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Empowering Interpretable, Explainable 
Machine Learning Using Bayesian 
Network Classifiers 

Boaz Lerner 

1 Introduction 

From the seminal works of Pearl [1], Spirtes [2], Lauritzen and Spiegelhalter [3], 
Cooper [4], and Microsoft Research’s researchers (mainly Heckerman [5, 6], 
Meek [7], and Chickering [8]) and their colleagues introducing Bayesian networks 
(BNs), to the works admitting and demonstrating BN classifiers (BNCs) [9, 10, 11, 
12, 13, 14, 15, 16, 17, 18], BNs were mostly considered an esoteric field, a neglected 
little brother of the more popular mainstream neural networks, support vector 
machines, and boosting and bagging machines and their machine learning (ML) 
variants. BNs and BNCs have attracted the attention of only relatively few faithful, 
non-mainstream scientists in the ML community who recognized, cherished, and 
advanced the networks’ huge potential. 

Whether due to the NP-hard complexity of BN structure learning [8], the BN 
traditional near-exclusive focus on discrete data [4, 5, 6], or the frequency of 
new trends in ML, few in the ML community found study of the powerful BN 
theory and tools attractive. Traditionally presented as a knowledge representation 
paradigm, until the late 90s BNs were not considered accurate classifiers and works 
demonstrating their superb classification capability are unjustifiably scarce even 
today. 

While in training a classifier, we have to minimize a loss function (usually the 
0/1 loss function), which is equivalent to maximizing the classification accuracy 
of a single target variable, when learning a BN, we usually maximize/minimize 
a general likelihood-driven [4, 6] or similar-fitting function (Akaike information 
criterion (AIC) [19], Bayesian information criterion (BIC) [20], or Kullback– 
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112 B. Lerner

Leibler (KL) divergence [21]) over the set of all variables. However, as the domain 
size increases, maximization of a likelihood-driven function over many variables 
used in classification—of which only one is of real interest, i.e., the class variable— 
can hardly lead to an accurate classifier [9]. 

In contrast to the belief that BNCs are less accurate than traditional ML 
classifiers, several studies [11, 13, 17, 22] have shown that properly learned, BNCs 
are comparable to traditional ML classifiers.1 In this chapter, we will present some 
of these studies. Beyond accuracy however, the use of BNCs should be considered 
for the natural interpretability (understanding the results; the “how” question) and 
explainability (explaining the results; the “why” question) they provide.2 

Let us demonstrate the difficulty in achieving classifier interpretability using 
three examples. The linear regression model accompanies a predictor with a 
coefficient measuring “importance” and direction of impact, but with credibility that 
depends on the predictor value size. The ensemble classifier (whether by averaging 
methods such as bagging and the random forest (RF), or boosting methods such as 
the XGBoost) provides a ranked list of “important” variables but may show only 
slight differences between their levels of “importance”—say by a second or third 
digit after the decimal point—providing negligible information about their relative 
contribution to the classification. With hundreds and thousands of neurons residing 
in many internal modules and layers, connected by millions of parameters, the 
deep neural network (DNN) excels in classification but due to these complexities 
inherently lacks interpretability and explainability [30]. The BNC, in contrast to 
these examples, shows a hierarchy of interrelations among domain variables along 
with causal paths of influence and inference mechanisms, revealing causal relations 
that can readily be investigated while and for interpreting and explaining the domain. 

ML tools are frequently accused of being black boxes,3 sacrificing interpretabil-
ity in favor of usability and effectiveness [31, 32, 33, 34]. In times when ML is 
struggling to enhance its transparency, fairness (even when the bias is in the data 
and not in the analysis), and accountability [35], to be auditable, to increase trust 
and trustworthiness among ML developers and non-ML users alike [33, 34, 36],

1 Unfortunately, most comparisons of BNCs are among themselves [18, 23, 24, 25, 26, 27] and not 
to non-BNCs. 
2 Conventional categorization of interpretable ML methods [28] is through analysis of model 
components using, for example, linear regression and decision trees, sensitivity studies of input 
perturbations, or analysis of local or global surrogate approximations of the ML model [29]. 
Although these methods show readiness and stability, many challenges, such as dealing with depen-
dent features, causal interpretation, and uncertainty estimation remain. These challenges need to 
be resolved for successful application of interpretable ML methods to scientific problems [28, 30]. 
3 This is not necessarily true for all ML tools, but DNNs, following their recent meteoric rise, 
attract this criticism on behalf of the entire ML field, as DNNs can justifiably be considered black 
boxes even for ML specialists. 
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and even to be responsible [32],4 researchers do their utmost to develop dedicated 
schemes that can help explain the predictions and decisions made by ML mod-
els [30, 37]. One example of this is the SHapley Additive exPlanations (SHAP [38]) 
and local interpretable model-agnostic explanations (LIME [29]) for linear models 
and ensemble classifiers. Another example is the tremendous effort of researchers 
to enhance DNN transparency, visualizability, and explainability. This may be 
done by advancing visualization methods as a fundamental building block that, 
combined with additional tools, will empower humans to understand DNNs [39], by 
generating saliency maps that indicate the relevance of image pixels to the network 
output [40, 41], or building inference graphs to interpret hidden layer activity 
for understanding the general inference process of a class, as well as explaining 
decisions the network makes regarding specific images [42]. While these schemes 
enrich our explainability tools, they have only limited causal interpretations [43]. A 
causal explanation for the mechanism of a DNN gives insight about the meaning of 
the DNN’s output, its relation to the network input, and any change in it. In highly 
sensitive domains involving peoples’ lives, company finances, criminal justice, 
and autonomous driving, a causal explanation is critical to creating justification, 
transparency, trust, and eventually co-operation. The ultimate goal is that any such 
causal explanation will be accessible and comprehensible to a human, who may then 
challenge the explanation until it is fully understood. 

The BNC is a natural means for knowledge representation. Its graphical struc-
ture [1, 2] on the one hand and causal inference mechanisms [44, 45] on the other 
hand readily convey interpretability and explainability. First, the BNC provides a 
feature-selection mechanism through its Markov blanket (MB).5 Conditioned on its 
MB, a variable is independent of the rest of the nodes in the network, allowing us to 
focus our attention on exploring the importance of interrelations of this variable 
only with those in its MB. This gives a BNC an advantage over conventional 
feature (variable)-selection and importance ranking methods that can only analyze 
variables separately (or in simple interactions), and lack any ability to consider 
their interrelations. Moreover, the BNC demonstrates a hierarchical structure of 
interrelations among both MB and non-MB variables, allowing us to explore and 
understand the source of the feature importance (e.g., by being included in the MB) 
and to identify causal paths of influence6 originating, passing, or ending in/through

4 Interpretability, explainability, transparency, fairness, accountability, auditability, trustworthi-
ness, and responsibility—can we wholeheartedly confirm that we have demanded all of these from 
ourselves as human decision-makers in the era prior to machine learning? I will leave this question 
open until the discussion. 
5 The MB of a network node (representing a domain variable) includes the node, its parents, 
children, and children’s co-parents. 
6 Implicit paths that may become explicit in the absence of latent variables in the domain or 
following intervention [44]. Nevertheless, experimental studies exercising intervention are hard 
to make and follow, whereas observational approaches such as those exerted by the BN are easy to 
make, follow, and interpret either by assuming no latent mechanisms in the domain or by learning 
these mechanisms from data (see Sect. 4). 
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a variable [1, 2, 44]. Regarding classification, the MB of the target (class) variable 
fosters discriminability in a lower dimension by enabling a quick exploration of 
those causal relations within the blanket that contribute to accurate classification 
[46, 47, 48, 49, 50, 51, 52]. Simultaneously, MBs of selected non-target variables 
allow deeper exploration and understanding of mechanisms establishing the domain 
and thereby also promote interpretability and explainability. Like using the MB, a 
BNC may also allow investigation of why an instance (pattern) has been classified 
positively or negatively by identification of a minimal set of the currently active 
features responsible for the current classification, or a minimal set of features whose 
current state (active or not) is sufficient for the classification [53]. Moreover, the BN 
enables inference on the values of any combination of variables (related or not to 
the classification) conditioned on values of the remaining variables (or only those 
in a specific MB) [46]. Finally, studying intervention as a source of causality is 
natural only to using the inference tools of graphical models [44, 45]. That is, BNs, 
BNCs, and graphical models, in general, have tremendous potential to promote 
explainable AI, and the ML community is encouraged to divert some of its efforts 
in this direction. We will make the argument for this later in the chapter, specifically 
in Sects. 3.4 and 4. 

However, in order to also provide interpretability and explainability in domains 
having non-semantic huge (in space and/or time) inputs such as those found in 
images, speech, and text, much progress in BN learning algorithms is needed. Today, 
neither BNs nor BNCs can cope with high-dimensional raw data coming from 
images, speech, and text, and thus the contribution of these networks, specifically to 
advance interpretability of DNNs, can only come when applied to already processed, 
projected, or embedded raw data. We will address this in the conclusion. 

In Sect. 2, we describe the most popular, though restricted, BNC, the naïve 
Bayesian classifier, and some of its many variants. In Sect. 3, we survey general 
unrestricted BNCs, focusing on the risk minimization by cross-validation BNC, and 
in Sect. 4, we extend our study to causal–temporal BNs and their application to 
classification. Section 5 concludes the chapter. 

2 Restricted BNCs–The Naïve Bayesian Classifier and Its 
Variants 

Although they make assumptions about the domain that are sometimes found 
unjustified (variables are class-conditionally independent [54], a maximal number 
of node parents [2], existence of a variable topological order [4]), restricted BNCs 
are surprisingly accurate as well as efficient, as structure learning is avoided or 
dramatically shortened. In this chapter, we will focus on and review the naïve 
Bayesian classifier (NBC), which is the most fundamental restricted BNC, continue 
by demonstrating variants of the NBC, which try to relieve the class-conditional 
independence assumption of the NBC, and conclude by presenting a new variant of 
the NBC demonstrating empirical advantage.



Interpretable Machine Learning Using Bayesian Network Classifiers 115

2.1 Naive Bayesian Classifier 

Although outdated, the NBC [54]—a learning-free structure, which is obtained 
with virtually no computational effort—is considered a simple, practical, and 
state-of-the-art classifier [9, 13, 18], very often selected as the default for pattern 
classification in industrial applications. 

The NBC is a special case of a BN consisting of a finite set of random variables, 
.U = {X1, X2, . . . , Xm,C} = {X, C}, where .X1, . . . , Xm are the observable 
variables that represent the problem features and C is the class variable having K 
states. The NBC is termed naïve since it makes use of a simplifying assumption 
that its observable variables are conditionally independent given the class variable. 
All edges of the NBC are directed from the class variable to the observable 
variables (Fig. 1); hence, the only parent of the observable variables, . Xi , is . Pai =
C, and .Pa(C) = ∅ for the class variable. 

Given a selected network structure, the NBC assigns a test pattern . x to the class 
. Ck (.k = 1, . . . , K) with the highest a posteriori probability 

.P(Ck|x) = p(x|Ck)P (Ck)

p(x)
, (1) 

where .p(x|Ck) is the class-conditional probability density, .P(Ck) is the a priori 
probability for class . Ck , and .p(x) is the unconditional density normalizing the 
product of the two probabilities such that .

∑
k P (Ck|x) = 1. The NBC independence 

assumption eliminates the “curse of dimensionality” since density estimation 
requires only linearly rather than exponentially increasing numbers of patterns. 
Omitting .p(x), which is common to all classes, the posterior probability can be 
written as 

.P(Ck|x) ∝ p(X = x|Ck)P (Ck) = P(Ck)

m∏

i=1

p(Xi = xi |Ck), (2) 

where .X = x represents the event that .X1 = x1 ∧ X2 = x2 ∧ . . . ∧ Xm = xm and 
.
∏m

i=1 p(Xi = xi |Ck) is a product of class-conditional densities for . x. 
Both .P(Ck) and .p(Xi |Ck) can be estimated from the training data. . P(Ck)

is the relative frequency of patterns belonging to .Ck out of all of the patterns 

Fig. 1 The NBC depicted as 
a BNC in which the 
observable variables 
(. X1,. X2, . . . . Xm) are  
conditionally independent 
given the class variable (C) 

X X  1 2  .  .  . 

C 

mX
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in the data (the class prior probabilities). To estimate .p(Xi |Ck) (or .p(xi |Ck)), 
the one-dimensional class-conditional probabilities (or densities) for discrete (or 
continuous) variables, for each class .Ck and variable . Xi , we employ a training 
set comprising of a finite number of patterns . xn, where n gets values for each of 
the .Nk training patterns of class . Ck . For a discrete variable, the class-conditional 
probability is estimated using the sample (unsmoothed or smoothed) frequency of 
each value of the variable [6, 9, 25]. For a continuous variable, the parameters of 
.p(xi |Ck) are usually estimated by maximum likelihood using any of the popular 
density estimation methods such as single Gaussian estimation, which assumes 
the data are generated from a single normal distribution, kernel density estimation 
models, representing the data using a linear combination of kernels around each of 
the training patterns, or the Gaussian mixture model, which estimates the data using 
a few Gaussians with adaptable parameters [55, 56]. 

The NBC is an interpretable model because of the (conditional) independence 
assumption; it is very clear how much each feature contributes toward a certain 
class prediction, since we can interpret the conditional probability. When the degree 
of independence between variables is high and the naïve assumption is justified 
and/or the database is small, appropriate for the small-scale learning problem of only 
classifier parameters, an NBC provides an accurate classifier as was demonstrated, 
for example, in diagnosing genetic abnormalities [56, 57, 58]. 

2.2 Variants of the NBC 

The NBC is based on the assumption that all attributes (variables) are mutually 
independent, conditioned on the class attribute. On the one hand, this assumption 
ignores attribute dependencies and is thus often violated. On the other hand, learning 
from data, a BNC that can represent arbitrary attribute dependencies is intractable 
(Sect. 3). Thus, researchers have focused their attention on improving the NBC, 
which has led to many effective and efficient leaning algorithms [9, 26, 49, 59, 
60, 61, 62, 63]. These may be divided into those of feature selection (learning 
an NBC based on a subset of the features that better satisfy the independence 
assumption), e.g., for cycle-time key factor identification and prediction in semi-
conductor manufacturing [64], local learning (learning an NBC based on a local 
training set rather than the whole set), structure extension (learning an NBC also 
representing dependencies among some features), data expansion (learning an NBC 
using a training set expanded from the original), and multinet classifiers (learning a 
classifier to each class separately). 

For example, lazy learning algorithms are popular local learning methods for 
extending the NBC. Lazy learning delays learning until classification time by storing 
training data and waiting until it is given a test instance; that is, generalization 
is delayed until test time, generating a hypothesis for each instance instead of 
generating one hypothesis for all instances. Among lazy learning algorithms, we 
find the lazy Bayesian rule (LBR) [60] and selective neighborhood naïve Bayes
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(SNNB) [61]. Another algorithm is the locally weighted naïve Bayes (LWNB) [62]. 
In LWNB, the k-nearest neighbors of a test instance are first found, and each of 
them is weighted in terms of its distance from the test instance. Then a local NBC 
is trained using the locally weighted training instances. Although it is a k-related 
algorithm, its classification performance is not particularly sensitive to the size of k 
as long as it is not too small. 

Among numerous proposals to improve the accuracy of NBC by structure 
extension, the one-dependence estimator (ODE) is similar to the NBC except 
each attribute is allowed to depend on at most one other attribute, in addition 
to the class attribute. The ODE provides a simple, yet powerful alternative to 
NBC. Its most popular variant is the tree-augmented network (TAN) [9] that 
uses the Chow-Liu algorithm [65] to learn a maximum weighted spanning tree 
over all non-class variables that are connected pairwise by edges weighted by the 
conditional (on the class variable) mutual information between these variables. 
The super-parent (SP) TAN algorithm (SP-TAN) [26] greedily learns a TAN from 
NBC by adding in each iteration the edge achieving the highest (cross-validation) 
accuracy improvement. It demonstrates remarkable classification performance but 
at a considerable computational cost. The averaged one-dependence estimator 
(AODE) [59] weakens the NBC attribute independence assumption by averaging 
all SuperParent-one-dependence estimators (SPODEs) [26] that satisfy a minimum 
support constraint, where a SPODE allows each attribute to depend on a common 
single attribute (i.e., SP) in addition to the class. This technique achieves comparable 
classification accuracy to SP-TAN with a substantially improved computational 
efficiency at training time. In ensemble selection of SPODEs, we select only some of 
the SPODEs that are averaged by AODE. This improves the classification accuracy 
while reducing the classification runtime, albeit at a cost of additional training 
time. K-dependence Bayesian (KDB) and selective KDB (SKDB) [22] classifiers 
allow every variable to be conditioned on the class and, at most, k other attributes. 
SKDB classifiers showed an advantage over the NBC and TAN. Other methods may 
initialize a structure search procedure, such as the K2 algorithm [4], using the NBC 
in order to extend the naïve classifier using more meaningful connections among 
graph nodes that may improve its performance [66]. 

The Bayesian multinet classifier (BMC) is another powerful extension of the 
NBC [9, 67]. A BMC comprises a set of local networks, each corresponding to a 
value that the class node can take. While a BNC forces the relations among the 
attributes to be the same for all values of the class node, a BMC allows these 
relations to be different for different values of the class node, forming a local 
network for each class and thereby providing a more expressive representation than, 
for example, the NBC and TAN. Conventionally, each local network is learned by 
minimizing the KL divergence (also maximizing the log likelihood [9]) to induce 
a Chow–Liu (CL) tree [65]. Using the estimated class prior probabilities, the BMC 
classifies to the class maximizing the product of the prior and the variable joint 
probability for this class estimated using only the class patterns. Although a local 
network must be searched for each class, the BMC is generally more accurate and 
has a smaller computational complexity than a BNC because each local network
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Fig. 2 Four local networks learned by the .tBCM2 algorithm for the four classes of the UCI 
Car database: . C1 (top-left), for which the order of edge learning is indicated, . C2 (top-right), . C3
(bottom-left), and . C4 (bottom-right). Node 7 is the class variable [69] 

has a simpler problem to model, using a lower number of nodes in both a static 
scenario [67] and a dynamic one [68]. The BMC has two flaws [69]. The first is that 
constructing a CL tree using joint-probability-based scores for evaluating a structure 
is less specific to classification, i.e., CL multinet classifiers based on structures 
providing high scores are not necessarily accurate. The second flaw is that training 
a local network is based only on patterns of the corresponding class. Although this 
approach may approximate the class data effectively, information discriminating 
between the class and other classes may be discarded, undermining selection of 
the structure that is most appropriate for distinguishing this class. The TAN-based 
Bayesian class-matched multinet (. tBCM2) [69] utilizes a discrimination score 
for each local network separately, which maximizes accuracy by simultaneously 
detecting and rejecting patterns of the corresponding class and other classes, 
respectively, using both the entire data set, and the SuperParent algorithm to learn 
the TAN that maximizes this discrimination score. The .tBCM2 demonstrated [69] 
superiority over the naïve Bayesian, TAN, CL multinet, and recursive Bayesian 
multinet (RBMN) [70] classifiers for 32 UCI [71] databases. Figure 2 shows an 
example of a BMC learned using .tBCM2 for the UCI Car database. 

2.3 Experimental Evaluation of NBC Variants 

While [72] select the same ensemble of SPODEs (SuperParent-one-dependence 
estimators [26]) for all the classes, the multi-class SPODE (MSPODE) we present
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C = C1 

C = C2 

C = C3 
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A1 A2 A3 A4 A1 A2 A3 A4 

C =C1 

Fig. 3 An example MSPODE for a four-dimensional three-class classification problem. Note the 
existence of a super parent in each local network of an SPODE 

here, inspired by the BMC, selects a different ensemble of SPODEs for each 
class (Fig. 3). An MSPODE may be learned for each class using the conditional 
mutual information [1] or detection–rejection measure [69]. This classifier has been 
analyzed theoretically and is empirically evaluated here in Table 1 in comparison 
to other BNCs using 32 UCI [71] data sets in terms of classification accuracy, and 
training and test times. Table 1 shows that although all conventional approaches are 
effective, accuracy of the MSPODE is superior with a similar time complexity. 

3 Beyond the NBC—the Unrestricted BNC 

NBC and its variants often lack not only accuracy, but also interpretability and 
explainability due to the naïve assumptions they make and the limited structure 
spaces they search. However, along with the traditional classifiers based on the 
neural network (NN), support vector machine (SVM), decision tree, and ensembles 
(e.g., the RF and XGBoost family), classifiers based on the BN (and not the NBC) 
have been introduced and studied for 25 years [9, 10, 11, 12, 13, 14, 15, 16, 17, 
25, 27, 47, 48, 66]. To promote the use of the BNC, we first present the general BN 
(Sect. 3.1) on which the BNC is based. We then outline the conventional (likelihood-
driven) unrestricted BNC (Sect. 3.2), before introducing the risk minimization by 
cross-validation (RMCV) BNC (Sect. 3.3). 

3.1 The General BN 

A BN model . B for a set of random variables .X = {X1, X2, . . . , Xn}, each 
having a finite set of mutually exclusive states, consists of two main components, 
.B = (G,�). The structure .G = (V,E) is a directed acyclic graph (DAG). . V is a 
finite set of nodes of . G corresponding to . X (usually, . Xi refers to both the variable
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Table 1 Accuracies (%) and time complexities of our suggested multi-class SPODE (MSPODE) 
vs. popular variants of the NBC classifying 32 UCI databases. Besides the NBC, the variants are: 
Averaged one-dependence estimator (AODE) [59], lazy AODE (LAODE) [73], one ensemble se-
lection of SuperParent-one-dependence estimators (ESPODE) [72], and tree-augmented network 
(TAN) [9]. k, t , n, and  v are the numbers of classes, training instances, features, and feature 
values (average), and s is the average similarity value between a test instance and each training 
instance [73] 

Database NBC AODE LAODE ESPODE TAN MSPODE 

Australian 85.2 85.6 85.0 86.4 84.0 86.4 
Balance 90.9 87.2 88.1 85.2 87.3 88.7 

Bupa 64.7 66.5 67.1 66.5 67.7 66.5 

Car 86.1 88.4 88.5 88.7 94.3 90.4 

Corral 86.7 93.3 95.0 98.3 97.9 98.3 
Crx 86.1 89.2 89.2 89.2 85.9 89.2 
Cytogenetics 78.1 82.3 82.1 80.2 81.3 83.4 
E.coli 86.4 83.3 85.9 84.9 86.9 85.4 

Flare 82.0 86.5 86.2 86.5 85.6 86.5 
Hayes 79.5 82.5 83.1 78.1 76.7 79.1 

Hepatitis 70.0 72.5 72.5 73.7 72.5 73.8 
Ionosphere 91.7 91.7 93.1 91.1 92.3 92.0 

Iris 94.7 94.7 94.0 93.3 94.3 96.7 
Krkp 88.4 91.9 N/A 93.5 94.3 93.5 

Led-7 74.6 74.8 N/A 74.5 74.0 75.5 
Lymphography 85.2 86.2 82.1 86.2 80.7 88.0 
Monks 96.4 98.9 98.7 98.4 97.3 98.7 

Nursery 90.2 92.7 N/A 92.4 93.4 93.7 
Pendigit 87.3 97.6 N/A 97.7 95.7 97.6 

Pima 76.0 75.9 75.1 75.4 75.5 76.5 
Post-operative 67.5 68.7 70.0 70.0 71.2 70.0 

Segment 92.1 95.4 97.0 95.7 94.4 96.4 

Shuttle 98.7 99.8 N/A 99.8 100 99.8 

Splice 94.8 95.5 N/A 95.5 88.8 96.8 
Tic Tac Toe 69.4 75.8 81.8 74.5 74.7 74.5 

Tokyo 91.3 94.2 93.9 93.3 91.9 93.5 

Vehicle 61.5 72.5 72.9 72.7 70.0 73.0 
Voting 91.3 96.1 96.1 94.8 94.4 95.7 

Vowel 66.7 87.2 90.8 89.3 83.5 91.1 
Waveform-21 81.7 84.5 N/A 82.8 82.0 85.4 
Wine 98.8 97.7 97.1 97.1 98.2 98.8 
Zoo 93.0 93.0 96.0 93.0 96.0 94.0 

Average accuracy 84.0 86.9 86.4 86.8 86.3 87.7 
Training complexity .O(tn) .O(tn2) .O(tn2) .O(ktn2) .O(n2(t + kv2)) . O(ktn2)

Test complexity .O(kn) .O(kn2) .O(stn2) .O(kn2) .O(kn) . O(kn2)

a Bold font is for most accurate classifier for a task
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and its corresponding node), and . E is a finite set of directed edges of . G connecting 
. V. Edges and missing edges encode dependencies and conditional independencies, 
respectively, in . G. . � is a set of parameters that quantify the structure. The 
parameters are local conditional probability distributions (or densities), . P(Xi =
xi |Pai ,G), for each .Xi ∈ X conditioned on its parents in the graph, .Pai ⊂ X. Most  
studies, including this one, focus mainly on discrete variable BNs and complete 
data. 

The joint probability distribution over . X given . G—assumed to encode this 
distribution—is the product of these local probability distributions [1, 2, 4, 5], 

.P(X = x|G) =
n∏

i=1

P(Xi = xi |Pai ,G), (3) 

where . x is the assignment of states to the variables in . X and . xi is . Xi’s state. 
During inference, the conditional probability distribution of a subset of nodes 

in the graph (the “hidden” nodes) given another subset of nodes (the “observed” 
nodes) and the BN model is calculated. A common method for exact inference 
is the junction tree algorithm [3], but when there is only one hidden node (e.g., 
the class node in classification), direct inference based on Eq. 3 and Bayes’ rule is 
more feasible. Note that the computation of conditional probability distributions for 
inference depends on the graph. Thus a structure, either based on expert knowledge 
or learned from the data, must first be obtained. 

The search-and-score (S&S) approach to learning a structure from data [4, 5, 6] 
comprises a search for the structure achieving the highest score, e.g., hill climbing 
(HC), and a score, generally the Bayesian score, 

.P(G|D) = P(D|G)P (G)

P (D)
= P(D,G)

P (D)
(4) 

for a structure . G given a data set .D = {v1, v2, . . . , vN }, which is a random sample 
of N independent patterns from the joint probability distribution of . X. 

3.2 The General BNC 

While the BN provides a powerful graphical model for encoding the probabilistic 
relationships among a set of variables and can therefore naturally be used for 
classification, BNCs learned in the common way using likelihood scores usually 
tend to achieve only mediocre classification accuracy because these scores are 
less specific to classification, but rather suit a general inference problem. Learning 
a BNC requires learning the structure (graph) of the graphical model and its 
parameters so that the learned BN will excel in inference of a specific variable— 
the class variable—and not necessarily of all variables. When focusing on structure
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learning, exhaustively searching the space of possible graphs is infeasible [4], 
and thus S&S structure learning algorithms sub-optimally search the space and 
select the structure achieving the highest value of a score [4, 5, 6]. However, until 
very recently, all S&S structure learning algorithms used a generative score and 
thereby led to learning a generative model that is not specific to classification, but 
to general inference. Researchers have demonstrated that BNC structures learned 
using generative scores do not usually contribute to high classification accuracy 
[9, 10, 11, 12, 16, 17] since there is lack of agreement between these scores used for 
learning and the score used for evaluation, which is the classification accuracy. That 
is, classifiers based on structures having high generative scores are not necessarily 
highly accurate.7 

It is clear from Eq. 4 that a score should reflect a correspondence between the 
structure and the data. The minimum description length (MDL) score [74] can 
approximate .P(D|G)—the marginal likelihood [5, 6]—but [9] argued that this score 
is not suitable for classification and instead recommended the class-conditional log 
likelihood (CLL) (as opposed to log likelihood (LL)), 

.CLL(G|D) =
N∑

i=1

log P(ci |v′
i ), (5) 

where the vector . vi for the ith instance in D consists of a feature vector . v′
i and a 

class label . ci , so that .vi = (ci, v
′
i ). Notice that . CLL(G|D) = ∑N

i=1 log P(vi) −
∑N

i=1 log P(v′
i ) = LL(G|D) − ∑N

i=1 log P(v′
i ). 

By maximizing CLL, the structure that best approximates the probability of 
predicting the class given feature values for every pattern is learned [10]: 

.P(cN |v′N,G) = P(cN, v′N |G)

P (v′N |G)
= P(D|G)

∑
c′N P (c′N, v′N |G)

, (6) 

where .v′N consists of all feature vectors and . cN consists of all possible combinations 
of the .rC states of the class variable C in a random sample D of size N . 
The computation of this score is infeasible, since the sum in the denominator is 
exponential in N (. rN

C terms), let alone score maximization. 
An approximation [10] considers the left-hand side of Eq. 6 and the marginal 

likelihood Eq. 4 as the supervised and unsupervised marginal likelihoods, respec-
tively. The marginalization over the parameters in Eq. 6 is 

.P(cN |v′N,G) =
∫

�

P (cN |v′N,�,G)P (�|v′N,G)d�, (7)

7 Note, however, that although constraint-based structure learning algorithms of BNs [2] are usually 
not considered in inducing a BNC, they may nevertheless lead to supreme BNCs [27]. 
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and its approximation [10] using a single term is 

.P(cN |v′N,G) ≈ P(cN |v′N, �̂,G). (8) 

. �̂ is the parameter configuration maximizing the parameter posterior probability, 

.P(�|v′N, cN ,G), which is a different solution than that derived when maximizing 

.P(cN |v′N,�,G). However, there is no general closed-form solution to the super-
vised form of the score, and the posterior is not decomposable in this case, hence 
the need for approximation [9]. 

Another predictive local criterion (LC) [5] for learning a BNC [10] is based on 
the prequential approach [75], 

.LC(D,G) =
N∑

i=1

log P(ci |{vj }i−1
j=1, v

′
i ,G). (9) 

Other cumulative logarithmic loss scores [10] use 10-fold cross-validation (CV) or 
leave-one-out, which are reputable methods for model selection [76]. They are both 
described here under the general term CV-K , where .K = 10 or .K = N for the two 
cases, respectively. A score using CV-K for predicting a class is defined: 

.CVK(D,G) =
K∑

k=1

N/K∑

i=1

log P(ci+Ak
|D \ DK

k , v′
i+Ak

,G), (10) 

where .Ak = (k − 1)N/K and .DK
k = {vj+Ak

}N/K

j=1 is a validation set derived from 
the training set D. 

Using either of the supervised (conditional) marginal likelihood scores (Eqs. 7, 
9, or Eq. 10) for learning a BNC is asymptotically optimal. However, for a finite 
sample, though a high score value may indicate correct classification, it cannot 
guarantee it. 

A score that measures the degree of compatibility between a possible state of the 
class variable and the correct class is the 0/1 loss function: 

.L(ci, ĉi ) =
{

0, ci = ĉi

1, ci 	= ĉi
, (11) 

where . ci is the true class label and . ̂ci is the estimated class label for the ith instance. 
To demonstrate the difference between a class-conditional score and the 0/1 

score, consider a two-class classification problem, two candidate classifiers A and 
B, and two instances . v′

1 and . v′
2 [17]. Classifier A predicts the correct class for 

instances . v′
1 and . v′

2 with probabilities of 0.3 and 0.51, respectively, while classifier 
B predicts the correct class for the same two instances with probabilities of 0.45 and 
0.49. Since the sum of log probabilities (i.e., “log-loss” score) is larger for classifier 
B than for classifier A, the former classifier will be selected. However, if evaluating
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the 0/1 loss values, classifier B is inaccurate for both . v′
1 and . v′

2, whereas classifier 
A is correct for . v′

2. Thus, choosing classifier A based on the 0/1 loss score is more 
sensible for classification than choosing classifier B based on the log-loss score. 
We therefore suggest using the classification-specific 0/1 loss function for learning 
BNCs of enhanced classification accuracies. 

3.3 Risk Minimization by Cross-Validation 

We propose risk minimization by cross-validation (RMCV) for a classification-
oriented score and an S&S algorithm for learning unrestricted BNCs. Note that 
other uses of classification-oriented scores in learning unrestricted BNCs [12, 13] 
are in a somewhat different context. While commonly used S&S algorithms use 
likelihood-based scores suitable for general inference, RMCV minimizes an em-
pirical estimation of the classification error rate and thereby learns highly accurate 
BNCs. This model does not need to estimate the true distribution, generate data from 
this distribution, or infer about any non-class variable. That is, RMCV performs 
discriminative learning of a generative (BN) model. It learns generative models 
that are complicated, only to discriminate accurately among classes. The RMCV 
uses the 0/1 loss function, which is a classification-oriented score for unrestricted 
BNCs and non-BN classifiers alike. Its superiority to marginal and class-conditional 
likelihood-based scores with respect to classification accuracy using small real 
and synthetic problems, allowing for learning all possible graphs, was empirically 
demonstrated [17]. 

Instead of selecting a structure based on summation of supervised marginal 
likelihoods over the data set (Eq. 9 or Eq. 10), we suggest selecting a structure 
based on summation of false decisions about the class state over the data set. Our 
score is based on risk minimization [77] using the 0/1 loss function measured on a 
validation set. The training set D is divided into a validation set .DK (having . N/K

of N instances) and an effective training set (having .N(K − 1)/K instances). The 
classification error rate (0/1 loss) is measured for each candidate structure and in 
any iteration of the search on .DK . During learning, no use of a (third) test set is 
made. As part of a CV experiment, the score of a candidate structure is computed by 
averaging the error rates over K non-overlapping validation sets. Since the structure 
that minimizes the empirical risk is being searched for, the score is called risk 
minimization by cross-validation (and we deliberately do not simplify . 1

K
K
N

) [17]: 

. RMCVK(D,G) = 1

K

K∑

k=1

K

N

N/K∑

i=1

L(cki , arg maxc∈{c1,...,crC
} P(C = c|D \ DK

k , v′
ki ,G)),

(12) 

where .vki = (cki , v
′
ki) is the ith instance of .DK

k and .L( , ) is the 0/1 loss function 
(Eq. 11). Being a CV-based score, RMCV is easy to implement and computationally
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feasible (see, for example, Eq. 8), and it depends on only one parameter (K). Further, 
it is argued [10] that a CV-based score can be regarded as an approximation of a 
factorization of the supervised marginal likelihood (Eq. 6). Note that the RMCV 
score is normalized by the data set size N , whereas Eqs. 9 and 10 are not. Although 
normalization has the same effect on all learned structures, it can clarify the 
meaning of the score (i.e., an error rate) and help when comparing scores over 
data sets. Moreover, sharing the same range of values (.[0, 1]), RMCV establishes 
its correspondence to classification accuracy. 

To compute RMCV, the candidate structure has to be turned into a classifier 
by learning its parameters. Local probabilities are modeled using the unrestricted 
multinomial distribution [5] (assuming discrete variables), where the distribution pa-
rameters are obtained using maximum likelihood [4], similar to [10, 25]. Moreover, 
[11] argued, based on experiments, that maximum likelihood parameter estimation 
does not deteriorate the results compared to maximum conditional likelihood 
estimation, which can only be obtained by computationally expensive numerical 
approximation. Learning a BN rather than a structure has an additional cost of 
parameter learning, though this cost is negligible when using maximum likelihood 
estimation and fully observed data. 

To prevent over-fitting the training set, RMCV is computed by K-fold CV. 
Thus, over-fitting is controlled through the score itself, and not through the search 
dynamics as in other algorithms discussed here. Also, note that the same measure 
is used for learning the BNC and for evaluating its accuracy, which makes learning 
oriented toward classification. Similar to CLL-based scores [10, 11], RMCV is not 
decomposable. 

A suggested S&S structure learning algorithm consists of the RMCV score and 
a simple HC search [17]: 

Algorithm RMCV Input: An initial DAG, . G; A training set that is partitioned to 
K mutually exclusive validation sets, .D = {DK

k }K

k=1. Output: BN model (. G,. �). 
compute . RMCVK(D,G)

converged:= false 
While converged = false 

For each .G′ ∈ Neighborhood(. G) 
compute . RMCVK(D,G′)

. G∗ := arg minG′ RMCVK(D,G′)
If . RMCVK(D,G∗) < RMCVK(D,G)

Then . G := G∗
Else converged:= true 

. �:=LearnParameters(.D,G) 
Return . (G,�)

The RMCV algorithm starts with any initial graph (e.g., the empty graph or the 
NBC) and a training set that is divided into K mutually exclusive validation sets. For 
each .k ∈ 1,K , the parameters are learned using the effective training set .D \ DK

k , 
and the error rate is evaluated using .DK

k . The average error rate over the K validation
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sets .DK
k ,∀k ∈ 1,K is the RMCV score (Eq. 12). The initial graph and its score are 

kept as the current graph and score, respectively. Next, the neighborhood of the 
current graph is generated by all single edge additions, deletions, and reversals. 
Since only DAGs are allowed, any cyclic directed graphs in the neighborhood are 
excluded [78]. The graph having the lowest RMCV score in the neighborhood is 
chosen. Its score is compared to the current score, and the search is halted if the 
current score is lower than or equal to the score of the chosen graph. If, however, 
the chosen graph has a lower score than the current score, it becomes the current 
graph and the procedure repeats itself. During structure evaluation, only the effective 
training sets .D\DK

k ,∀k ∈ 1,K are used for parameter learning. Yet, once the search 
for a structure completes, the role of the validation sets is finished and the entire 
training set D can be used for more reliable parameter learning for this structure, 
rendering the structure a BN. The algorithm then returns the learned BN defined by 
.(G,�). 

Note that when using maximum likelihood parameter estimation, fully observed 
data, and the suggested search, there is no need to reassess all of the parameters for 
the different structures during each HC step. Parameters are changed only for nodes 
whose set of parents has been modified. In case of an addition or deletion of an edge, 
only one node is affected, and in case of a reversal of an edge, only two nodes are 
affected. For the same reason, it is beneficial to keep the history of the probability 
calculations, using the factorization of Eq. 3, for the initial/current DAG. 

3.4 Experimental Evaluation of Unrestricted BNCs 

Our first evaluation (Sect. 3.4.1) follows previous research that conventionally uses 
synthetic and traditional data sets. The empirical investigation includes several 
unrestricted BNCs. The RMCV algorithm is generally initialized by either the NBC 
or an empty structure to induce the RMCV (NBC) or RMCV (Empty) BNCs, 
respectively [17]. Along with the NBC, these RMCV BNCs are compared here with 
three other types: BNCs learned using the K2 score and algorithm [4] initialized 
by either the NBC or empty structures [66], i.e., K2 (NBC) and K2 (Empty); 
BNCs learned using HC search initialized by either the NBC or empty structures to 
minimize the MDL score [74] (maximize the marginal likelihood), i.e., MDL (NBC) 
and MDL (Empty) [17]; and BNCs learned to maximize the class-conditional log 
likelihood, initialized by the empty graph, which use either HC search or a two-
parent limitation on a node, i.e., BNC-MDL and BNC-2P [11]. 

Our second evaluation (Sect. 3.4.2) presents original studies using the RMCV 
algorithm and own authentic data sets from five real-life domains in genetic ab-
normality inspection, semiconductor manufacturing, Parkinson’s disease diagnosis, 
amyotrophic lateral sclerosis (ALS) prediction and explanation, and young driver 
motorcycle accidents analysis.
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3.4.1 Evaluation of BNCs Using Traditional Data Sets 

BNCs were found comparable and even superior to non-BN classifiers in different 
reports. Grossman and Domingos [11] showed that when a BNC’s structure is 
learned to optimize the conditional likelihood of the class variable (Eq. 5), it 
is advantageous to the classification and regression tree (CART) classifier [79]. 
Pernkopf [13] compared variants of the NBC and BNCs to the selective k-nearest 
neighbor classifier (skNN), selecting by sequential feature selection a subset of 
features that maximizes the classification performance. He showed using several 
UCI [71] databases that the BNCs are usually more accurate than the skNN and are 
superior with respect to memory requirements and computational demands during 
classification. The selective k-dependence Bayesian (SKDB) classifier [22] showed  
an advantage over the NBC, TAN [9], and AODE [59] (see Sect. 2.2 for details 
about the two later classifiers), and comparable accuracy to the RF [80], with no 
significant difference between them based on the Friedman test followed by the 
Nemenyi post-hoc test [81]. 

Kelner and Lerner [17] reported classification performance using 22 UCI [71] 
databases with various characteristics, e.g., the numbers of classes, features, and 
patterns between 2 and 26, 4 and 36, and 80 and 20,000, respectively. Table 2, 
extracted from [17], shows dominance of the RMCV over all other BNCs, and also 
over non-BNCs, such as the CART, three-layer-perceptron NN [82], and SVM [83] 
with its three conventional kernels—all non-BNCs were optimized for each task 
separately. According to a Friedman test followed by a Bonferroni–Dunn post-hoc 
test with RMCV as the control classifier vs. all other BNCs, RMCV was superior 
to all of them with a significance level of .p < 0.05, with the exception of BNC-
MDL, for which .p < 0.1. According to a Friedman test for all of the classifiers, 
RMCV was ranked the highest, and the null hypothesis that all algorithms are the 
same had been rejected with high confidence. However, due to the large number of 
models compared (fourteen), a relatively large difference of average ranks due to 
the Friedman test was required by the Bonferroni–Dunn test to indicate a significant 
difference, and RMCV was found to be significantly superior (with .p < 0.1) to  

Table 2 Average and std of classifiers’ accuracy over 22 UCI [71] databases. Bayesian network 
initial structures and SVM kernel types appear in brackets. Bold/italic fonts are used, respectively, 
for the best/worst classifiers 

RMCV MDL MDL K2 K2 BNC- BNC-

(NBC) (NBC) (Empty) (NBC) (Empty) MDL 2P 

Average 84.8 81.5 80.9 81.0 80.9 81.4 76.7 

Std (3.8) (4.1) (4.1) (4.3) (4.4) (3.8) (4.7) 

TAN NBC CART NN SVM SVM SVM 

(Linear) (Polynomial) (Gaussian) 

Average 82.5 81.3 83.8 83.6 82.4 77.3 81.8 

Std (3.9) (3.7) (3.8) (4.0) (3.6) (3.9) (3.9)
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only four other classifiers [MDL (empty), K2 (NBC), K2 (empty), and BNC-2P]. 
The less conservative Wilcoxon signed-rank test finds RMCV to be superior (with 
.p < 0.05) to all of the evaluated BNCs and also to SVM (polynomial). For CART, 
NN, and SVM (Linear/Gaussian), RMCV was not significantly superior with . p ∈
[0.147, 0.610]. This means that RMCV, CART, NN, and SVM (Linear/Gaussian) 
were comparable in terms of classification accuracy. That study also showed that an 
optimized version of RMCV is faster than all unrestricted BNCs and comparable to 
the neural network with respect to runtime. 

These comparative studies, like most studies cited here and elsewhere, usually 
use ready-to-use databases of what are called “real-world” problems, taken mainly 
from the UCI [71] and similar repositories. However, the selection of the sample 
databases used in each comparative study is neither complete nor standardized nor, 
needless to say, is it representative of real problems8 [84]. To demonstrate BNC 
performance on a wider range of complexities presented in actual real-world data 
sets, we report in Sect. 3.4.2 on six studies with five such data sets. 

3.4.2 Evaluation of BNCs Using Authentic Data Sets 

The data set in the first study contains data extracted from fluorescence in situ hy-
bridization (FISH) microscope images used in genetic abnormality inspection [55, 
56, 85]. The various instances represent red and green signals, corresponding to 
Down and Patau syndromes, respectively. Each of the two signals can be either 
“real,” where the syndrome can be observed in the image, or an “artifact” due to 
refraction and scattering of the fluorescence signal in the microscope optics, where 
the syndrome is not actually present. Each of 3,144 instances of signal images is 
represented by twelve features of the signal that are characterized by five types: size 
(area), shape (eccentricity, measuring the signal’s similarity to an ellipse), intensity 
(different features measuring total, average, and standard deviation in the red-green-
blue (RGB) channels), hue (maximum, average, standard deviation, difference 
between the maximum and average normalized by the average), and eigenfeatures, 
corresponding to the red and green intensity components of the signal. The class 
label takes one of the following values: Real Red (RR) (551 signals), Artificial Red 
(AR) (1,224), Real Green (RG) (594), or Artificial Green (AG) (775), forming a 
four-class classification problem. 

Table 3 shows that the relatively high accuracy of the NBC in classifying FISH 
signals is attributed to its accuracy in classifying the Real Red signals, for which 
the variables are mostly independent given the class value, as assumed by the 
NBC. Therefore, we also attribute the high accuracies of the other NBC-based 
BNCs (K2, MDL) to the NBC initialization. While the K2-based classifiers are

8 Check [84] that shows that the nine most popular UCI databases have between 100,000 and 
400,000 hits, but the comparative studies using them provide no explanation to why these databases 
have been selected. 
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Table 3 Accuracies (%) of 
BNCs for four signal 
classification tasks for the 
FISH data set 

Algorithm RR AR RG AG Total 

NBC [54] 88.0 76.9 81.1 74.4 79.0 

K2 (NBC) [4] 85.8 77.6 80.1 75.7 79.2 

K2 (Empty) [4] 75.7 72.1 81.7 71.6 74.4 

MDL (NBC) [74] 85.3 80.7 85.0 65.8 78.7 

MDL (Empty) [74] 80.2 81.1 82.0 74.3 79.4 

BNC-MDL [11] 80.1 79.5 84.0 67.0 77.5 

BNC-2P [11] 82.9 78.9 74.2 72.4 77.1 

RMCV (NBC) [17] 88.2 81.5 83.7 75.1 81.5 

RMCV (Empty) [17] 83.7 84.2 82.8 76.9 82.1 
a Bold and italic fonts are for most and second-most accurate 

classifiers for a task, respectively 

highly dependent on the K2 algorithm initialization, the MDL BNCs and BNC-
MDL/2P are not. In all but one of the four classification tasks, at least one of the 
RMCV BNCs is the most or second-most accurate classifier, which makes these 
two BNCs the most accurate on average. Figure 4 shows (for one arbitrary fold 
of the CV5 experiment) that while RMCV (NBC) reveals a similar structure to 
that of the NBC, RMCV (Empty) shows a different structure, as six of the twelve 
attributes are disconnected. This aggressive but educated feature selection of RMCV 
(Empty) contributes not only to the best classification results (Table 3) but also to 
an interpretable model relying only on three types of signal features (intensity, hue, 
and eigenfeatures), compared to the other too dense or too sparse less informative 
models (Fig. 4). 

The second original data set, a flash memory semiconductor manufacturing 
data set, consists of 362 instances of wafer lots represented by 35 tool variables 
describing an ion-implementation process that is part of wafer manufacturing. The 
data are highly imbalanced, where 30 of the lots are faulty and 332 are normal. 
Table 4 shows that most BNC algorithms have been fooled by the imbalance in the 
data, wrongly classifying most or all of the faulty lots as normal. This is the case 
with K2 (but also with MDL and BNC), which are almost perfect in classifying 
normal lots but fail completely with faulty lots. The only two algorithms that have 
a relatively reasonable accuracy in classifying faulty lots in spite of the imbalance 
are the NBC and RMCV. The .36.7% accuracy of the NBC for faulty lots came 
at the expense of its accuracy in normal lots (.93.1%), which is the lowest of 
all algorithms, positioning this classifier as the poorest in total. The RMCV, and 
particularly the “weighted” version, which penalizes errors according to the classes’ 
prior probability ratio, balances its performance between the classes, positioning this 
classifier as the best in total and most even. Of particular note in Fig. 5 are the graphs 
of the NBC (best for faulty lots), K2 (NBC) (best for normal lots), and RMCV 
(Empty, weighted) (best in total). We attribute the high and balanced performance 
of the RMCV to the drastic dimensionality reduction it performed, identifying only 
a few significant variables in its Markov blanket—enough to accurately classify both 
classes but without over-fitting any of them at the expense of the other.
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Fig. 4 BNC structures learned for one CV5 fold for the FISH data set. 13 is the class node. (a) 
NBC. (b) K2 (NBC). (c) K2 (Empty). (d) MDL (Empty). (e) BNC-MDL. (f) BNC-2P. (g) RMCV  
(NBC). (h) RMCV (Empty)
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Table 4 Accuracies (%) of 
BNCs in detecting either 
normal or defective lots of 
wafers of an imbalanced 
semiconductor manufacturing 
data set 

Algorithm Normal Faulty Total 

NBC [54] 93.1 36.7 88.4 

K2 (NBC) [4] 99.7 0.0 91.4 
K2 (Empty) [4] 99.4 0.0 91.2 

MDL (NBC/Empty) [74] 98.2 10.0 90.9 

BNC-MDL [11] 99.1 0.0 90.9 

BNC-2P [11] 98.2 13.3 91.2 

RMCV (NBC) [17] 96.7 20.0 90.3 

RMCV (Empty) [17] 97.0 13.3 90.1 

RMCV (NBC, weighted) [17] 97.9 13.3 90.9 

RMCV (Empty, weighted) [17] 97.0 30.0 91.4 
a Bold and italic fonts are for most and second-most accurate 

classifiers for a task, respectively 

Fig. 5 Three BNCs learned for one CV5 fold for the semiconductor manufacturing data set. 36 is 
the class node. (a) NBC. (b) K2 (NBC). (c) RMCV  

The data set in the third study contains medical diagnosis data extracted from 
visuomotor measurements of people who have been diagnosed with Parkinson’s 
disease (PD) or essential tremor (ET) versus healthy controls. PD and ET have 
very similar symptoms, but ET, unlike PD, is related to long life expectancy. The 
data set used to predict PD has 164 instances, relatively balanced among the three 
classes (55 PD, 51 ET, 58 controls). Each is represented using the person’s age, their 
worst affected hand, and fourteen visuomotor features measured for the persons’ 
two hands. The MDL (NBC or Empty) BNC provided the highest accuracy on 
PD patients, and the K2 (NBC or Empty) BNC supplied the best accuracy on the 
healthy controls, but both classifiers failed to classify any ET patient. This failure 
was due to learned structures where either the class node was not connected to 
the graph (making classification based on the a priori probabilities) or the Markov 
blanket of the class node was relatively empty of nodes with which to make accurate 
predictions. The BNC-2P provided reasonable performances on all three classes 
(where the BNC-MDL was similar to the MDL and K2 classifiers). However, its 
scores were lower than those of the RMCV (NBC or Empty), which was equally 
accurate for all three classes and the most accurate classifier. The NBC, dispensing 
with structure learning, was the classifier least affected by the small data set; it was 
thus the second-most accurate classifier after the RMCV, although it manifested a
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non-informative graph. The RMCV’s structure was not as dense and uninformative 
as that of the NBC but was also not as empty as those of the MDL, K2, and 
BNC-MDL/2P. Such a structure conveys knowledge representation by interrelating 
visuomotor measurements with clinical characteristics of the patients, which also 
improves the accuracy in classifying PD patients, as distinct from ET patients and 
from healthy people. 

For the fourth data set, the RMCV was applied [46] to identify the most influen-
tial variables in predicting and explaining functional deterioration (e.g., walking, 
writing, climbing stairs, and speaking) of five levels from a large clinical-trial 
database of ALS patients [86]. For each variable representing patient functionality, 
the RMCV selected to include in the variable’s MB only those variables from 
the tens available for the algorithm that contribute to accurate prediction of 
this functionality. For example, the MB of the climbing stairs variable shows 
connections between the ability to climb stairs and lab test results that are related 
to the body muscle metabolism (e.g., glucose, creatinine, phosphorus, and alkaline 
phosphatase), forced vital capacity (FVC), the total amount of air a person can 
exhale during a forced breath, which is also related to the person’s physical 
capability, and the disease onset site, whether in the bulbar or limbs (and then the 
patients are limited in climbing stairs sooner in their progression). It could also be 
possible to distinguish mild from severe ALS patients by the different combinations 
of values these MB variables take for the two groups of patients. For example, severe 
swallowing functionality in patients who their onset was in the bulbar and their FVC 
capability is low is between 8 and 35 times more frequent than in patients who their 
onset was in the limbs and their FVC capability is between moderate and high, 
respectively [46]. 

In the fifth study [87], when predicting young driver (YD) fatalities in motorcycle 
accidents, the RMCV classifier identified key factors in the class variable’s MB that 
distinguish between minor, severe, and fatal accidents. Some of the main factors 
were the accident type (inexperienced YDs are more likely to lose control over their 
motorcycle and crash into inanimate objects, skid, or turn over with usually deadly 
results), road speed limit (accidents on roads where the speed limit is high tend to be 
fatal or severe), gender (in all fatal accidents in the data, men were the drivers, and 
in general, the victims of severe and fatal YD accidents are three times more likely 
to be men), age at time of accident (most accidents of older YDs (.≥22) are fatal, 
since they drive heavier motorcycles than younger drivers), and motorcycle type (a 
YD accident that involves a heavy, .≥400cc, motorcycle is eight times more likely 
to be deadly than for a lighter one). 

In the sixth and last study we report here [88], the RMCV was modified to deal 
with class-imbalance ordinal classification problems and to provide information 
about the distribution of misclassifications and about the sensitivity to error severity 
(distinguishing between misclassification of class X as class Y or as class Z). 
The modified RMCV achieved superior average accuracy over the CART, NN, and 
SVM using 23 synthetic and 17 UCI databases, and superior average accuracy over 
the RF using the synthetic databases but inferior average accuracy using the UCI
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databases.9 In addition, using data of three real problems (the above ALS [46] and 
YD motorcycle accidents [87], as well as missed due date—no delay, 3–5 days of 
delay, and more than 5 days of delay—of a product in Teleco orders), the modified 
RMCV classifier showed confusion matrices with errors that are the most balanced 
over the classes compared with the NN and SVM competitors, contributing to its 
superior accuracy. 

Still, a further step is needed to allow examples such as those in this section—in 
genetic abnormality inspection, semiconductor manufacturing, Parkinson’s disease 
diagnosis, ALS prediction and explanation, and young driver motorcycle accidents 
analysis—convincingly demonstrate domain experts interpretability and explain-
ability. This step involves human–machine interaction, and we will return to this 
issue in the conclusion section. 

4 Beyond the BNC–Causal–Temporal Classifiers 

Let us consider progression of a neurodegenerative disease such as ALS or 
Alzheimer’s or a chronic disease such as type 2 diabetes, for which we wish to 
predict a future state for patients. In other words, to predict a diagnosis using 
symptoms such as clinical markers and lab test results collected routinely over time. 
We may further consider a left-to-right model with a state index that either decreases 
or stays the same and thereby represents progression of such diseases. Figure 6a 
shows a two-slice graph that represents a medical domain in which there is a cause 
to a disease. We wish to predict the current disease state based on that cause and the 
previous disease state, where both the cause and disease state are unknown latent 

Fig. 6 (a) Artificial temporal graph with three OVs per each of two LVs also making a collider per 
slice. (b) Classification accuracy (solid line) and F1-measure (dashed line) for increasing sample 
sizes of the data sets sampled from the graph in (a)

9 The modified RMCV score balances the 0/1 loss (accuracy) function with the mutual information 
between predictions and true labels and with the severity of misclassifications [88, 89]. Synthetic 
databases had combinations of different numbers of classes and instances and degrees of 
imbalance. 
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variables (LVs) . L1 and . L2, respectively, each of which has three observed variables 
(OVs), which are proxies for disease symptoms, together .X1 − X6. 

Since a future patient disease state is unknown and thus cannot be modeled 
and predicted, we can instead predict the value of a symptom that hints at the 
disease state using the values of other symptoms. However, if there is no a priori 
information that a specific symptom is the most predictive of the disease and we 
want to eliminate uncertainty, we might repeat and predict each symptom in turn and 
average the prediction performance over all predicted symptoms. While this strategy 
may sound very practical, it can neither discover cause–disease relations nor their 
evolution over time in the domain and thereby cannot contribute to understanding 
the disease or its progression, assist in drug development, or enable a better cure for 
the disease. 

Therefore, for causal discovery and cause–disease relations monitoring, we may 
wish to use graphical models such as dynamic BNs and, especially, latent variable 
models (LVMs) [2, 44, 90, 91, 92]. To meet this challenge, we propose learning 
a causal latent model in each time slot locally. Then, we suggest local-to-global 
learning over time slices, based on probabilistic scoring and temporal reasoning to 
transfer the local graphs into a non-stationary latent dynamic BN (DBN) with intra-
and inter-slice edges showing causal interrelationships among latent variables and 
between latent variables and observed variables. This is performed based on the 
learning pairwise cluster comparison (LPCC) algorithm [91, 92] using the LPCC-
based local-to-global (LGL) algorithm [93] to learn a temporal LVM. 

The LPCC-based LGL algorithm was evaluated on data sets that were sampled 
from the artificial temporal BN in Fig. 6a for varying sequence sizes, . 4 ≤ T ≤
15, i.e., a record is (.|O| × T )-dimensional, and O is the set of observed variables. 
The sample size was .D = {2,000, 3,000, 4,000, 5,000, 10,000}. The cardinality of 
all variables was set to four, where the probability that an observed variable takes 
the same value as does its parent latent variable is . 0.8, and the probability that it 
takes any other value is equally distributed (i.e., a 0.2 “noise” level was evenly 
distributed among the other values). These probabilities are the same for all T values 
to guarantee stationarity. Reported results are averaged over ten data permutations 
for each value combination of T and D. 

We empirically compared the LPCC-based LGL algorithm with the state-of-
the-art structural expectation maximization (SEM) algorithm [94, 95] that learns 
a latent DBN, i.e., the SEM-DBN algorithm. This algorithm uses an S&S procedure 
to find the best fitted model from data, although not necessarily a causal one. It also 
requires the user to specify the number of LVs and their cardinalities beforehand. For 
fairness, we limited it to: (1) search over the (smaller) space of pure measurement 
models (PMMs),10 and even initialized it with a random PMM, and (2) not to direct 
an edge from t to .t − 1.

10 A DAG over sets of observed variables, latent variables, and edges is a measurement model if 
a latent variable is a parent of at least one observed variable, an observed variable is a child of at 
least one latent variable, and none of the observed variables is a parent of any latent variable. A 
measurement model is called a pure measurement model (PMM) if each observed variable has a 
single parent and that parent is a latent variable [90]. 
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For comparison, assuming the absence of an LVM, we also compared the 
classification accuracy of the LPCC-based LGL algorithm and that of the SEM-
DBN with the average accuracy of six RF classifiers, each classifying each of the six 
OVs of the graph in Fig. 6a in the  T th (last) slice (acting as the classification node, 
where all the remaining OVs in all slices are predictors). By taking the average 
over the six classifiers, we avoid any preference in the classification (as above). 
That is, we compared this straightforward classification approach (denoted as a non-
LVM) to that based on identifying latent variables and their values using either the 
LPCC-based LGL or SEM-DBN algorithms, and using the values of the learned 
latent variables to perform the classification. Thereby, we plan to demonstrate the 
contribution of learning a temporal LVM in a classification task compared with 
ignoring the existence of latent variables. We repeated this comparison for each 
combination of sequence size, sample size, and data permutation. 

In total, we trained .5 × 8 × 10 × 6 × 3 = 7,200 classifiers for five sample sizes, 
eight sequence sizes, ten data permutations, six classifiers (classification nodes), and 
three models (LGL/SEM-DBN/no-LVM). We used 80% of the instances of each 
data set for training and 20% for testing. Figure 6b shows the accuracy and F1-
measure averaged over all data permutations, sequence sizes, and observed variables 
for different sample sizes of the three models. It shows that the LPCC-based LGL 
algorithm achieves the best classification performance (significantly superior to 
the others). It reaches the highest possible accuracy of 80% since the noise was 
originally set at 20%, i.e., even if the algorithm learns the true classification rule, 
in 20% of cases it will be wrong. This experiment not only allows us to appreciate 
the importance of learning an LVM in general but also specifically in classification 
tasks, since latent mechanisms always exist. 

Finally, the LPCC-based LGL algorithm was applied to the ALS open-source 
PROACT ALS data set [86] that consists of 3,171 patients with 22,089 clinic 
visits, from which we derived a subset of 2,590 patients who had at least four 
visits, each consecutive two are up to six months apart. A visit consists of lab 
test results and clinical variables describing patient physical functioning, e.g., in 
walking, writing, and speech. The LGL-based LPCC learned a graph using four 
latent variables (Fig. 7) demonstrating patient functioning: bulbar functionality (L1) 
indicated mainly by speech (Sp), salivation (Sv), and swallowing (Sw); gross-motor 
functionality (L2) indicated by walking (Wa) and climbing stairs (Cs); fine-motor 
functionality (L4) indicated by dressing (Dr), writing (Wr), and cutting food (Cu); 
and full body functionality (L3) indicated by turning (Tr) in bed, respiratory (Re) 
ability, FVC, and two lab tests: CK and chloride (Ch) (also found correlated 
in [46, 96]). The three intra-slice edges represent the natural connections between 
the bulbar and gross-motor, gross-motor and full body, and fine-motor and full body 
functionalities. The inter-slice edges between bulbar and full body to themselves 
complete the temporal–causal reasoning that resembles medical categorization and 
convention.
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Fig. 7 A temporal LVM learned by the LPCC-based LGL for the ALS data set 

5 Conclusion and Discussion 

Machine learning models are usually not used in an isolated way but are embedded 
in some process or product and interact with people. Thus, a more flexible yet 
holistic view of the entire process, from data collection to the final consumption of 
the explained prediction, is needed. This includes considering both how to explain 
predictions to individuals with diverse knowledge and backgrounds and the need for 
interpretability on the level of an institution or society in general [28, 32]. This is 
especially required when moving from sandbox studies of benchmark data sets to 
actual real-world problems [97, 98]. 

Researchers and practitioners seek to make their algorithms more understandable 
by focusing, for example, on explicit explanation of decisions and actions to a 
human observer. However, this focus should range beyond the ML researchers’ 
intuition of what constitutes a “good” explanation and build on existing research 
from philosophy, cognitive psychology/science, and social psychology, disciplines 
that grapple with these topics, and study how people define, generate, select, 
evaluate, and present explanations [37]. 

This chapter encourages more exploration and exploitation of human-
understandable causal models, such as the BNCs, of the operation of ML and 
especially DNN paradigms. BNC models will allow better introduction and use 
of causal discovery, interventions, and queries as effective tools to promote 
explainability and interpretability in developing and applying ML. They have 
natural interpretability (ability to understand the results) and explainability (ability 
to explain the results). Unlike ensemble classifiers, the BNC does not provide a 
list of “important” variables ranked by a statistical, discriminability, or information 
measure (where the variable “importance” value can differ even by a fraction of 
a percent and/or due to calibration issues), but also a feature-selection mechanism 
through variables’ Markov blankets and hierarchies of connections along with paths
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of influence and inference mechanisms that together expose causal relations in the 
domain. 

A main challenge is that the BN/BNC is not suitable for processing high-
dimensional and/or non-semantic data that exist in domains based, for example, 
on images, text, and speech. Current BN learning algorithms are limited to small 
to medium domains usually of discrete variables. While it is hard to believe that 
this will be changed in the near future, it is more reasonable to expect BNs to 
be applied to processed, projected, or embedded DNN representations of high-
dimensional domain input. DNN projections and embeddings of high-dimensional 
data already reflect semantic evidence that can more easily be extracted, analyzed, 
and exploited by the BN compared, for example, to the same data re-processed 
or re-embedded by more layers of the DNN. Effective BN-based tools to promote 
explainability and interpretability can, for example, allow the user to understand 
the chain of causal effects from DNN input, to low-level features of the domain, to 
high-level human-understandable concepts, to DNN outputs [99]. Such a capability 
is a powerful tool for debugging, understanding bias, and ensuring the safe operation 
of AI systems. Additionally, these tools may extract low-dimensional concepts from 
DNNs to generate a human-understandable “vocabulary” and learn a BN that relates 
the DNN’s inputs to the concepts, and the concepts to the DNN’s outputs [43]. Other 
probabilistic models, such as the hidden Markov model (for multilayer perceptron 
networks) and Gaussian mixture model (for convolutional neural networks), may 
extract activity patterns of the network hidden layers, where transition probabilities 
between clusters (mixture components) in consecutive modeled layers may be 
estimated from the data [42]. Then nodes and paths relevant for network prediction 
can be chosen, connected, and visualized as an inference graph. This graph is 
useful for understanding the general inference process for a class, as well as 
explaining decisions the network makes regarding specific images. Also, a scalable 
graphical-model framework [100] was shown to aid human understanding and 
reasoning by providing criticism to explain what is not captured by the examples 
and improving the interpretability of complex data distributions. In addition, it was 
demonstrated [101] that when casting the problem of learning the connectivity of 
a DNN as a BN structure learning problem according to the recursive autonomy 
identification notion [27], the resulting DNN structure encodes independencies in 
the input distribution hierarchically, where lower-order independencies are encoded 
in deeper layers. Tools and mechanisms such as these may also facilitate the struggle 
of DNN researchers to interpret hidden layer activity in order to understand the 
general inference process of a classifier, explain decisions the network makes, and 
indicate the relevance of specific inputs to the network output. 

To conclude, returning to Footnote 4, we believe that transparency and account-
ability are hard to achieve by BOTH human and machine decision-making, and 
thus we call for more human involvement and intervention for confirmation and 
validation in AI-driven systems. This could be accomplished by the development of 
graphical user interface tools soliciting, fostering, and supporting human–machine 
interaction and bi-directional communication by which, on the one hand, users’ 
inquiries will manipulate and extend the learned BNC model to better address these
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and further inquiries, and, on the other hand, the tools will inspire users’ curiosity 
to further interrogate and explore the model to enrich their understanding of the 
domain beyond what they expected to achieve when running the tool. Bayesian 
network classifiers can confer transparency on DNNs and other ML tools, enable 
interpretability and explainability, and empower humans—ML experts and non-ML 
users alike—to understand but also to affect the results of these tools, all of which 
will increase trust and trustworthiness in ML to deliver true “explainable AI.” To 
maximize the tremendous impact that ML is having on all aspects of our lives, and 
enhance trustworthiness in AI, let us embrace the opportunities BNCs are bringing 
us. 
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