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Abstract
Understanding land use in urban areas, from the perspective of social function, is beneficial for a variety of fields, including urban
and highway planning, advertising, and business. However, big cities with complex social dynamics and rapid development
complicate the task of understanding these social functions. In this paper, we analyze and interpret human social function in urban
areas as reflected in cellular communication usage patterns. We base our analysis on digital traces left by mobile phone users, and
from this raw data, we derive a varied collection of features that illuminate the social behavior of each land use. We divide space
and time into basic spatiotemporal units and classify them according to their land use. We categorize land uses with a leveled
hierarchy of semantic categories that include different levels of detail resolution. We apply the above methodology to a dataset
consisting of 62 days of cellular data recorded in nine cities in the Tel Aviv district. The methodology proved beneficial with an
accuracy rate ranging from 84 to 91%, dependent on land use label resolution. In addition, analyzing the results sheds light on
some of the limitations of relying solely on cellular communication as a data resource. We discuss some of these problems and
offer applicable solutions.

Keywords Land use . Computational social science .Mobile phone data . Urban computing . Classification . Smart cities

1 Introduction

The emergence of data generated by mobile phones has en-
abled a wide range of academic, social, commercial, and gov-
ernmental applications [29]. The distribution of mobile use in
the modern world is immense, especially in highly populated
urban areas. According to a worldwide Pew report conducted
in 2016, 88% of the respondents indicated that they owned a
cellphone [24]. As mobile phones are usually kept close to the
user and contain many useful sensors, they enable geospatial
detection; thus, the digital traces these phones leave are effec-
tive for mobility-pattern discovery and next-place prediction
[17], capturing behavior in everyday life [8, 22], and for iden-
tifying and predicting social lifestyles [4, 5]. Data generated

by mobile phones is highly efficient for analyzing human and
social behaviors from a small-scale individual perspective to
large-scale collective behavior with an unprecedented degree
of reach and accuracy [9].

Rapid urbanization and the evolution of modern cities have
created new challenges for social research in cities and urban
planning. Interactions between topography, transportation in-
frastructure, individual mobility patterns, real estate markets,
and social preferences cause problems such as traffic conges-
tion, air pollution, and urban sprawl [1]. Years ago, the vast
number of factors influencing the city ecosystem made it al-
most impossible to tackle these challenges, but recently new
insights toward smarter cities have become possible through
sensing and computing technologies [39]. Location estimation
systems and other sensing abilities inherent in mobile devices
are major contributors to better understanding the spatiotem-
poral properties of collective urban mobility patterns.

Mobile phones are efficient for function identification of
urban zones, as they provide new insights into social interac-
tions and activity. In the modern city, different parts of the city
function for different social purposes, i.e., residential neigh-
borhoods, commercial areas, industrial areas, etc.
Understanding the social functions of urban land use
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contributes to urban planning and design of better urban strat-
egies, e.g., planning of highways [15]. However, high-
resolution and up-to-date mapping of these areas according
to their social function is rare, especially in developing coun-
tries [15, 28].

In this work, we aim to (1) illuminate different aspects of
the social functions as reflected by cellular communication
and (2) discuss and offer solutions for some of the obstacles
that may stand in the way of a sufficient land use identifica-
tion based only on cellular communication. We examine and
interpret the cellular communication patterns of different land
uses, basing our analysis on call detail records (CDRs), which
are mobile phone signals routinely collected and stored by
telecom operators. To better understand the dynamics of the
different social functions, we present a vast collection of fea-
tures that portray different perspectives of the cellular com-
munication characteristics of the social functions. Thus, we
recognize daily and weekly patterns typical to each social
function and emphasize the difference between the land uses.
We use a supervised land use identification methodology,
similar to that used in previous works [23, 30]. We divide
urban time and space into small spatiotemporal units and use
the random forest classifier to discover areas of similar social
function, tagging them with a semantically meaningful label.
Resolution of the highest land use categories includes resi-
dential, industrial, office, commercial, entertainment, high-
ways, streets, and no activity. We use an hourly land use
labeling set that enables more flexibility, recognizing the var-
iations between land uses that cannot be taken into consider-
ation when using a daily label. We implement this methodol-
ogy on a dataset acquired from a leading Israeli telecommu-
nications company collected during 62 days of communica-
tion in different cities in the center district of Israel. By ana-
lyzing the results of this use case, we discuss the opportuni-
ties of this method—its good accuracy rate with a relatively
inexpensive dataset—alongside some of the limitations of
such an approach. We discuss the consequences of the loca-
tion estimation inaccuracy of a CDR-based dataset, and we
analyze and elaborate on the possibility to properly identify
some social function categories. We offer to unite land use
categories that share similar usage and have common cellular
communication characteristics.

The rest of this paper is organized as follows: Section 2
presents the needed background and related work; Section 3
describes the work process and method from the raw data to
the extracted features, and random forest implementation;
Section 4 presents the empirical evaluation of the classifier
performance and detailed analysis of this performance for
each land use; section 5 presents analysis of the features to
identify patterns and characteristics that are typical of the dif-
ferent land uses; and in Section 6, we summarize the work,
present our conclusions, and offer suggestions for further
research.

2 Related work

Land use research falls into two main categories: subjective
land use and collective land use. Subjective land use is the
research of identifying the function of locations with signifi-
cant importance to specific individuals and denotes them with
a semantic label such as “home” or “work” [16]. Other works
use semantic land use labeling as a part of mobility pattern
analysis and next move prediction [7, 10, 17, 27]. Collective
land use aims to identify the social function of the land for
groups of people (residential neighborhood, commercial dis-
trict). In this research, we focus on identifying the collective
land use function.

The digital revolution has brought great opportunity for
social sciences research in cities as the emergence of enhanced
computing power and mobile phones with built-in sensors and
location technologies has created enormous amounts of data
for understanding and monitoring urban life [3]. Usage of data
sources, such as remote sensing imagery, social media data,
and taxi trajectories, and mobile phone patterns of usage are
now utilized for more cost-effective and enhanced social land
use identification research.

Numerous works leverage CDRs to capture spatiotemporal
movement patterns and city dynamics [29, 38]. These records
contain communication properties such as start time and call
duration, and type of communication (call, SMS, internet), as
well as the cell tower from which the communication origi-
nated. CDRs also include the location where the communica-
tion occurred—calculated by triangulating signal strengths
from surrounding cell towers [30, 31, 39]. The greatest virtue
of CDR as a location tool for human behavior evaluation is
that it is routinely produced by telecom equipment when users
make a phone call, send or receive a message, or browse Web
pages; hence, it is an inexpensive and efficient location esti-
mation source [33].

Several works have used CDR as their main data resource
for land use identification. Toole et al. [30] utilized a CDR
dataset and classified land use in the city of Boston into one of
five categories: residential, commercial, industrial, parks, and
other. They achieved an average accuracy rate of 54%, where
their algorithm performed relatively well on residential, com-
mercial, and industrial regions, but poorly on “parks” and
“other.” Pei et al. [23] also relied on CDR and offered a
semi-supervised algorithm for classifying land in Singapore
into the same five categories as Toole et al. [30]. They used the
fuzzy c-means clustering algorithm and assumed possession
of “real” land use labels of a small number of area segments.
Their results also showed a modest detection rate of 58%,
where mainly commercial and other classifications were
confused.

Some works based their social land use analysis and iden-
tification algorithms on other data resources. For example, Lu
and Weng [21] used an integration of population density data
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and remote-sensing systems to measure land surface temper-
ature and spectral reflectance for classifying urban areas.
Numerous works used image processing and classification
techniques of remote-sensing images to capture the physical
aspects of the land [13, 34, 35]. Others relied on data gener-
ated from social media, such as check-in data, GPS trajecto-
ries, and points of interest (POIs) [19, 25]. Specifically, POIs
that are coordinates of a specific point location that carry a
title, such as restaurant, shopping center, and theaters [36],
were extensively leveraged mainly because they carry seman-
tic information [12, 26].

However, as all data sources are limited and capture spe-
cific aspects of urban dynamics, a recent movement in land
use identification research is to rely on several data sources of
different types. Remote-sensing images and social media data
are combined in some works [15, 20]. Both data resources can
be seen as complementary, as remote-sensing image data is
utilized to extract the physical location features, while social
media data captures the social interactions [12, 18]. The work
of Yuan et al. [37] integrated POI datasets and a dataset of
3 months of GPS trajectories generated by 12,000 taxicabs in
Beijing to identify zones of different social function using an
unsupervised clustering algorithm. The work of Tu et al. [32]
integrated a mobile phone signal dataset with social media
data to infer social function land use. They estimated individ-
uals’ home and work locations, and then aggregated their
subjective land use together with social knowledge learned
from social media check-in data for identifying collective so-
cial land use.

3 Method

In this section, we describe our methodology: data preparation
(Section 3.1), feature extraction (section 3.2), and land use
classification (Section 3.3). The core of the methodology is
common with previously presented works [23, 30]. We offer
some innovations to the methodology including types of fea-
tures that were not used before and a different labeling ap-
proach that enables labels to vary throughout the day.

3.1 CDR dataset and data preparation

Our dataset consisted of CDRs recorded by an Israeli telecom-
munication company during a 62-day period, each day be-
tween 4 a.m. and 10 p.m., in a region covering a major part
of Israel’s center district. The data holds information gathered
from numerous users, enabling mobility analysis on a large
scale. Moreover, the 62 days of recording enabled us to study
specific users during a relatively long period of time and ex-
amine their movement and communication habits.
Aggregating the communication days and hours granted us
the ability to locate the “average” circadian activity pattern.

We chose to analyze areas of unambiguous social function
that can be used for analyzing the typical behavior in areas
with different social functions and, thus, to assess the feasibil-
ity of land use identification. The disadvantage is that the
chosen areas are less representative of normal urban behavior
because the areas we selected are less mixed. We deliberately
chose areas of varied social functions, such as neighborhoods,
industrial zones, office areas, highways, and commercial dis-
tricts and shopping malls. We selected 61 areas, spread in nine
cities, all located in Tel Aviv and its surrounding areas includ-
ing Holon, Ramat-Gan, Petah-Tikva, Rosh-Haayin, Ra’anana,
Ramat-Hasharon, Givatayim, and Kfar-Saba. Figure 1 illus-
trates the areas selected in Kfar Saba. The four polygons rep-
resent the areas selected for classification. Areas numbered 1
and 2 are neighborhoods, the narrow rectangle of area 3 covers
the main commercial street, and area 4 depicts the industrial
area.

The chosen areas were divided into smaller units in a grid-
like manner, with each unit of land denoted as a cell. Cells are
the basic and highest resolution unit for land use classification
and analysis in this work. Cell size was set as 200 × 200 m2,
the same shape and size as in the works of Toole et al. [30] and
Pei et al. [23]. The inaccuracy of the location estimation in
CDR, which can be up to 300 m distant from the actual signal
location (depending on the density of cell towers), limits the
possible analysis resolution and, hence, smaller cells could be
too noisy for proper analysis. Notice that in areas in which a
200 × 200 m2 cell would not fit, we use narrower cells. In
addition to dividing space, we also divide time, as the function
of the land can vary throughout the day.We divide the day into
24 hours; thus, the basic spatiotemporal unit used in this paper
is “cell in an hour.”

We deliberately chose areas whose social function is “pure”
and, hence, relatively easy to be labeled semantically. We used
knowledge from locals to label each cell in an hour to one of
eight land use categories: Residential; Commercial; Industrial;
Highway; Entertainment (recreation, nightlife, pubs, bars);
Office; Street; and No activity (no human activity is expected
in this cell at this specific time, for example, industrial areas
before opening time). We refer to these eight categories as
atomic land uses. Later, in this paper, we will analyze the
possibility of distinguishing these land use categories using
cellular communication data, and offer unions of categories
that (1) share similar social function and (2) share similar
communicational behavior and hence indistinguishable. The
land use labels are used to analyze the communication behav-
ior in each land use. Moreover, the labels will be used for
training the classifier and evaluating its performance.

3.2 Feature extraction

Toole et al. [30] and Pei et al. [23] used a CDR dataset to
extract features that depict the spatiotemporal calling variation
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pattern. One underlying assumption in their work was that the
volume of calls in a specific cell (the number of phone calls) in
a specific time segment was an indicator of the number of
people present at that location at that specific time, and that
different land uses have different spatiotemporal calling vol-
ume variation patterns. They utilized the circadian rhythm of
the activity in the different land uses to differ between them.
They used two types of features: calling volume, designated to
capture the amount of activity in a period of time; and the
relative calling pattern, extracted from the calling volume at

a specific time relative to the calling volume at other hours of
the day, and designated to capture the circadian activity pat-
tern cleanly from the influence of the activity volume in the
cell.

In this work, we extracted 158 features that illustrate dif-
ferent aspects of cellular communication in the spatiotemporal
basic unit. We divided the features into five types, including
two that were used in Toole et al. [30] and Pei et al. [23]:
communication volume features and daily pattern features;
and three feature types that have not been used in previous

Fig. 1 Areas selected in the city of Kfar-Saba
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works: weekly patterns, contacts, and communication habits.
The details of these features are:

Communication volume features These measure the degree of
communicational activity and are designated to capture the
difference between the activity volume typical to a specific
social function (e.g., in commercial areas, there is more cellu-
lar communication compared with that in residential areas).
These features are equivalent to the calling volume features in
Toole et al. [30] and Pei et al. [23] but, here, we include
different aspects of it: total activity volume, number of users,
number of communications per user, etc. Notice that, because
the cell area is not equal, the counting features are normalized
by the cell size.

Daily pattern features These are calculated by the calling vol-
ume in a specific hour relative to the communication volume
at different hours of the day in the same zone. These features
are designated to identify the circadian pattern of the commu-
nication activity typical to an area (e.g., in residential zones,
the communication peak hours are in the mornings and eve-
nings, while in industrial areas, the peak is during work
hours). These features are the equivalent of the relative calling
volume features depicted in Toole et al. [30] and Pei et al. [23].

Weekly pattern features These capture the difference in cel-
lular usage during weekdays compared with that during the
weekend. Thus, they differentiate between land uses such as
residential, to which its inhabitants return every day, and of-
fice zones, where workers usually do not go on weekends.

Contact features These measure the number of different days
in which people engage in at least one cellular communication
in cell s in hour h. Thus, they differentiate between land uses
with frequent visitors and those with occasional ones.

Communication habit features These aim to depict the land
from the perspective of its typical cellular communication
usage habits, e.g., call duration and usage distribution of dif-
ferent types of cellular communication (phone calls, Internet
usage). These features are used to examine if, in lands of
different social function, there are prominent differences in
communication behavior.

3.3 RF use for land use classification

We examined land use identification using the random forest
(RF) algorithm for classification. This is an ensemble learning
method for classification or regression. The essence of this
method is to build multiple decision trees that are trained on
randomly selected subsets of the samples and subspaces of the
feature space, and outputting the class that is the mode [6, 14].
RF suits our problem well. Other state-of-the-art classifiers

such as neural networks require that the number of samples
would be much greater than the number of features. This is not
the case in our dataset. We have 158 features and around 400
samples (in each hour)—a situation that RF can handle.
Moreover, RF does not require performing feature selection
in advance. It shows excellent performance even when most
predictive variables are noisy [11] and is designed to resist
overfitting. We used 8-fold cross-validation and, in each iter-
ation, 7/8 of the cells were used for training and the other 1/8
of the cells was used as a test set. We partitioned the dataset
into eighths because, in a preliminary study, this division was
found to fit the problem well.

4 Classification evaluation

In this section, we implement the methodology described in
Section 3 on the CDR dataset of 62 days of cellular commu-
nication in the center district of Israel. By analyzing these use
case results, we demonstrate some of the possibilities and
limitations of this methodology. In Section 4.1, we demon-
strate the results over all land uses together, and in Section
4.2, we examine the performance over each land use separate-
ly and offer label unions.

4.1 Overall classification evaluation

In this section, we evaluate the overall classification results.
The classification accuracy is between 91.2% in the lowest
labeling resolution binary classification of residential/non-
residential and 84% in the atomic labeling set, which is the
most detailed. Compared with the works of Toole et al. [30]
and Pei et al. [23], who also attempt to identify land use using
CDRs, the accuracy rate is exceptionally high; Toole et al. [30]
and Pei et al. [23] achieved 54% and 58% accuracy rates,
respectively. However, the accuracy rates of the works are
incomparable. The main reason for this is that their work per-
formed land use identification for entire cities: Boston in
Toole et al. [30] and Singapore in Pei et al. [23]. However,
we chose areas from different cities located in Israel, but did
not include a whole city. We deliberately focused on areas
with a relatively “pure” and clear land use function; hence,
these were easier to classify. We elaborate on more reasons in
Section 6.

Figure 2 demonstrates the average accuracy rate (Acc) in
the different hours of the day using the atomic labels. The
classifier performed best between the work hours of 10 a.m.
and 7 p.m.; during these hours, accuracy did not fall below
88%.

Table 1 demonstrates the land use classification confusion
matrices during morning (Table 1(a)), work hours
(Table 1(b)), early evenings (Table 1(c)), and late evenings
(Table 1(d)). We separated the day into four parts because
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the set of land use categories changes throughout the day.
Some of the social functions, such as Commercial, occur only
in specific hours, while other social functions, such as
Highway and No activity, occur all day long, but not neces-
sarily in the areas we chose. For example, in our dataset, there
is no cell labeled as No activity between 8 a.m. and 5 p.m.
Most land uses are well identified: residential, commercial,
industrial, and no activity are relatively well identified
throughout the day. Office is confused, especially with
Industrial (Table 1(b)) and No activity (Table 1(c)).
However, notice there are only seven office cells in this work.
Highway is confused for other land uses (Table 1(a) and (d)).
Street is relatively well identified in the morning (Table 1(a));
however, it is confused in the late evening (Table 1(d)). It is
mostly confused for Residential, which is not surprising be-
cause both are located inside neighborhoods.

In Fig. 3, we visualized the classification results on a geo-
graphical map during the work hours 8 a.m. to 5 p.m., with
atomic labeling in three cities: Fig. 3a, Ra’anana; Fig. 3b,
Ramat-Gan; Fig. 3c, Tel Aviv. We refer to this map as a con-
fusion map. It resembles a confusion matrix, but it displays the
results on a geographical map, with each cell (sample) placed

where it is located. The legend displays the set of colors
representing the four land use classes in these hours. The
colored circles beside each batch of cells indicate the “real”
land use label of the cell batch which is located to its side. The
color of the cells indicates the land use it is classified as.
Notice that some of the cells contain more than one color.
This is because the results in these maps accumulate 45 clas-
sification results (9 h from 8 a.m. to 5 p.m. × 5 iterations of
random training–testing partitioning).

Figure 4 focuses on Ra’anana (exactly Fig. 3a, but with
marks used for explanation). The cell marked “a” is in blue,
yellow, and green. Yellow is the most dominant color; it indi-
cates that this cell was mostly classified as Industrial. Blue and
green indicate that, in some of the runs, this cell was classified
as Residential and Office, respectively. The cell to its left
marked with “b” is all blue, indicating that it was classified
as Residential in all the runs unanimously.

Communication behavior is similar across different cities:
One encouraging result that can be noticed when examining
the maps is that human land uses characterized by cellular
communication are similar across different cities. For exam-
ple, commercial cells from different cities such as Tel Aviv

Table 1 Confusion matrices of
the classification results. Rows
and columns hold true and
predicted values, respectively

(a) 4 a.m.–7 a.m.

Residential Street Highway No activity
Residential 47.15% 0.61% 0.46% 1.90%

Street 3.09% 9.08% 0.52% 1.24%

Highway 1.79% 1.31% 0.54% 1.81%

No activity 1.81% 1.35% 0.33% 27.02%

(b) 8 a.m.–5 p.m.

Residential Commercial Industrial Office
Residential 43.90% 1.86% 0.61% 0.06%

Commercial 3.63% 16.11% 1.78% 0.03%

Industrial 0.35% 1.09% 28.43% 0.11%

Office 0.02% 0.31% 1.36% 0.36%

(c) 5 p.m.–7 p.m.

Residential Commercial Office No activity
Residential 44.15% 1.91% 0.03% 0.74%

Commercial 3.30% 16.82% 0.03% 1.65%

Office 0.15% 0.24% 0.38% 1.30%

No activity 0.21% 1.56% 0.21% 27.33%

(d) 8 p.m.–10 p.m.

Residential Street Highway Commercial No activity

Residential 45.23% 0.06% 0.24% 0.12% 1.60%

Street 2.38% 0.36% 0.18% 1.04% 0.51%

Highway 1.40% 0.51% 2.23% 0.39% 0.53%

Commercial 1.13% 0.42% 0.59% 9.24% 1.40%

No activity 0.74% 0.00% 0.42% 0.56% 28.74%
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and Ramat-Gan are well distinguished from other land uses;
the algorithm recognizes that they share a similar land use and
classify both as Commercial.

Relatively low variance The results are relatively consistent, as
indicated by a significant number of cells with only one color,
meaning that all 45 repetitions classified as the same class. For
example, see the residential neighborhoods in Ra’anana in
Fig. 4, where 69 of the 86 cells are blue, indicating that they
were classified as Residential in all the repetitions. Moreover,

retrospective analysis reveals that most of the cells that were
not classified as Residential in all the runs do not include a
“pure” residential land use: the cells marked with “a” and “d”
are on the outskirts of the neighborhood and are mostly
unpopulated, while the cell marked “c”mostly includes a large
school. For another example, see the commercial streets of Tel
Aviv in Fig. 3c (from east to west): Ibn Gabirol, Dizengoff,
and Ben-Yehuda. Fifteen of the 22 cells that are included from
these three streets are red, indicating they were classified as
Commercial in all runs. Five of the 22 cells in the commercial

Fig. 3 Confusion maps of the classification results during work hours (8 a.m.–5 p.m.)

Fig. 4 “Zoom in” on Ra’anana’s
confusion map of the
classification results
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streets in Tel Aviv have a negligible blue color (indicating they
were seldom classified as Residential), and only two cells are
non-negligible blue, indicating that, in some of the runs, they
were classified as Residential. Tel Aviv’s commercial streets
also serve residential purposes; therefore, it is not surprising
that sometimes they are classified as Residential.

Relatively low bias Examining the cells that are not correctly
classified in all the repetitions, it seems that the algorithm
correctly classifies them in most cases. Examining the major-
ity vote of each cell (the most dominant color in the cell), 82
out of 86 Ra’anana’s residential cells, 12 out of 16 commercial
cells in Ramat-Gan, and all 24 commercial street cells in Tel
Aviv are correctly classified. Examining Residential and
Commercial classifications at other hours and in other cities
indicates that this example of RF identifying them with a high
rate is not alone: 93.5% of the residential cells are classified by
the RF as Residential, and 74.7% of the commercial streets
and malls are identified as Commercial.

Effect of the leaking phenomenon The classifier has difficulty
identifying what we refer to as “island” land uses—small or
narrow-shaped land uses surrounded by a different land use.
For example, see Ra’anana’s main commercial street, Ahuza,
surrounded by a broken line in Fig. 4. Ahuza St. is located in
the heart of a residential neighborhood, and it is frequently
classified as Residential. The classifier has difficulty in cor-
rectly identifying island land uses because location estimation
inaccuracy causes communication transmissions originating
from one cell to fall inside the borders of its neighboring cell.
We refer to this as the leaking phenomenon. Because the tri-
angulated signal strength location estimation technology used
for the location estimation suffers from high inaccuracy, the
extent of the problem is not negligible. Small and narrow
streets which are surrounded by a “sea” of residential neigh-
borhoods are especially affected by this leaking. The leaking
phenomenon also causes cells located at the border between
different land uses to frequently be confused. For example,
notice the cells in the outer layers of the residential neighbor-
hoods of Ra’anana marked with “e,” “f,” and “g.”
Retrospective analysis indicated that these three cells are all
part of the neighborhood. However, cells “e” and “f” are con-
fused for the industrial and commercial areas that are to its
side, and “g” is confused for the commercial street that is close
by. The cells in the outer layer of the areas are not classified as
well as the cells located in the center of them.

4.2 Analyzing classification of each land use
separately and consideration of alternative labeling
sets

In this section, we analyze the performance of the classifier on
each land use separately. We focus on land uses that are often

confused, and suggest labeling sets that unite some of the
problematic land uses. For evaluating the quality of the clas-
sification to a specific land use, we use the F1 score. This
score incorporates two crucial aspects for analyzing the qual-
ity of a classification to a specific land use: the land use pre-
cision, which is the percentage of cells classified to the spe-
cific land use c that are classified correctly; and the land use
recall, which is the percentage of cells of the specific land use
that are classified correctly:

PrecisionC ¼ TPC

TPC þ FPC
ð1Þ

RecallC ¼ TPC

TPC þ FNC
ð2Þ

where TPC is the number of samples of class c that are classi-
fied as class c (classified correctly), FPC is the number of
samples classified as class c but are not c (classified incorrect-
ly), and FNC is the number of samples of class c that are
classified to another class (classified incorrectly).

F1 score is the harmonic average of precision and recall:

F1C ¼ 2
PrecisionC ∙RecallC
PrecisionC þ RecallC

ð3Þ

Table 2 illustrates the precision, recall, and F1 scores for the
classification of each land use over all cells in the nine cities.
The table also demonstrates scores of label unions. For exam-
ple, the label that unites Commercial and Entertainment labels
is referred to as {Commercial, Entertainment}. In that case,
both cells with Commercial and Entertainment atomic labels
are labeled the same {Commercial, Entertainment}.

As reflected by Table 2, residential is well identified and
distinguished (F1 score is 0.91). It is the most common land
use in urban areas; therefore, correct identification of it is
important. In our work, 47% of the cells are Residential.

Industrial and Commercial are also relatively well identi-
fied (0.91 and 0.66, respectively), and both are also prominent
in the areas chosen for this work. Such cells duringwork hours
are 30% and 21% of the cells, respectively. The Commercial
identification rate is high even though it suffers from the
leaking phenomenon more than the other land uses. That is
because most Commercial cells are located on streets, close to
a residential neighborhood, and sometimes surrounded by a
neighborhood; they are more vulnerable to location estimation
inaccuracy.

Notice that Table 2 does not display the change of the
classification accuracy throughout the day. That is because
the identification rate of the land uses is relatively stable
throughout the day. One exception is Commercial. Although
it is well identified overall, between 8 p.m. and 10 p.m., all
Commercial cells were classified as Entertainment. In the
areas we chose, Entertainment occurs only between 8 p.m.
and 10 p.m., and apparently, Commercial and Entertainment
were indistinguishable by the classifier.
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We would like to offer a set of land use categories
that is more suited for land use classification by uniting
some of the atomic land use categories. For uniting land
uses, we would like to consider two aspects: (1) the
land use categories share similar social function; and
(2) the land use categories share similar communication-
al behavior, and hence, they are indistinguishable by the
classifier. For example, Commercial and Entertainment
satisfy the two requirements for union as they are obvi-
ously indistinguishable by the classifier and both share
similar social function.

No activity is also well identified (F1 is 0.89). Intuitively,
we could assume that it would be well distinguished because
the classifier can recognize the small amount of communica-
tion in these areas.

The algorithm does not identify Highway and Street
well, especially that Highway in the morning and Street
in the evening suffer from low F1 scores. At least to a
certain extent, this is because of the leaking phenome-
non as both Highway and Street are narrow and lie
beside other land use areas.

We examined label unions for Street: {Highway,
Street} and {Residential, Street}. The motivation for
uniting Street is that the classifier poorly identifies it
at certain hours, and uniting with one of the two op-
tions is reasonable because, by definition, Street cells
are between highway and residential zones.

We compared the union options using the sub-land use
recall, demonstrating the ability to correctly identify the cell
l in union with land uses m, Recalll,{l,m}.

The percentages of cells labeled l that are classified correct-
ly to the union label of l and m, label {l,m}, is,

Recalll; l;mf g ¼
TPl; l;mf g

TPl; l;mf g þ FNl; l;mf g

where TPl, {l,m} is the number of cells labeled l that are clas-
sified as {l,m} (classified correctly), and FNl, {l,m} is the num-
ber of cells labeled l that are not classified as {l,m} (classified
incorrectly).

The recall values of RecallStreet, {Street}, RecallStreet,
{Street,Road}, and RecallStreet, {Street,Residence} are 0.348, 0.517,
and 0.778, respectively. For example, RecallStreet ,
{Street}=0.348 means that 34.8% of the cells with an atomic
label of Street are correctly classified, and RecallStreet,
{Street,Residence} = 0.778 means that 77.8% of the cells whose
atomic label is Street are correctly classified to the union label
of Street and Residential. Street recall is significantly higher
when united with Residential. We already saw an indication of
the resemblance between Street and Residential in Table 1;
Street cells are frequently classified as Residential, especially
in the evening (Table 1(d)).

Another option for a label union is Highway and Street
with No activity. It is reasonable to unite these land uses be-
cause people in these zones use them only for mobility pur-
poses. The results of this union, as indicated in Table 2, are
good, much better than those of Highway and Street separate-
ly. However, because 30.3% of the cells are No activity com-
pared with only 14.1%, which are labeled Highway or Street,
F1 may be majorly influenced by the classifier’s ability to
identify No activity. The recall values Recall{Highway, Street},
{Highway, Street} and Recall{Highway, Street}, {Highway, Street,

No activity} are 0.534 and 0.718, respectively. Uniting
Highway and Street with No activity seems to be beneficial.

The classifier does not identify Office well (F1 is 0.25). We
assume the main reason is the lack of Office-labeled sam-
ples—only seven cells in the data are labeled as Office, i.e.,
in an average fold of the eight-fold cross-validation, there are
only six Office-labeled samples in the training set, and one
sample in the test set. We examined two options for uniting
Office: {Commercial, Office} and {Industrial, Office}. The
sub-land use recall values RecallOffice, {Office}, RecallOffice,
{Office, Industrial}, and RecallOffice, {Office, Commercial} are 0.177,
0.895, and 0.434, respectively. Office is best identified when
in the {Industrial, Office} union—around 90% of the Office-
labeled cells are identified as {Industrial, Office}, significant-
ly better than uniting with Commercial or not uniting it at all.

The land use unions that we found to be effective and offer
advantage to non-union labels are as follows: {Commercial,
Entertainment}, {Office, Industrial}, and {Residential, Street}
or {Highway, Street, No activity}. Thus, we would suggest
using one of two sets of land use categories:

Table 2 Precision, recall, and F1 of each land use and some of their
unions

Land uses Precision Recall F1

Residential 0.90 0.93 0.91

Commercial 0.70 0.62 0.66

Industrial 0.89 0.95 0.91

Office 0.69 0.16 0.25

Entertainment 0.80 0.68 0.74

Highway 0.44 0.27 0.34

Street 0.54 0.36 0.43

No activity 0.87 0.91 0.89

{Residential, Street} 0.91 0.93 0.92

{Highway, Street} 0.67 0.54 0.60

{Highway, Street, No activity} 0.83 0.84 0.83

{Commercial, Entertainment} 0.86 0.65 0.74

{Commercial, Industrial} 0.89 0.91 0.90

{Commercial, Office} 0.80 0.71 0.75

{Industrial, Office} 0.92 0.95 0.93
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Label set 1:

& {Residential, Street}
& {Commercial, Entertainment}
& {Office, Industrial}
& Highway
& No activity

Label set 2:

& Residential
& {Commercial, Entertainment}
& {Office, Industrial}
& {Highway, Street, No activity}

Figure 5 compares the average accuracy of the atomic label
sets, label set 1 and label set 2, throughout the day.

Both land use sets that include label unions improved ac-
curacy. The most significant improvement was in the morn-
ings and evenings, in which the atomic label set is not as good
as during work hours. However, notice the accuracy versus
land use resolution trade-off. Label set 2 that has the highest
accuracy also has the lowest resolution (four land uses); and
the atomic set that has the lowest accuracy also has the highest
resolution (eight land uses).

5 Feature analysis

The 158 features used in this work capture different dimen-
sions of the cellular communication pattern and thus can be
utilized to better understand the relations between cellular
communication and human activity. Table 3 illustrates a rep-
resentative sample of seven of the 158 features, selected to
demonstrate the different feature types introduced earlier
(Section 3.2): CountComsWeek and CountComsEnd of the
Communication volume type, PropHourCallsWeek of the dai-
ly pattern type, PropWeekAtEnd and CountComsWW of the
weekly pattern type, and AvgContactCallsWeek and
AvgContactCallsEnd of the contact type. Later in this section,
we will elaborate and explain each of these seven features.

Table 3 displays the average value of these features in each
land use. It can be used to point out the typical behavior in
each land use. The feature values are normalized over all cells
and in each hour separately, so they will be distributed as
standard normal. As an example, see the feature
CountComsWeek—this feature measures the number of cel-
lular signals conducted in the cell during weekdays (weekend
is not included) per square meter. The land use with the
highest volume cellular communication volume is Office with
the exceptionally high value of 2.33, whereas it is not surpris-
ing to see that the least activity is conducted in No activity–
labeled cells. Thus, this feature can be effective to distinguish

between Office and No activity. Notice the colors emphasize
the normalized values of the features, where warm orange
colors indicate high values and cold blue colors indicate low
values.

In addition, Table 3 illustrates in curved brackets the vari-
able importance (VI) measure suggested by Breiman [6] that
measures the importance of the feature in the classification. It
is computed throughout the RF training process and is based
on a permutation test. The idea is that if the variable is not
important (the null hypothesis), then rearranging the values of
that variable will not degrade prediction accuracy. The VI of a
feature is computed as the average accuracy decrease on the
out-of-bag samples when the values of the respective feature
are permuted randomly [2]. A high VI measure indicates that a
feature is important for good classification.

The communication volume features are designated to dif-
ferentiate between land uses with different levels of cellular
activity. They are the equivalent of the calling volume features
in the works of Toole et al. [30] and Pei et al. [23].

We demonstrate these features’ behavior by examining
CountComsWeek and CountComsEnd. CountComsWeek,
which is the 49th best feature with a VI measure of 0.88,
and estimate the average number of cellular communications
per hour in a square meter on weekdays (Sunday to Thursday
in Israel). The value of this feature for Office is exceptionally
high (2.33). However, it cannot be generalized to all Office
land uses because, in our dataset, there are only seven Office
cells. Nevertheless, it is rather unsurprising that there is high
cellular communication activity in Office areas. Although
shadowed by the Office exceptional values, Commercial and
Street also have a relatively high communications volume
(0.45 and 0.49, respectively). Loyal to its definition, there is
indeed a low number of communications in No activity (−
0.48).

CountComsEnd is the equivalent weekend feature to
CountComsWeek. It estimates the average number of cellular
communications per hour in a square meter on weekends
(Friday and Saturday in Israel). It is the feature with the
highest VI of all the features of this type (a VI measure of
1.1, leading to the 25th best feature). Commercial and Street
have high activity, as on weekdays (0.85 and 0.70 respective-
ly). Again, there is a low number of communications in No
activity (− 0.63). In Industrial, the number of communications
is low (− 0.70) because most businesses are closed then. Also,
the number of communications in Office is much more mod-
erate on weekends because most offices are also closed.

The daily pattern features examine the communication be-
havior of a cell in an hour compared to the communication
behavior in the same area during the rest of the hours. As such,
they differentiate between land uses with different day
routines.

These features are the equivalent of the relative calling
volume features depicted in Toole et al. [30] and Pei et al.

Pers Ubiquit Comput

Author's personal copy



[23]. They extracted these features to capture the spatiotem-
poral variations patterns of human mobility without the noise
inherent in the communication volume features (e.g., some
commercial streets are very crowded in big cities, and in
smaller cities, they can be significantly less active).

The daily pattern features have an average VI of 1.02,
which is second only to the contact features. We will demon-
strate the daily pattern features’ behavior by analyzing the
feature PropHourCallsWeek, which has the highest VI of all
daily pattern features (a VI measure of 1.51, which is the 14th
best feature). PropHourCallsWeek compares the number of
communications in cell s in hour h to the number of commu-
nications in cell s on hours different from h. A positive value
indicates that the number of phone calls in cell s in hour h is
higher than the mean number of phone calls in cell s in hours
different from h; likewise, a negative value indicates that the
number of phone calls in cell s in hour h is lower than the
mean number of phone calls in cell s in hours different from h.

The feature differentiates between land uses where the core
of activity is at different hours. For example, it captures the
difference between Industrial, whose core hours are during
work hours, and Commercial, whose core hours are after work
hours. Mainly, it differentiates between occupation-related
land uses, in which the activity concentrates mainly during
work hours, and leisure-related land uses, in which most of
the activity does not occur during work hours.

Because this feature captures the daily pattern of the land
use, the values change throughout the day. Therefore, we use
Fig. 6 to demonstrate the values of the normalized
PropHourCallsWeek changing throughout the hours of the
day (between 5 a.m. and 10 p.m. because the dataset does
not include nighttime). It may seem like most values are pos-
itive; however, it is just because the land use categories are not
of the same size, e.g., Residential that has negative normalized
values during the work hours is a big category that includes
47% of the cells. Industrial and Office are most active during
work hours (9 a.m. to 5 p.m.). Most cells labeled as Industrial

or Office are labeled as No activity before and after work
hours; thus, No activity is somehow complementary to
Industrial and Office at those hours and as we expected the
activity in these places is lower than during work hours.
Therefore, it is low during leisure hours. Residential,
Commercial, Highway, and Street are active during leisure
hours when people are not at work. In the morning, people
are at home (Residential is high). From 6 a.m., people start
driving to work (Highway and Street are high). During work
hours, fewer people are present at home or in commercial
areas (Residential and Commercial are low), and in the eve-
ning, people return home or go to commercial areas
(Residential and Commercial are high).

The weekly pattern features capture the difference in com-
munication activity on weekdays compared with weekends.
They include PropWeekAtEnd, which has the highest VI
(1.97). It measures the percentage of users who had at least
one communication usage in cell c in hour h on weekdays
(Sunday to Thursday) who also had at least one communica-
tion usage in cell c in hour h on the weekends (Friday and
Saturday). This feature may help identify cells where visitors
go in different parts of the week, i.e., differentiating between
cells visited only on weekdays and those visited on weekends
as well.

Naturally, this feature has a high value in residential areas
(0.75); people spend time in their homes all through the week;
therefore, Residential has the highest value. People are in their
office and in industrial areas only on weekdays; therefore,
Office and Industrial have the lowest values (− 1.09 for both).
Commercial has a moderate value (− 0.07), probably because
most of the commercial centers and streets in our data are open
on weekends, and workers are present on weekends as well.

We will examine another weekly pattern feature:
CountComsWW (VI measure 0.94, 43rd best feature). It mea-
sures the weekday to weekend ratio of the number of commu-
nications. We expect it to differentiate land uses that have a
different volume of cellular usage on weekdays compared
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Fig. 5 Label union set accuracy
comparison (accuracies are
identical for label sets 1 and 2
between 9 a.m. and 7 p.m.)
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with weekends. As one could expect, in Office and Industrial,
there is significantly more activity in the weekdays comparing
to the weekend. Their non-normalized values of 7 and 4, re-
spectively (the values in Table 3 demonstrate the normalized
values), indicate that, on weekdays, they have seven and four
times more communication activity than on weekends.
Residential, Commercial, Street, and Highway have lower
values. Their non-normalized values are around 1, indicating
that the number of communications on weekdays is similar to
the number on weekends.

The contact features measure the number of distinct dates
in which people perform a cellular communication (i.e., con-
tact) in cell s in hour h. Thus, they differentiate between land
uses with frequent visitors and those with occasional ones.
This is the feature type with the highest average VI (1.04).
Moreover, 13 of the 14 features with the highest VI are contact
features. We will demonstrate these by analyzing the features
AvgContactCal lsWeek and AvgContactCal lsEnd.
AvgContactCallsWeek (VI measure 1.18, 20th best feature)
measures the average number of weekday contacts per user
in cell s in hour h over the 62-day recording period.
Residential has a high value (0.48) because the same residents
frequently return home usually around the same hours; like-
wise, Industrial and Office have higher values thanmost of the
other land uses (− 0.02 and 1.47, respectively) because
workers go to offices, or business, in Industrial areas, every
weekday. Commercial has a low value (− 0.71) because on
commercial streets, there are workers who frequently visit
their workplace, but they are negligible in the vast stream of
occasional visitors shopping or passing by. Highways also
host a variety of different people; hence, Highway has a low
value (− 0.6).

The equivalent weekend AvgContactCallsEnd feature (VI
measure 1.81, 2nd best feature) measures the average number
of weekend contacts per user in cell s in hour h. This feature is
valuable in distinguishing Residential from other land uses.
On weekends, this is the only land use with frequent visitors.
Residential has a high value (0.75) because people tend to be

at home in weekends, and all the other land uses have a sig-
nificantly lower frequent visitor value in the weekend. Office
and Industrial, which had a high contact rate in the parallel
week feature, are very low on weekends because workers are
not present then (− 0.87 and − 0.94, respectively).

The communication habit features added little contribution
to the classification. The average VI of this feature type is the
lowest of all five types (0.28), and the most valuable feature of
this type is AvgDurationIntrWeek that measures the average
duration of internet usage. It is only the 55th best feature with
a VI of 0.76.

The two feature types that were used in Toole et al. [30] and
Pei et al. [23], the communication volume features and the
daily pattern features, are also useful for classification in this
work. We introduced three more feature types that were cru-
cial for the classification, the weekly pattern features that in-
clude the feature with the highest VI, and the contact features
that have the highest average VI.

The typical communication behavior in the different land
uses can be captured by the features as demonstrated in
Table 3. However, the features contain noise and even excep-
tional values that complicate land use classification.

Figure 7 illustrates a Tukey boxplot that demonstrates the
normalized values of the feature AvgContactCallsEnd in each
of the land uses active during work hours. The red graph is the
median value, and the bottom and top of the box are the first
and third quartiles. The boxplot includes whiskers, the dotted
lines extending vertically from the boxes. The lower whisker
is the lowest datum still within 1.5 IQR (interquartile range),
and the higher whisker is the highest datum still within 1.5
IQR. Any data not included in the whiskers range is plotted as
an outlier with a cross.

As demonstrated in Fig. 3, this feature captures the typical
behavior in the different land uses; however, using only this
feature, it is impossible to distinguish between the land uses
with a high accuracy. This feature is valuable to distinguish
between Residential and the rest of the land uses; however,
still 25% of the Residential cells are inside the IQR of

Table 3 A sample of seven
features and their average
normalized value in each land use
(Resid, Residential; Highw,
Highway; Comm, Commercial;
Ind, Industrial; Off, Office; No
Act, No activity)

Land uses

Feature {VI} Resid Street Highw Comm Ind Off No Act

CountComsWeek {0.88} − 0.02 0.49 − 0.05 0.45 − 0.15 2.33 − 0.48
CountComsEnd {1.1} 0.13 0.70 − 0.04 0.85 − 0.70 − 0.18 − 0.63
PropHourCallsWeek {1.51} − 0.01 0.15 0.10 − 0.04 0.88 0.73 − 1.09
PropWeekAtEnd {1.97} 0.75 0.23 − 0.37 − 0.07 − 1.09 − 1.09 − 0.98
CountComsWW {0.94} − 0.38 − 0.44 − 0.08 − 0.41 0.83 1.70 0.69

AvgContacCallsWeek {1.18} 0.48 − 0.29 − 0.60 − 0.71 − 0.02 1.47 − 0.73
AvgContacCallsEnd {1.81} 0.75 − 0.15 − 0.45 − 0.31 − 0.94 − 0.87 − 0.81
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Commercial. Office and Industrial are almost indistinguish-
able, and Commercial can be confused with any of the other
land uses.

6 Conclusions

In this paper, we offered the reader a chance to take a deep
look into the different sides of land use identification based
only on cellular communication—its advantages along with
the shortcomings. We implemented a common methodology

for solving this problem, with some innovations, to illuminate
different angles of the problem. We applied the methodology
on a dataset of 62 days of cellular communication in the center
district of Israel. We utilized this use case to point out patterns
and behavior as reflected by features aggregating cellular
communication. We demonstrated that communication be-
haves reasonably similar across cities, and thus, we believe,
it can be used for classifying land use in a city with data of
other cities to achieve reasonable results.

We also offered some innovations to the methodology. We
introduced types of features not used in previous works, and
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two of these proved to be dominant in the classification pro-
cess: the weekly pattern features that differentiate between
land uses with major differences in activity on weekdays ver-
sus weekends, and the contact features that differentiate be-
tween land uses with frequent visitors (e.g., residential neigh-
borhood) and land uses of occasional visitors (e.g., commer-
cial streets). We used an hourly labeling method instead of the
constant through time land use label that has been used in
previous works. An hourly land use labeling set enables the
flexibility to recognize variations and temporal social
functions.

The accuracy rate of identifying the land uses in this work
showed a relatively high accuracy rate ranging from 91.2%,
when using the lowest binary residential/non-residential clas-
sification, to 84% when using a high-resolution labeling set.
The classification performs best during work hours, as its
accuracy does not drop below 88% even in the high-
resolution atomic label set. Although the accuracy rate in this
work is higher than that in other works that also focused only
on cellular communication as a data resource, such as the
works of Toole et al. [30] and Pei et al. [23], it cannot be
deduced that the difference in the methodology led to the
higher accuracy. The works are incomparable because the ear-
lier works performed land use identification for entire cities:
Boston in Toole et al. [30], and Singapore in Pei et al. [23].
However, we chose areas from different cities located in
Israel, but did not include a whole city. We deliberately chose
areas with a relatively “pure” and clear land use function;
hence, it was easier to classify them. Moreover, Toole et al.
[30] and Pei et al. [23] used the label “open spaces” to label
parks and areas without buildings, whereas we did not include
these in our work. Another difference is our hourly labeling
method, whereas Toole et al. [30] and Pei et al. [23] used the
constant through time land use labeling.

Although the overall accuracy is satisfactory, checking
each land use separately indicates that some of the social
functions such as Office, Entertainment, and Street were poor-
ly identified. Therefore, we tested options for uniting land uses
and recommended uniting some land uses that were indistin-
guishable and shared similar social function and communica-
tion behavior. We suggested combining Commercial with
Entertainment and Office with Industrial because these two
pairings were barely distinguishable by the classifier. We
discussed the consequences of the leaking phenomenon
caused by the inaccuracy of location estimation. The commu-
nication transmissions that originate from one cell and fall
inside the borders of its neighboring cell damage the ability
to correctly classify land uses and land located nearby lands of
other use, particularly narrow land uses such as commercial
streets.

In future work, it would be interesting to further investigate
and offer solutions for the leaking phenomenon caused by the
inaccuracy of location estimation. It would also be valuable to

evaluate this method on a whole city dataset to understand if
the additions to the methodology significantly improved its
efficiency.
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