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Topological Rules for Linear Networks and Their
Application

A. NATHAN, SENIOR MEMBER, IEEE, AND

DAN CENSOR, MEMBER, IEEE

Abstract-Nathan's rules are stated and their applications are
illustrated. The rules provide the expansion of admittance functions
of linear networks which may include reciprocal and nonreciprocal
branches, infinite-gain operational amplifiers, dependent current or
voltage sources, vacuum tubes, transistors, and ideal transformers.
Kirchhoff's rules for reciprocal networks as well as signal-flow-graph
rules are included as special cases.

The rules are purely topological and, in contradistinction to some
prior work, do not include sign rules dependent upon an arbitrary
assisgnment of labels to nodes, or directions to branches.

The applications include transistor, vacuum tube, analog compu-
tation, and transformer networks.

I. INTRODUCTION

A detailed bibliography pertinent to the subject of topological
rules for linear networks is given by Nathan [1] and by Seshu and
Reed.][2 Kirchhoff[31 has provided topological rules for impedance
functions of linear reciprocal networks. Maxwell[41 has stated the dual
admittance rules. Percival[51 attempted to extend these rules for ac-
tive networks. His ideas were further developed by Coatesl61 and
Mayeda[7] who provide a set of rules for nonreciprocal networks.
Their work suffers, however, from two major drawbacks. In the first
place, it becomes necessary to replace the given network by two net-
works; second, the signs of terms in the expansions of network func-
tions can only be found by the application of a sign rule which de-
pends upon the numbering of nodes. Other approaches are Mason[8]
and Mason and Zimmermann,[91 using bilateral nonreciprocal ele-
ments, and Mason,["'] Robichaud and Boisvert,[1ll and Boisvert, [12]
who use signal-flow graphs.

Proper topological rules should not use nontopological elements
that are not inherent in a problem; for example, there must be no
arbitrary numbering of nodes or branches, and no direction should be
assigned to bilateral branches. Furthermore, the rules should operate
as far as possible upon the graph of a given network, rather than upon
an equivalent (more complicated) graph. Finally, they must show
how to handle constraints. It follows that such rules must include
Kirchhoff's as well as signal-flow-graph rules as special cases, and
must be applicable to electrical networks which include reciprocal
branches, nonreciprocal branches, and constraints in combination.

The new rules were first derived by Nathan in 1960 (unpublished
notes) for constrained networks, extended to networks including
finite transadmittances by Censor,]'3] under Nathan's guidance, and
finally formulated and proved by Nathan. [']

The rules are here formulated in a different manner from that
given in Nathan['] where they are proved. Though clearly equivalent
to those, the present form appears to be somewhat easier to apply in
manual computations.

II. STATEMENT OF THE RULES

We deal with a linear, lumped, finite and time-invariant network
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N whose graph may include four kinds of weighted elenments, repre-
sented by directed or undirected solid or dashed branches. An un-
directed solid branch represents an admittance and is weighted with
the value of the admittance; and an undirected dashed line represents
a conditional weighted short circuit. A directed solid line represents a
voltage constraint and is weighted by the "gain" of the constraint; a
directed dashed line represents a transadmittance and is weighted by
its value. Table I lists the representations, in terms of these branches,
of common network elements. One of the nodes of N is the reference
node r. Zero voltage is assigned to r and voltage constraints are de-
fined with respect to it.

The table includes graphs and instructions which, in conjunction
with the following definitions and rules, permit the determination of
network functions.

The following definitions either add to or modify those commonly
used in linear graph theory.

1) Loops: The term loop (or "directed loop") shall designate a
simple loop that does not pass through the reference node, includes at
least one directed branch, and is assigned the same sense by all its
directed branches.

2) Paths: An st path (s ,t) is a simple (i.e., loopless) path leading
from node s to node t without passing through r. If an st path contains
any directed branches, they must all point towards t.

3) Trees: Trees consist only of undirected branches and must
include reference node r. The isolated reference node is regarded as a
(degenerate) tree of weight one.

4) Weight: The weight of a subgraph of N is the product of the
weights of its branches.

5) Removal of a Branch: As far as network functions are concerned,
the removal of a branch is equivalent to letting its weight become
zero. Thus, a removed undirected branch and a removed directed and
dashed branch are to be disregarded, and a directed solid branch is
removed by the grounding of its output node (cf., Def. 6). A branch
which is not removed will be called present or active.

6) Grounding: A node is grounded when it is short-circuited to
reference node r. A loop or a path is grounded by merging all its nodes
with r and subsequently removing its branches.

7) Configurations and Terms: The rules give network functions as
sums of terms. To each term there corresponds a subnetwork of N,
which will also be called a configuration. All configurations must be
complete, i.e., they must touch all nodes of N. The value of a term is
the weight of the associated configuration.

In general, we shall not distinguish between a configuration and
the associated weight or term.

Next, we state the rules for the determination of the determinant
and the cofactors of the admittance matrix Y of N, with respect to
reference node r.

Rule 1

Y= To-E L,( )Tl,k + E Lk(2)T2,k-1E Lk3) Ts,k + (1)
k k k

where Lk"1) is the weight of the kth set of I nontouching loops in N, and
TL,k is the sum of weights of all trees in the residual network that is
produced from N by grounding this kth set of loops; the summation
is over all possibilities k = 1, 2, 3, * - - .
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Note that TS,k is the determinant of the network produced from N
by grounding the kth set of I nontouching loops and subsequently
removing all directed branches. Equation (1) also gives the principal
minor Y- if applied to the network produced from N by grounding
node s.

Rule 2

Cofactor Y't is given by

YtJ = E ptYkt (2)
k

where Pk-' is the weight of the kth st path, and Yk't is the determinant
of the residual network produced from N by grounding the kth st
path; the summation is over all possibilities.

These rules, in conjunction with the graphs of network elements,
yield expressions for network functions. Thus, the input impedance
looking into node s (with respect to the reference node) is given by

Z(in). = Ye./ yI (3)
and the transmittance from node s to node t is

H.t= el/ei = Yet/ys. (4)

III. THE GRAPHS OF NETWORK ELEMENTS

Table I provides the weighted graphs of network elements and
instructions for their use in connection with the rules.

Items 5 (ii) and 8 (ii) are instructions which are not essential, but
which serve to eliminate cancelling terms.

Item 13 gives simplified rules for some of the terms of item 11.
Item 14 is a special case of 13.

IV. APPLICATIONS

It is desirable to use a systematic procedure when applying the
rules.

In general, we follow the prescription of Rule 1 and Rule 2
and successively consider all terms having 0, 1, 2, *.., loops. A
method of "condensation" around some branch b of N is often helpful:
we consider separately i) all terms containing b and ii) all those that
do not. i) yields all terms having the weight b as a factor, and corre-
sponds to all combinations in the network produced from N by short-
circuiting b (i.e., merging its nodes). ii) are the terms in N when b is
removed.

The following abbreviation will be found convenient. We denote
by

(i) (aa2 ... an*) = a1a2 . ..am,am + a1a2 ... am-lam+l
+ an-.l1an-+2 ... an,; m < n (5)

the sum of the (n) products formed from all possible combinations of
m factors out of n. For example,

£(2) (abcd) = ab + ac + ad + bc + bd + cd.

An Analog Integrator

The transmittance H12 = Y12/ yll in Fig. 1 is required. First, con-
sider A = oo. From item 3 in Table I, c= 1 and Y2=ac=a. The resid-
ual network consists of the isolated reference node; i.e., it is a tree of
unity weight. Y=(- 1)'cb =-b is found by grounding node 1.
Therefore,

H12 =-a/b = Gi/(Go + sC).

Next, consider finite A, item 2, Table I. The only allowed 12 path
is ac, since node 2 must be grounded when c is not in the path, which
eliminates ab from consideration. Thus Y12=ac. To find Y" ground
node 1. From item 2, either c is active or node 2 is grounded. With c
inactive we have the trees a+b, with c active we have the loop
(-1)'bc; therefore Yll=a+b-bc and

H12 -Y12/yl1 = ac
a + b - bc Go+sC+ (I/A)(G,+Go+sC)

The Double Integrator

For brevity, the weights of branches are denoted by the subscript
letters. We determine H14 =H14(A).

i) A = - oo. From item 3, Table I, set A = 1, and, since A must
appear in each term, Y14=acA =ac. To find Y'l ground node 1 and
consider a+b as a single branch. Y" = (-1)'[Ae(a+b+c+d) +Adc].
Therefore,

ac

H154(00) =Y14/y11 e(a + b + c + d) + dc

GaGc

sCQ(Ga + SCb + G5 + Gd) + G¢Gd

buGo+ sC

oeG | c-A

3 2

(a) ( b)

Fig. 1. Integrator circuit: (a) schematic diagram and (b) its graph.

TABLE I

No. Description Symbol Graph Instructions

o ~~~~Y- I /sL Y
Admittance Y o-)SY sC o o May be active in a term.

Y- G

Voltage Constraint, 2 I A 2 Either the directed branch or the
(Ideal operational amp- I short-circuit (dashed branch) is

2 |lifier having infinite e, I ae =Aes | ctive, i.e. either A is active or
input impedance). e node 2 is grounded. For brevity

ro or 6r the dashed branch is often omitted

Constraint of infinite 2 This branch is active in each term.

3 gain. CD 2 Weight is arbitrary and is set equal
(Special case of 2) or to I for simplicity.

Transadmi ttance

10 2

ro r

I Y 2 May be active in a term.
(Superfluous if touching r.)

4

__ __ s -
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TABLE I (Con'd)

(i) Not more than one branch may
be active in each term.
(ii) Omit configurations that contain
on undirected path bridging the
arrowheads or shafts, simultane-
ously with one of these branches.

cf. #5

cf. #5

(i) Not more than one branch may
be active in each term.
(ii) Omit configurationsthat contain
an undirected path bridging the
arrowheads or shafts, simultaneously
with one of the directed branches.

cf. #8

c.f. #8

In each term one and only one
weighted short circuit (doshed line)
is active

cf. #11

cf. #ll, but for terms such that the
inactive elements include a cut-set
C of N separoting the windings of the
transformer:
in Iyj , y'l ond in ylt if C does not
seporate nedes s and t-use graph (a);
otherwise use graph (b).

For I yI, y" and ylt if both s and t
are in N, or N2, use graph #13 (a);
otherwise use graph #13 (b).

ii) IfA isfinite we obtain YP by condensation around A, which is
evidently tantamount to adding to A Y.O" the terms corresponding to
itnactive A: viz. (a+b+d)(c+e)+ce. Moreover, by inspection of
Fig. 2, Y'4 =A y.,14, and thus,

Jr14(A) =
GG

sCe(Ga+ SCb+ Gc + Gd) + GrGd
- (1/A)[(Ga + sCb + Gd)(Gc + SCe) + GosCe] Fig. 2. Double integrator.

tr
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Fig. 3. (a) Cascode amplifier and (b) its graph.
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Fig. 4. Transformer circuit: (a) schematic diagram, (b) its graph,
and (c) reduced graph.
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Fig. 6. Differential transistor amplifier: (a) schematic diagram and

(b) its graph.

2

is ~~~~~~~~G

Fig. 5. (a) Common emitter amplifier and (b) its graph. (a)

Cascode Amplifier
Referring to Fig. 3, the triodes are represented by their current

graph item 6, Table I. Directed branches touching the reference node
are omitted because they are never active. There are two 12 paths,
and Y"-=-gm'(ga+gm). The 1=0 (no loop) terms in Yl' are

E (2)Glgaga'. According to item 6, ga, cannot be active with +gm or
-gm since it bridges their arrowheads. There remains the single l = 1
term (-1)l(-gm) Gi. Therefore,

H12 = Y12/-l1= [-g.'(ga + gm)]/[Giga + Gig5' + gaga' + gmG].

A Transformer Circuit

The circuit of Fig. 4(a) has a graph (b) which is equivalent to the
reduced graph (c). From item 11 in Table I, Y'2=a-1=a. To find
Y1s, ground node 1, yielding

Y = 1 (a + c) + (t- 1)(b + c)

+(-1>I(a + b) -+$ct+b(t-2 +-).

Therefore,
H13 =n13/yll = tGa/[Ga + t2G0 +(12 - 2t + I)Gb].

Common Emitter Transistor Amplifier

For the amplifier of Fig. 5(a), the current graph, item 7 in Table
I, provides its graph [Fig. 5(b)]. Thus, Y13=gb(ge-cege) and, after
grounding node 1,

(b)
Fig. 7. (a) Composite transistor and (b) its graph.

Y [( + ge)(gc + Gd) + Gdg5j + (-l)'ageGd

since, by ii) in item 5 of Table I, g, must not appear simultaneously
with ± age. Therefore,

HI:, = gb(g, - age)/[(gb + ge)(gc + Gd) + Gdg, - ageGd].

Differential Transistor A mplifier
In the differential amplifier of Fig. 6(a): a) prove that A13 =-A23,

neglecting g0, ge' and Ge, where A 3, A23 are the gains from input nodes
1, 2, to output node 3; and b) calculate the common mode effect,
neglecting gc and g,', but not Ge.

a) Since yll22= Y22 ls it is sufficient to prove Y322= Y23,11 From
the graph of Fig. 6(b), neglecting Ge, with node 2 grounded, there is
but one 13 path, and the residual tree is G, so that
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y13.22 = gbgagge gb G.

Similarly, having resort to ii) in item 5 of Table I,

y23,11 = gb'(-acge )Ggbg,.

It follows that A13= -A23.
b) If Ge is not neglected, Y13.22 is not affected, but Y23,1 becomes

gb'(-age.)G[ E(2 gbgeGe+ (-1)lag.G.].

It follows that the ratio of common mode to differential gain is,
approximately,

2e[gb + (1 a)g]/(gbg,) _ 2G.1g,
Composite Transistor

The composite transistor of Fig. 7 (a) is loaded by G and fed by
current source i8, having input admittance G.. The input impedance
Zin= Z(io)l with G connected, and the output impedance Zout=Z(in)2s
with G8 connected, are required; gc and g5' will be neglected.

By inspection of the graph [Fig. 7 (b) ], and disconnecting G8,

Y (in) gbgegb'ge G - [(age)gbgb'ge'G + (Wge') (gbge gb')G]
+ (age) (a'ge')gbgb'G

and

Y(in) = (gbgeb'ge'G) - [(age)gb'ge'G + (aeg.e) ,(2) (gbgegb)'G]

+ (ag.) (a'g6')gb'G.

If G is sufficiently small, Y(in)11 tends to gbgegb'ge', which could
have been written down by inspection of the graph, and

Zin = Y(ll)/l YI(in) _ [G(1-a-' + aa')I-

= [G(1 -) (1 -a)]- (1 + ,3)(I + ,3')/G,

where

= a/(1 - a); '- a'/(- a').

Reconnecting G8, but disconnecting G,

|Y out = Gsgbgegb'ge'

and, for sufficiently small G8,

ut-gbgegbgc [(a9ge)gbgb' -6+ (ag6') gbgegb'] + (age) (a ge')gbgb',

which results in

ZouIt I/[G.,(I + 0)(1 +,)]
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The Laplace Transformation of the Impulse Function
for Engineering Problems

GEORGE A. ETZWEILER SENIOR MEMBER, IEEE,
AND STUART A. STEELE, MEMBER, IEEE

Abstract-The concept and properties of the impulse or delta
function have been presented in many books and periodicals. How-
ever, when the impulse function arises in undergraduate courses

dealing with transform methods, great confusion can exist in the
general application. The purpose here is to discuss the Laplace
transform of the impulse function in such a manner that will not
cause confusion when applied to system problems. Examples in-
dicating difficulty with the normal presentation of this problem are

given. A formulation of the Laplace transformation of the impulse
function suited for undergraduate and first-year graduate students is
presented.

INTRODUCTION

The knowledge of the Laplace transformation is now considered
essential for electrical and mechanical undergraduate engineering
students, and in many schools all engineering students take a course

using transform methods. There is a decided trend[51 to teach this
subject immediately after first-year calculus, and preferably in the
sophomore year. However, the classroom time spent at this level is
not long. In future years, most junior- and senior-year material will
be based on the student already having mastered the Laplace trans-
formation. Even in fundamental courses the student comes face to
face with the impulse function, and realizes that it is possible to
change the currents in inductors and the voltages across capacitors in
zero time, under certain conditions, by application of impulse func-
tions. While it is possible in many networks not to use the impulse
function, a short discussion of convolution and its application brings
this function back to the student's attention. Therefore, we will define
this function and give its normal Laplace transformation and proceed
to show where trouble can develop. This has been discussed in the
excellent text of J. Aseltine.[21 However, to the authors' knowledge,
there is no other text or reference material that properly discusses
this topic.

BASIc DISCUSSION

The definition of the impulse function is as follows:

3(t-a)= c t=a
0 t

b(t-a)dt =
1.

An important property is

A du (t)

I(t) tou
If we now use

e(t-a) = d u(t -a)

and take the Laplace transform as follows:12]

8 [-d u(t - a)] = sS[u(t- a)] - u(O+).

Now u(0+) =0 and

Cu(t -a)= u(t -a)e--ldt=J e-dt

d
d- u(t -a) = e-a

(1)

(2)
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