πeP

nt

· 2
1

2π·nr

nt−1∑
k=0

π∫
ω=−π

log(α′k(ω))dω
+ 2

2
nr
H̄W

− H̄W, (B.12)

which completes the proof of (6b).

C. Proof of Theorem 1

The outline of the proof is as follows: First, in Lemma C.1 we show that the capacity of the

MIMO BB-PLC channel (1), can be characterized by considering only codes whose blocklength

is an integer multiple of p̃. Then, we show that the capacity of MIMO BB-PLC channels

constrained to using only codes whose blocklength is an integer multiple of p̃ satisfies (9).



Lemma C.1. The capacity of the MIMO BB-PLC channel is identical to the maximum achievable

rate obtained by considering only codes whose blocklength is an integer multiple of p̃.

Proof: The proof follows by first showing that any rate achievable for the MIMO BB-PLC

channel can be achieved by considering only codes whose blocklength is an integer multiple of

p̃, and then showing any rate achievable for the MIMO BB-PLC channel when considering such

codes, is an achievable rate for the MIMO BB-PLC channel. As these steps are essentially the

same as in the proof of [12, Lemma 1], they are not repeated here.

Next, we note that the MIMO BB-PLC channel (1) subject to the constraint that only codes

whose blocklength is an integer multiple of p̃ are used, i.e., l̃= l·p̃ where l∈N , can be represented

as an equivalent p̃× p̃ LNGMC with code blocklength l via the following assignments: Let the

p̃ · ñt × 1 vector XDCD [i],X̃
(i+1)·p̃−1
i·p̃ be the input to the transformed channel and the p̃ · ñt × 1

vector YDCD [i],Ỹ
(i+1)·p̃−1
i·p̃ be the output of the channel. The transformation is clearly bijective

as for the BB-PLC channel we consider only codes whose blocklength is an integer multiple of

p̃. For each blocklength l, the input to the equivalent LNGMC satisfies

1

l

l−1∑
i=0

E
{
‖XDCD [i]‖2}=

1

l

l−1∑
i=0

p̃−1∑
k=0

E

{∥∥∥X̃ [i · p̃+ k]
∥∥∥2
}

=
p̃

l̃

l̃−1∑
ĩ=0

E

{∥∥∥X̃ [ ĩ ]∥∥∥2
}

(a)

≤ p̃ · P̃,

where (a) follows from (2). Consequently, the equivalent LNGMC input is subject to a maximal

power constraint PDCD = p̃ · P̃ . Next, we note that the input-output relationship of the BB-PLC

channel (1) implies that the input-output relationship of the transformed channel is given by (7),

and that the equivalent LNGMC noise WDCD [i] appearing in (7), is a zero-mean strict-sense

stationary process. Moreover, as p̃ > m̃, it follows that the temporal dependence of WDCD [i]

spans an interval of length m=1. Recall that CDCD denotes the capacity of the channel (7)–(8).

As each channel use in the equivalent LNGMC (7)–(8) corresponds to p̃ channel uses in the

BB-PLC channel (1)–(2), it follows that the maximal achievable rate of the BB-PLC channel,

measured in bits per channel use, subject to the restriction that only codes whose blocklength

is an integer multiple of p̃ are allowed, can be obtained from the maximal achievable rate of

the equivalent LNGMC as CP = 1
p̃
CDCD. Finally, from Lemma C.1, we conclude that CP is the

maximum achievable rate for the BB-PLC channel, thus proving the theorem.
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