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Abstract—Amyotrophic lateral sclerosis (ALS) is a neurodegen-
erative disease, lasting from the day of onset until death. Factors
such as the progression rate and pattern of the disease vary
greatly among patients, making it difficult to achieve accurate
predictions about ALS. To accurately predict ALS disease state
and deterioration, we propose a novel approach that combines: a)
sequence clustering based on dynamic time warping for separa-
tion among patients with diverse ALS deterioration patterns, b)
sequential pattern mining for discovery of deterioration changes
that patients of the same type may have in common, and c)
deterioration-based patient next-state prediction. Using a clinical
dataset, we demonstrate the advantage of the proposed approach
in terms of classification accuracy and deterioration detection
compared to other classification methods and temporal models
such as long short-term memory.

Index Terms—Amyotrophic lateral sclerosis (ALS), prediction,
deterioration, temporal models, sequential pattern mining, se-
quence clustering, classification

I. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative disease of unknown origin affecting the human
motor system with a highly uncertain pathogenesis [13]. The
inner workings and mechanisms of this disease are mainly
unknown [4], but recent progress aims at better understanding
of ALS pathogenesis to enable extension of life expectancy
and improvement in the life quality of those afflicted.

The medical condition of an ALS patient is evaluated at
clinic visits using ten items describing physical function-
alities [3] such as speaking, writing, or walking. Each is
given a grade from 0 for complete loss of function to 4 for
full functionality. The sum over these items, called the ALS
functional rating scale (ALSFRS), represents the patient’s total
functionality having a value between 0 and 40 [3]. Measuring
the ALSFRS at each clinic visit helps in understanding the
patient’s medical condition, tracks his disease deterioration,
and improves the assessment of the influence of treatment.

Our research concentrates on two questions: 1) can temporal
modeling significantly improve prediction of the next patient
state? and 2) can sequence clustering and/or sequential pattern
mining improve the prediction of the disease next state?

This study develops an approach to: cluster ALS patients
based on their deterioration patterns, find significant patterns
of ALS deterioration in sequential data of patients for each
grade of functionality, and predict a patient’s ALS state based
on his previous states and those of patients whose deterioration

pattern is similar. It proposes a new prediction framework
that combines: a) sequence clustering based on dynamic time
warping for separation among patients with diverse ALS de-
terioration patterns, b) sequential pattern mining for discovery
of frequent deterioration changes that patients of the same
type may have in common, and c) frequent deterioration-based
disease-state prediction.

The motivation for this approach is to discover deterioration
patterns. As opposed to regular sequence pattern mining, we
do not search for the patterns over the row data, but over
deteriorations in ALS functions. To the best of our knowledge,
this has never been done before. Demonstrated for ALS, the
proposed framework is extended to clinical data of other
diseases such as Parkinson’s and Alzheimer’s.

Section II provides background and a related-work survey.
Section III describes the proposed framework, while Sec-
tion IV outlines the framework’s evaluation criteria. Section V
reports the results of demonstrating the framework for a
clinical dataset, and Section VI summarizes and discusses
limitations and future work.

II. BACKGROUND AND RELATED WORK

This section outlines sequential and temporal modeling, in
general, and ALS prediction and progression rate modeling,
in particular. In sequential (longitudinal) data, as opposed to
classical time-series data, the collection of observations does
not have to be taken at successive equally spaced points in
time, and only the order within the sequence is important. In
addition, the sequence usually has a lower dimensionality with
fewer observations in each sequence [7].

A. Modeling ALS progression

Numerous studies have dealt with the task of predicting the
state or deterioration rate of ALS and, just until very recently,
most of them used non-temporal methods such as regression,
decision tree, and random forest (RF). [8] developed multiple
models for different progression rates based on clustering
patients into groups of fast and slow progression based on
the difference in ALSFRS values between the first and last
visit divided by the time between them. After a new patient
was assigned to a cluster, they applied the relevant Weibull
model. In another non-temporal approach, [10] used RF to
predict ALS progression from the fourth to the twelfth month



based on data of the first three months. In addition to feeding
the RF with fixed data about static variables per patient, like
gender and site of onset, as opposed to temporal variables that
can change over time, they fed the RF with the slope between
the first visit and the last known visit.

Following this line, [20] used slopes together with baseline
(first visit) data from the first visit only to develop separate
RF models for long-term and short-term predictions, generat-
ing two different classifiers. They concluded that short-term
predictions are consistent with those of other models like RF
or the generalized linear model, but long-term predictions of
other models tend to overfit, while the RF method does not.
They found that the four most important variables are the time
of prediction since baseline, the time from symptom onset
to baseline, the ALSFRS score at baseline, and the slope of
the ALSFRS score at baseline. Nevertheless, when using non-
temporal models with longitudinal data, it is neither possible
nor easy to exploit the data from all time points and, usually,
some data are thrown away, aggregated, or partly used, and a
linearity assumption between visits is made. Therefore, it is not
recommended to use non-temporal models in such cases [17].

B. Sequence clustering

When it comes to sequence analysis, one important task
is sequence clustering, in which sequences that are somehow
related are grouped together. In ALS, separating between
patients based on the sequences of states is important to
stakeholders, such as physicians and drug companies, who
wish to select small homogeneous groups of patients for
clinical trials. Moreover, sequence clustering in ALS is also
important for prediction since each group of patients may
represent a different deterioration pattern and, hence, perhaps
should be treated separately.

When sequences are of the same length, the simple k-means
algorithm for sequence clustering can be applied. However,
this is not the case when each sequence has its own length.
For example, different patients may have a different number
of visits. One way to bring all sequences to the same length
according to [7] is to apply a dimensionality reduction method
like piecewise aggregate approximation (PAA), where the
average value of each w-sized window is calculated to reduce
the dimension to w. [15] proposed the symbolic aggregate
approximation (SAX) method that converts PAA to a sym-
bol string by mapping all PAA values below the smallest
breakpoint to symbol ”a”, all values between the smallest and
second smallest breakpoints to symbol ”b”, etc. Nevertheless,
the user must specify in advance the cardinality of the symbols,
i.e., the size of the alphabet.

Once the sequences are transformed to a new representation
of equal length, a simple Euclidean distance or MINDIST
can be used to cluster them respectively via partition or
hierarchical clustering [15]. If the sequences are not too long
(e.g., in ALS, they have less than 10 visits), then SAX can
skip the PAA step directly to discretization and symbolic
representation of the sequences. Interestingly, [15] showed
that working with the symbolic approximation produces better

time-series clustering results than working with the original
data despite the need for an extra user-defined parameter
(symbol cardinality).

Another approach is dynamic time wrapping (DTW) that
measures the similarity between two temporal sequences. It
has long been used for speech processing as a method that
allows an elastic shifting of the time axis to accommodate
sequences that are similar but out of phase [11]. Let Q and C
be two time series of lengths n and m, respectively, where
Q = {q1, q2, ..., qi, ..., qn} and C = {c1, c2, ..., cj , ..., cm}.
To align the two sequences using DTW, an n-by-m matrix
is introduced, where the (i, j) element of the matrix contains
the distance between the two points qi and cj :

d(qi, cj) = (qi − cj)2. (1)

A warping path W is a contiguous set of matrix elements that
defines a mapping between Q and C [12]. The warping path
is typically subject to several constraints: a) the corners where
the path begins and ends, b) continuity of the path (adjacent
cells), and c) the points in W that have to be monotonically
spaced in time.

DTW can also be extended for multi-dimensional data,
where each sequence is not just a single signal, but at each time
point, each sequence consists of multiple measurements [18]
(e.g., a patient is represented by a sequence of visits in the
clinic, where in each visit, several indicators/tests were taken).
Mainly, there are two ways DTW can be generalized to the
multi-dimensional case: dependent or independent warping.
In independent warping, the distance between two multi-
dimensional time series is the sum of distances over each
dimension separately. In dependent warping, where we assume
mutual dependence between all dimensions, the distance is
redefined as the cumulative squared Euclidean distances of M
data points instead of the single data point used in the one-
dimensional case (Eq. 1): d(qi, cj) =

∑M
m=1(qi,m − cj,m)2.

C. Sequential mining

While in supervised sequential mining such as long short-
term memory (LSTM), the task is to learn rules that separate
between two or more classes [6], unsupervised sequential
mining, also called sequential pattern mining [14], is more
difficult [14], and our proposed framework is such.

1) Sequential pattern mining: Sequential pattern mining
discovers frequent sub-sequences as patterns in a sequence
database. It is a sub-class of frequent pattern mining that was
first introduced by [1]. In this mining, elements or events are
ordered, but without a concrete notion of time.

Let I = {i1, i2, ..., ik} be a set of all items. A subset of I
is called an itemset. A sequence α =< a1, a2, ..., am > (ai ⊆
I) is an ordered list of itemsets. Each itemset in a sequence
represents a set of events occurring at the same timestamp
(e.g., a2 can be < i2, i4 >), while different itemsets in a
sequence occur at different times. For example, a patient visit
sequence could have data from several test results in one visit
followed by other test results or different examinations, and so
on. A sequence α =< a1, a2, ..., am > is a sub-sequence of



Fig. 1: Example of temporal joining according to SPADE.

another sequence β =< b1, b2, ..., bn > denoted as α ⊆ β if
and only if ∃ i1, i2, ..., im such that 1 ≤ i1 ≤ i2 ≤ ... ≤ im ≤
n and a1 ⊆ bi1 , a2 ⊆ bi2 ,..., and am ⊆ bim . We also call β
a super-sequence of α, and β contains α. Given a sequence
database D, the support (Sup) of a sequence α is the number
of sequences in D that contain α. If the support of a sequence
α satisfies a pre-specified minimal support threshold, α is a
frequent sequential pattern.

Among the most common algorithms that find frequent
sequential patterns are the two a-priori-based algorithms:
the generalized sequential pattern (GSP) [19] that uses the
downward-closure property of sequential patterns (i.e., if a set
is frequent, then so are all its subsets) and adopts a multiple
pass (candidate generate-and-test) approach; and the sequential
pattern discovery using equivalent class (SPADE) [21], which
is an extension of vertical format-based frequent itemset min-
ing methods. Figure 1 shows how SPADE creates sequential
patterns. The left-hand side of the figure is the sequential
database, where SID is the sequence ID (e.g., patient ID),
VID is the visit ID, and ITEMS are the events associated with
the visit (e.g., A and B are decreases in a patient’s speech
and salivation capabilities, respectively). The right-hand side
of Figure 1 demonstrates how SPADE grows sequence patterns
by joining subsequences. For example, pattern A → B, i.e.,
a visit that includes event A followed by a visit that includes
event B (top of figure), is a joining of Tables A and B (middle
of figure) for the cases in which a patient has both events A and
B, SID(A) = SID(B), and event A occurred before event
B, V ID(A) < V ID(B). Similar, A → B → A (bottom
of figure) is the joining of A to A → B. The support of the
pattern is the number of rows that result from the joining (e.g.,
Sup(A→ B) = 3). This method banishes the need to rescan
the database multiple times.

2) Sequential supervised learning: Statistical learning
problems in most medical applications such as ALS involve
sequential supervised data in which the sequences consist of
(x, y) pairs and not just x (as in sequential pattern min-
ing). In sequential supervised data, samples (pairs in the
sequences) are not independent, i.e., nearby (x, y) values
are likely to be related to each other [6]. The sequential
supervised learning problem can be formulated as follows:

let {(~xi, ~yi)}Ni=1 be a set of N training samples (we use
arrows above variables to denote vectors). Each sample is a
pair of sequence ~xi, ~yi), where ~xi =< xi,1, xi,2, ..., xi,Ti

>,
~yi =< yi,1, yi,2, ..., yi,Ti

>, and Ti is the length of sequence i.
For example, in ALS data, yi,j and xi,j represent the label and
the predictor of the j visit of patient i in the clinic, respectively.
Note that, usually, yi,j is a scalar (whether a discrete or a real
number), while xi,j can be a vector of predictors (i.e., ~xi,j).

One family of algorithms that does sequential supervised
learning are the graphical models. The most common graphical
model that handles temporal data is the hidden Markov model
(HMM) and its Bayesian representation, the dynamic Bayesian
network (DBN) [16], which extends the Bayesian network
to model state-space data. However, both HMM and DBN
assume that all variables are discrete, and that the time inter-
val between observations is equal (i.e., state-space models).
Another temporal model that falls under the definition of a
graphical model is the LSTM [9]. An LSTM unit is a recurrent
network unit that excels at remembering values for either long
or short durations of time. The key to this ability is that it uses
no activation function within its recurrent components. Thus,
the stored value is not iteratively squashed over time, and the
gradient term does not tend to vanish when back propagation
through time is applied to train it.

III. METHOD

In this paper, we suggest to predict the patient’s next state
using a framework that consists of three stages; first, a se-
quence clustering based on an independent multi-dimensional
DTW, aiming to group patients with similar sequences; second,
to mine for common deterioration patterns that describe similar
patients; and third, to train a classifier based on cluster-specific
patient common patterns.

First, we randomly split the data into training (80%) and
testing (20%) sequences (patients). In the first stage of the
framework, each two training sequences are compared based
on a multi-dimensional DTW, and a similarity matrix (N ·N )
is constructed, where N is the number of training sequences
and each entry (i, j) is the DTW distance between sequences i
and j. This similarity matrix is used for growing a hierarchical
clustering (by complete linkage). We select the number of
clusters (K) based on the dendrogram so that each cluster
will have a minimal number of sequences (patients) (see
Section V-C below). The output of this stage is K clusters
(groups), each of which contains similar sequences.

In the second stage of our proposed framework, a sequential
pattern mining algorithm (SPADE) [21] is used to find patterns
in the training data. Since we are interested in finding patterns
that describe deterioration patterns, we convert our dataset into
an event-deterioration sequence database as follows: Initially,
we define an event dictionary in which each of ten events B-K
is defined as a decrease in a specific ALS function, e.g., B is
a decrease in Speech. Event A represents that the patient’s
state remains completely the same (i.e., all ALS functions
remain unchanged in the visit). This dictionary is then used
to transform each multi-dimensional sequence (Table I) into



TABLE I: An example of multivariate patient data with 11 visits (rows) and 10 ALS functions (columns). The blue font represents a spurious
deterioration (which should be ignored), and the red font represents a real deterioration (supported by the further visits).
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5 4 4 4 4 3 3 3 2 1 4 360
6 4 4 4 4 4 3 2 2 0 4 450
7 4 3 3 3 1 1 2 1 0 4 630
8 4 3 3 3 1 1 2 1 0 4 780
9 3 3 3 2 1 0 1 1 0 4 900
10 3 3 3 2 1 0 1 1 0 4 990
11 3 2 2 2 1 0 1 1 0 4 1080

an event-sequence representation (Table II). The last visit (11
in the case of Table I) is not used for pattern mining since it
will be used later for the prediction of the disease next state.

TABLE II: The example in Table I represented using the dictionary.

Visit number Items Number of items
2 A 1
3 A 1
4 G 1
5 A 1
6 H,J 2
7 C,D,E,F,G,I 6
8 A 1
9 B,E,G,H 4
10 A 1

Next, we apply PAA and SAX [15] to reduce the target vari-
able cardinality/dimension (we consider the ALSFRS variable
that ranges from 0 to 40 as a continuous variable that needs
discretization). Discretization can help us find deterioration
patterns that are unique to each class. To achieve this, we apply
SPADE to each class separately over the event-deterioration
sequence database. Other reasons to address each class sepa-
rately are: 1) there is a higher chance that the pattern variables
will separate classes, and 2) otherwise, unique patterns of the
minority class will not have enough support. The output of the
second stage is frequent deterioration patterns per class (each
class is a state of the discretized target variable).

In the third stage, we train a classifier for each cluster
separately, where patients in the cluster are each represented
by a single record that includes all deterioration patterns as
binary variables (whether the pattern exists or not in the
patient’s multi-dimensional sequence). Later, in the test, we
first assign a test patient to his most similar cluster, and then
predict his disease state using the cluster’s classifier. Although
transforming a patient’s data into a single record may involve
a loss of information, we expect the moments we extract
(mean, slopes, etc.), together with the binary pattern features,
to capture most of the essential information.

IV. EVALUATION

We use the PROACT ALS dataset [2], collected by the
non-profit organization Prize4life from 17 late-stage industry

and academic clinical trials. It contains 3,171 patients with
22,089 clinic visits, 42 variables per visit, and an average time
between visits of 132 days. A visit consists of patients’ static
data (e.g., gender, age at onset), which do not change over
time, temporal/longitudinal data that include laboratory test
results (e.g., bilirubin, glucose), and ten observed variables that
measure patients’ functionality (e.g., walking, writing). Each
of these ALS functions takes a value between 0 and 4, and their
sum (ALSFRS), our target variable (for classification), takes
values between 0 and 40. Although the time between patient
visits is not constant, in most cases, it ranges from three to
six months. Since life expectancy with ALS is relatively short
(3–5 years), a patient will have on average only seven visits.

A. Evaluation metric

Evaluation of ALS predictions usually relies on the mean
absolute error (MAE), which gives a good sense of how far
the predictions are in terms of points from the ALSFRS score.
In this paper, we report on MAE, but also on the accuracy
and F1 measures for predicting the last recorded ALSFRS
(i.e., last visit). Note, that these predictions were made for
the separate testing set (20%). Moreover, since a model that
predicts that a patient’s next state is equal to the previous one
will have high accuracy (due to the imbalance property, where
in most cases, successive ALS functions have the same value),
we also measure our algorithm’s ability to detect a decrease
in ALSFRS (a binary variable). Thus, we propose to measure
the performance for two target variables separately. To make
our results more reliable, we repeat each experiment five times
(i.e., five folds) with a random split to train and test sets, and
report on the average results.

B. Research questions and experimental design

Recall that our research questions are: 1) can temporal
modeling significantly improve prediction of the next patient
state? and 2) can sequence clustering and/or sequential pattern
mining improve the prediction of the disease next state?

To answer these questions, we report here on a series
of experiments designed to measure the impact of each of
our developed elements (i.e., clustering and pattern mining)
separately and together. In the first experiment (used as a

https://nctu.partners.org/ProACT/Data/Index/1


reference/baseline), we train a state-of-the-art classifier (RF)
on the PROACT dataset (without clustering, pattern mining,
or any other temporal modeling technique). We denote it
henceforth as the naı̈ve approach (Experiment 1). The input
for this classifier, that aims to predict the ALSFRS at the
last visit, and whether that variable has decreased from the
previous visit is all the information from the previous visit
(all ten ALS functions, the ALSFRS, and the time from onset)
and the slopes which are the differences between the ALS
functions of the previous visit and the first visit divided by
the corresponding time intervals. The motivation for this is
that the slopes represent the trend of each ALS function, and
the last (previous visit) is expected to be the most correlated
to the target variable since it is the closest in terms of the time
interval. If the naı̈ve classifier is a regression model, then the
model is in the form of:

yi,T =β1 · yi,T−1 + β2 · (yi,T−1 − yi,1) +

~β3 · ~xi,T + ~β4 · (~xi,T−1 − ~xi,1) + β5 · t,
where yi,T is the ALSFRS of patient i in the last visit (T ),

β1 is the coefficient of the last known ALSFRS (in T-1), β2 is
the coefficient of the slope between the previous ALSFRS and
the first one, ~β3 are the coefficients (vector) of all predictors
(all 10 ALS functions) of the last known (previous) visit, ~β4
are the coefficients of all the slopes (similar to β2) of all
predictors (all 10 ALS functions), and β5 is the coefficient
of the time from onset variable for which the prediction is
needed.

Table III shows an example feature vector for the patient
in Table I. The slope of Speech is 1/990 since Speech
deteriorates from a value 4 (in the 1st visit) to a value 3 (in
the 10th visit) in 990 days. The ”Last decreased” variable
takes the value ”No” because the ALSFRS did not decrease
between the 9th and 10th visits, which are distanced t = 90
days apart, and the target variable ”Is decreased” also takes the
value ”No” because there was no decrease in Speech between
the 10th and 11th visits). We call this process flattening.

The second experiment includes sequential pattern mining
based on SPADE (Section III), applied to each class separately
to detect patterns that are unique to that class. All patterns,
from all classes, that are above the minimal support (Sec-
tion II-C) are transformed into a set of binary variables, each of
which indicates if a pattern exists in patient i’s data (although
we search for patterns only in the training data, the qualified
patterns are post-detected in both training and test patients
regardless of the class, i.e., we search for a pattern that was
detected for class c also in data of class j 6= c). Next, this
new set of binary variables (a new feature vector per patient)
is appended to the feature vector from Experiment 1, creating a
new expanded feature vector per patient (for both training and
test data). Similar to Experiment 1, we train a classifier based
on this new derived data that includes pattern information,
allowing evaluation of the contribution of sequential pattern
mining to the prediction of the next patient state.

The third experiment includes grouping patients using hier-
archical clustering based on DTW. Once the training patients

are divided into clusters, we train a classifier for each cluster
separately (Section III) based on the feature vectors created for
Experiment 2 per patient. The question that remains is how to
assign a testing patient to the most probable cluster. In partition
clustering methods (e.g., k-means), it is easy to assign a new
test record (patient) to a cluster based on the minimal distance
to all cluster centers. This is more challenging when it comes
to hierarchical clustering, as there are no clear definitions for
the centers (each patient has a different sequence length). To
overcome this, we propose a method where each testing patient
is assigned to a cluster based on the minimal average distance
to all of the cluster’s (training) patients. For that, we denote
nsc as the number of sequences (patients) in cluster c. A
new testing sequence Pj of patient j is assigned to cluster
cj according to,

cj ∈ argmin
c

1

nsc

nsc∑
i=1

DTW (Pj , P
c
i ),

where P c
i is the ith patient (sequence) in cluster c.

In the final experiment (Experiment 4), we also apply
the state-of-the-art temporal model LSTM that in contrast to
our proposed method, which aggregates data and thus may
lose vital information, uses all the patient’s data and thus
presumably does not need any pre-processing stages (i.e., our
pattern mining and clustering).

V. RESULTS

In the following experiments, the target variable (ALSFRS)
was discretized using SAX into five ordinal states/classes, A–
E (see Section III). In order for the sequential pattern mining
to be effective, we filtered out patients with less than four
visits to the clinic (so we were left with 2, 590 patients).
Also, in all the experiments, we used RF with 500 trees as
our classifier. To adjust the classifier to treat the first target
variable (the five classes of ALSFRS) as an ordinal response,
we applied a cost matrix, where each entry in the matrix equals
the error size |j − i|. In addition, due to the imbalance nature
of the second target variable, i.e., is decreased (a patient is
not likely to change ALSFRS values between two successive
visits), we applied another cost matrix for the binary response
with a 20:1 ratio. The values in the cost matrix were selected
experimentally.

A. Experiment 1–Naı̈ve classifier

Table IV shows the average confusion matrix (CM) over
five folds (as described in Section IV-A) for the binary target
variable. It can be seen from Table IV that the class imbalance
is more than 1:4, and thus that the RF model makes more
accurate predictions for the majority class (no decrease).

B. Experiment 2–Pattern mining

In this experiment, we added the pattern variables (in
addition to the first experiment’s variables). We experimen-
tally selected min sup = 0.4 (a user-defined parameter) for
SPADE and filtered out patterns with less than two items



TABLE III: An example of a feature vector for the naı̈ve approach derived from the patient presented in Table I, where green, blue, black,
and red represent slope variables, data from the previous visit, general variables, and target variables, respectively.

Slope Previous visit General variables Target 1 Target 2

Speech ... Dyspnea ALSFRS Speech ... Dyspnea ALSFRS Last
decreased t ALSFRS Is decreased

1/990 3/990 2/990 3 1 2 No 90 1 No

TABLE IV: RF avg CM for Exp. 1 and the binary target variable.

True Class (Y)

Pr
ed

ic
te

d
C

la
ss

(X
) not decreased decreased

not decreased 380.6 112.9
decreased 11.8 12.7

97% 10%

TABLE V: RF avg CM for Exp. 2 and the binary target variable.

True Class (Y)

Pr
ed

ic
te

d
C

la
ss

(X
) not decreased decreased

not decreased 376.4 106.8
decreased 16 18.8

96% 15%

(patterns with a single item are not informative). Table V
shows the average CM over five folds.

It can be seen from Table V that although the total accuracy
remains almost the same (∼76%), the accuracy in classifying
the minor class was increased by 50% (from 10% to 15%).
This can be explained by the fact that we searched for patterns
per class including those that are unique for the minority class.

C. Experiment 3–Clustering

This experiment represents our proposed framework since
it includes all three elements (clustering, pattern mining,
and classification). We added here the pre-processing step of
hierarchical clustering (we selected 4 ≤ K ≤ 6 based on the
resultant dendrogram in each data fold, so that each cluster
would have at least 80 sequences, i.e., patients) and used the
variables of Experiment 2 in each cluster. Following [18]’s
recommendation, we tried both dependent and independent
multi-dimensional DTW, and found the independent method
superior for our dataset. Thus, we report on results based
on that method. Tables VI and VII show the average CMs
for binary and multi-class target variables, respectively, over
five folds and four–six clusters (a weighted average since
the cluster sizes are different). We could have improved the
prediction accuracy of the ”decreased” class in Table VI by
manipulating the cost matrix, but this will come at the expense
of the majority class, in which we succeeded in keeping the
false alarm rate between 2%–5% (Tables IV, V, VI, and VIII).
For example, if we change the ratio in the binary cost matrix
from 20 to 5 then the minority class accuracy would increase to
∼50% at the expense of decreasing the majority class accuracy
to 81%.

Once again, it can be seen from Table VI that the accuracy
of the minor class was increased, but this time less drastically
(15% vs. 18%). Table VII reveals that most errors are ”mild”
in terms of error severity (e.g., predicting A instead of B or
vice versa), which is an advantage of our approach.

D. Experiment 4–LSTM

In this final experiment, we compared our proposed frame-
work to a standard temporal model, the LSTM (we used two
hidden layers with 200 neurons in each layer). Table VIII
shows that the LSTM classifier has better accuracy than the
naı̈ve RF classifier (Experiment 1), but at the expense of being
the worst in predicting the minority class (7%).

Next, we summarize in Table IX the results from all
experiments and for both target variables.

Table IX reveals that, for both binary and multi-class
responses, the results improve as we move from Experiments 1
to 3 (recall that each of these experiments adds another layer
to the prediction framework). Although the differences with
respect to accuracy, F1, and MAE are not statistically signif-
icant, a non-parametric Wilcoxson signed rank test [5] (with
a 0.05 confidence level) shows that our proposed framework
(Experiment 3) is superior to the naı̈ve and LSTM classifiers
with respect to minor-class accuracy. The average accuracy
improvement of our proposed framework over the baseline
naı̈ve classifier (with respect to the minor-class accuracy) was
∼80% (10.11% vs. 17.57%). Moreover, albeit the LSTM is
usually ranked above the naı̈ve classifier, it is almost always
inferior to our enhanced frameworks (pattern mining and
clustering) with respect to all measures.

Following is a list of the ten most important predictors
measured based on the Gini impurity (starting from the
most significant): Previous ALSFRS, Previous Dressing, Pre-
vious Climbing stairs, Previous Turning in bed, t, Pattern
< E,G, I > (i.e., decline in writing capability followed by
decline in dressing, and finally in walking), Slope Salivation,
Age, Pattern < F, J >, and Pattern < J,B >. Not surpris-
ingly, the top four variables are from the previous visit, but
encouraging is the fact that a few pattern variables are also
among the important variables, which is further evidence for

TABLE VI: RF avg CM for Exp. 3 and the binary target variable.

True Class (Y)

Pr
ed

ic
te

d
C

la
ss

(X
) not decreased decreased

not decreased 374.3 103.5
decreased 18.1 22.1

95% 18%

TABLE VII: RF avg CM for Exp. 3 and the ALSFRS target variable.

True Class (Y)

Pr
ed

ic
te

d
C

la
ss

(X
)

A B C D E
A 210.4 33.6 3.2 0.7 0
B 17.8 60.9 29.7 4.4 0
C 0.5 7.2 13.5 6.1 0
D 1.2 6 13.6 64.4 8.1
E 0 0.3 0 7.3 29.1



TABLE VIII: LSTM avg CM for Exp. 4 and the binary target variable.

True Class (Y)

Pr
ed

ic
te

d
C

la
ss

(X
) not decreased decreased

not decreased 385.1 116.9
decreased 7.3 8.7

98% 7%

TABLE IX: Accuracy, F1, and MAE for four experiments and the
two target variables.

Experiment Accuracy F1 MAE Minor-class
accuracy

B
in

ar
y 1 - naı̈ve classifier 75.92 0.86 0.24 10.11

2 - pattern mining 76.29 0.86 0.23 14.97
3 - clustering 76.53 0.86 0.23 17.56
4 - LSTM 76.02 0.86 0.24 6.93

M
ul

ti-
cl

as
s 1 - naı̈ve classifier 71.98 0.66 0.31 -

2 - pattern mining 72.87 0.67 0.30 -
3 - clustering 73.03 0.68 0.30 -
4 - LSTM 72.97 0.65 0.32 -

the contribution of sequential pattern mining to our prediction
framework (as was already demonstrated in Tables IV– IX).

VI. DISCUSSION AND FUTURE WORK

Prediction of the next ALS patient state is difficult because
the life expectancy of patients is relatively short (so only a few
records per patient are available), ALS is highly heterogeneous
(thus, different patients have various deterioration patterns),
and as a rare disease, it has relatively small datasets (compared
to other diseases).

We have suggested a new prediction approach that exploits
sequence clustering and sequential pattern mining to better
predict the next patient state. As opposed to regular sequence
pattern mining, we do not search for the patterns over the
row data, but over deteriorations in ALS functions. This, to
the best of our knowledge, has never been done before, and
the motivation for this is to discover deterioration patterns.
Note however that the proposed approach is general and
can fit any temporal data that have a target variable (i.e.,
sequential supervised learning), and any event of either an
increase (improvement) or decrease (deterioration) nature. The
results show that the contribution of both sequence clustering
and sequential pattern mining are positive. In addition, the
results show that our proposed framework does not fall behind
dedicated temporal models such as the LSTM.

Future work can concentrate on several aspects: 1) While
here, we focused on predicting one state ahead and only
on deteriorations, an extension can be made to predict two
or more periods ahead and also improvement in a patient’s
functionality, respectively; 2) Since the number of ALS pa-
tients is relatively low, shorter sequences can be derived from
longer ones, but this should be done carefully to avoid bias
as patients with a long sequence may be over-represented; 3)
More temporal data (e.g., laboratory tests) can be added to the
sequential pattern mining stage besides the ALS functions; and
4) The approach can be applied to other diseases.
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