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Abstract

The concept of "tailored" neural network is inspired by the concept of grouping in the visual cortex of
the mammalian brain. This biological animated concept was implemented to develop "tailored" neural
networks for image classification improvement. Each "tailored" network was specialized to classify a
different class of vectors. This was done by employing separate training and using specific features in
each class. Image classification improvement was tested by the chromosome classification application.
For chromosome classification, the probability of correct classification using the "tailored" networks was
2.5% higher than the probability achieved by a conventional neural network (97.6% versus 95.1%). This
improvement was found to be higher when lower quality features were employed. It is expected that the
improvement will increase whenever the image classification task will become more and more
complicated.

1. Introduction

Image classification using multilayer perceptron (MLP) neural networks has become widespread in
the computer vision and neural networks communities. The neural network classifier has the advantage of
being fast (highly parallel), easily trainable and capable of creating arbitrary partitions of feature space.
However, image classification using an MLP depends on a series of various procedures generally held
according to practical considerations. In most vision applications these stages precede the classification
itself and are motivated by a mathematical analysis and/or engineering concepts. Even the MLP classifier
itself, when applied to a complicated classification task fails very often to correctly classify the input
data. The mammalian visual cortex seems not to suffer from this kind of problems. It simply does not
function as our classical image classifiers do. Image projected from the retina onto the visual cortex
parallelly spread among a series of cell clusters, each of which performs its own special analysis and
synthesis. Each retinal area is analyzed over and over again, column after column, and again in
neighboring cortical regions, with respect to a number of different variables such as position, orientation
and color [2]. From a large series of experiments, it became apparent that in area 17 simple and complex
neurons with similar receptive field axis orientation are neatly stacked on top of each other in discrete
columns. Separate columns exist for each axis orientation. Other functional variables are also grouped in
columnar aggregates of cells. In cortical areas of the monkey beyond area 17 of the visual cortex, there
exist columns of cells with well-defined color sensitivity and other columns in which the direction of
movement of the visual stimulus is important. Cortical structure and functional organization go hand in
hand [2].
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This study suggests imitating several aspects of the mammalian visual cortex structure and functions
in order to improve image classification. We introduce the “tailored” neural network that gains class
separability by both extracting specific class features and by tuning the training to a specific class only.
The discrete cortex columns are implemented through the discrete "tailored" neural networks.

To implement the suggested concept we have used the chromosome classification task as a model for
image classification. The chromosome classification task is well known, yet without satisfying solutions
[1], [10], [13]. Several studies on chromosome classification using neural networks were held in the last
two years, most of them relate to feature extraction and selection [3]-[6] and other relate to the
performance and the optimization of the MLP NN as chromosome classifier [7]-[9]. Therefore, this study
can be also regarded as a continuation study, in the way to establish a neural network classifier for human
chromosome.

2. The "'tailored'" network

The "tailored" network tries to mimic the outlined biological concept and to optimize its performance.
By training an MLP NN to classify only vectors of one class we enable (and actually force) it to employ
all the relevant information of this class feature data in order to perfectly distinguish between the class
and the rest of the classes. The network does not need to distinguish vectors of several classes but only
"the" class vectors compare to "other" classes vectors. By training several networks, each of them
specialized on vectors of a different class, we can get a special network for each class. When a test vector
will be introduced to all the "tailored" networks, the network with the highest output value will indicate
the correct classification of this vector (a kind of "winner-take-all" mechanism). Decomposition of the
task to several simpler tasks makes the solution easier and yields better performance, in vivo, as well as,
while solving difficult engineering problems. Furthermore, it is known that a large network may perform
perfectly on the training set but fails to interpolate as well as a smaller network.

One step further in the trail to mimic the visual cortex functioning could be training and testing the
network using the best selected features of each class. In a similar way to the visual cortex (e.g., area 17)
[2], we can extract features, optimize their selection and train, for a specific task, a network based on
these features. This work examined the use of the "knock-out" algorithm [12] to select the best features to
represent each class. Each class was represented by a different set of optimal (in the sense of the
"minimum variance" [12]) features. Every vector, in each specific class, either a training or a test vector,
was represented by this set of specific optimal features of izs class. Training and testing the "tailored"
networks was done based on these "class optimized" sets of features.

3. The methodology

Our data set included 481 chromosome images of types "2", "4", "13", "19" and "x". The features that
were used for the classification were based on the density profile of the chromosomes. The density
profile extracts the typical banded structure of the chromosomes and yields a suitable representation for
the classification [1], [5], [6], [10]. The density profile was normalized both in length (64-dimensional)
and in value to the [-0.5,0.5] range [6].

Each "tailored" network is based on a two-layer feedforward neural network trained by the
backpropagation (bp) learning algorithm [11]. The number of input units was set by the feature space
(64-dimensional) while the number of output units was determined by the number of classes to be
classified (5-dimensional). The number of hidden units of the network was set according to the Principal
Component Analysis (PCA), applied to the feature vectors. The number was set to be the number of the
largest eigenvalues, the sum of which accounts for more than a pre-specified percentage of the sum of all
the eigenvalues. In all the simulations, this number was set according to a pre-specified percentage of
90%.



Optimization of the neural network parameters regarding the chromosome data was made elsewhere
[7]-[8]. Learning rate (i) was set to be 0.026, momentum constant () to be 0.97 and the training cycle
was set to be 4000 epochs.

Figure 1 sketches the procedure we have developed to examine "tailored" network performance. First,
we used the "knock-out" algorithm to select the optimal features (in the sense of "minimum variance") in
each class. We chose the best 40 features, although even a smaller number of features is adequate to
represent the chromosomes without performance degradation [5]. Second, we partitioned the
chromosome feature data set into training and test sets, where 80% of the vectors were chosen randomly
to be in the training set. Then, we trained separately the 5 different networks based on the specific class
features. Each training vector had 5 different representations each of them was used in the specific
network. The desired output of training vectors belonged to the correct specific class was set to "1" while
this output for all the rest of the vectors was set to "0". After training, vectors from the test set were
tested by all the networks at once (test vectors had 5 different representations, as well). The largest output
among these networks indicates the right class of the tested vector (winner-take-all). All the simulations
were repeated 3 times, with the same network parameters but with different sets of randomly chosen
training vectors, and the results were averaged. This procedure yields specialized networks we have,
therefore, called "tailored" networks.
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Figure 1. Implementation of a "tailored" network.

4. Simulation results

Figure 2 and Figure 3 show, respectively, the probability of correct training set classification and the
probability of correct test set classification of the "tailored" networks. Training, as expected, is perfect in
(almost) all the classes. Non-perfect training exists in classes with small training sets and/or in classes
with considerable variations of image representation. In Figure 3, each network tests vectors according to
the optimal features of the class it represents. The only significant columns in the Figure are the highest
ones (winner-take-all), where there is an agreement between network type and the tested vector
representation.
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Figure 2. The probability of correct training set classification using the 5 "tailored" networks.
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Figure 3. The probability of correct test set classification using the 5 "tailored" networks.

We have compared the classification results using these nets to the results when only one MLP
network is trained to classify the chromosomes and the features are common to all classes. The 5
“tailored" networks yielded average probability of correct training set classification of 99.88% compare
to 99.3% of the "one" network [6] and 97.6% with the test set compares to 95.1% of the "one" network
[6]. When the simulation was repeated on slightly better features, the improvement due to the use of
"tailored" networks, was slightly lower. Therefore, the advantage of using "tailored" networks is greater
whenever "low quality" features are considered. The superiority of the "tailored" networks comparing to
the "one" MLP NN is assumed to become even higher when the classification task will be complicated.
Consequently, when all the 24 chromosome types will be considered, the "tailored" networks are
believed to perform even better. However, not to be forgotten, that time and memory requigements are
multiplied by the number of classes to be classified.



5. Discussion

The concept of "tailored" neural networks to improve image classification performance is introduced.
Each "tailored" neural network is specialized to classify vectors of a different class. This was done by
employing separate training and using specific features in each class. For chromosome classification, the
probability of correct classification using the "tailored" networks was 2.5% higher than the *probability
achieved by a conventional neural network that uses common features in all the classes (97.6% versus
95.1%). This improvement was found to be higher when lower quality features were employed. It is
expected that the improvement will increase whenever the image classification task will become more
and more complicated.
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