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Abstract—Amyotrophic lateral sclerosis (ALS) is a 
devastating and incurable disease affecting motor neurons, 
leading to progressive paralysis and death on average within 
three to five years from onset. The disease is characterized by 
highly variable patterns and rates of progression, which pose 
challenges to developing reliable and accurate ALS disease state 
prediction models to be used on a daily basis in clinics with little 
data. To meet these challenges, we suggest domain adaptation 
from a large, but unfortunately biased, clinical trials database 
to that of a tertiary care ALS clinic. To evaluate the reliability 
and accuracy of the suggested paradigm, we examine a naïve 
approach by which training is based only on the clinical trials 
data compared with a domain adaptation approach of an initial 
training using this same data followed by fine-tuning training 
using the clinic data. We also allow summarization of the clinical 
longitudinal data to evaluate non-temporal models, e.g., random 
forest (RF), XGBoost (XGB), and multilayer perceptron (MLP), 
partially exploiting the dynamic information hidden in patient 
clinical records, in comparison to the long short-term memory 
(LSTM) recurrent neural network, fully exploiting the temporal 
information in the data. First, we notice the XGB 
outperformance in terms of the ALS disease state prediction 
error to the RF and MLP, but surprisingly also to the LSTM 
regardless of prediction time (up to 24 months ahead). We 
contribute the inferiority of the highly parametrized neural 
network to the impact of the curse of dimensionality. Second, we 
show that this error does not significantly increase when the 
model is trained using only the clinical trials data, especially for 
LSTM in long prediction times. Finally, we demonstrate that 
fine-tuning of the clinical trials-based pre-trained model using 
the clinic data improves the LSTM and MLP performance 
compared to using solely the clinical trials or clinic data. 

Keywords—Amyotrophic lateral sclerosis (ALS), clinical trials 
data, disease-state prediction, LSTM, domain adaptation 

I. INTRODUCTION 
Amyotrophic lateral sclerosis (ALS) is a 

neurodegenerative disease of the motor neurons, with a highly 
uncertain pathogenesis, leading to progressive paralysis and 
death [1]. Despite medical and clinical progress since its 
discovery, this paralysis is still not visibly affected by the 
different therapies currently available [2, 3, 4]. ALS is 
characterized by a progressive decline of function of the upper  
and lower motor neurons, leading to progressive paralysis that 
affects the muscles of limbs, speech, swallowing, and 
respiration. The rapid progression of the disease is difficult to 
handle and known to be terminal an average of five years 
within onset. The inner workings and mechanisms of this 
disease remain unknown [5]. Since the 1990s, however, there 
has been a rapidly growing interest in the disease among the 
scientific and medical communities. It has been understood 
that extending the life expectancy and improving the quality 

of life of those afflicted depends on our understanding of its 
pathogenesis [1, 2]. 

The disease is characterized by high heterogeneity among 
patients regarding its progression, which makes it difficult to 
achieve significant results in clinical trials for developing 
medications and in treatments. Thus, reliable models for 
disease state prediction could improve the ability to assess 
treatment influence in the clinic and clinical trials and reduce 
the number of patients necessary to achieve statistically 
significant results [6, 7]. In addition, an accurate way to 
anticipate disease progression might benefit patients and their 
families by better preparing them for the anticipated disease 
outcomes. Besides the heterogeneity of the disease, another 
challenge in developing an accurate prediction model for 
clinical use is the small amount of data documented in the 
clinic because of the rarity of the disease. Clinical trial 
databases are usually large, as they comprise several trials. 

Because of the importance of developing ALS disease 
state prediction models, the DREAM-Phil Bowen ALS 
Prediction Prize4Life Challenge was launched in 2012, 
inviting participants to develop  algorithms to predict the rate 
of ALS disease progression for individuals as measured by the 
ALS functional rating scale (ALSFRS). Following the success 
of the first challenge, the DREAM ALS Stratification 
Prize4Life Challenge was launched in 2015 and focused on 
patient clustering as well as progression rate forecasting. Both 
challenges were based on the pooled resource open-access 
ALS clinical trials PRO-ACT database [8] and asked solvers 
to use three months of clinical trials information to predict 
disease future progression in months 3–12. The progression of 
the disease was assessed by the slope of change in ALSFRS 
values, which assumes linear disease progression. 

However, this setting is not necessarily applicable in the 
clinic. Patients who enroll in clinical trials have more 
longitudinal data than casual clinic patients, and their 
demographic and clinical characteristics are different 
regarding, e.g., age and progression. While some studies [9] 
suggest to use only baseline information (data from onset and 
the first clinical visit) to develop more clinically applicable 
models, in practice, the clinic patient population is much more 
heterogenic in terms of number and interval of clinic visits. 
On the one hand, requiring patients to have three months of 
successive data results in an unpractical model for clinical use. 
On the other hand, using only baseline information for 
prediction does not exploit all necessary information for most 
patients. Therefore, some changes in the methodology are 
expected, especially if it is part of a more general approach 
that should also be implemented on other neurodegenerative 
diseases. 
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We suggest a methodology for model training and 
evaluation that does not require three months of data and 
utilizes all the patient information we possess to make future 
ALS disease state predictions. The suggested methodology 
simulates a more realistic and practical clinical scenario in 
which a patient who visits the clinic might have two or more 
past clinical visits in varying time periods, and the doctor is 
interested to predict their future disease state. Using the 
suggested methodology, we compared predictions of four 
state-of-the-art machine-learning algorithms on two 
databases: the PRO-ACT database (clinical trials data) and the 
TAS Medical Center (TASMC) database (clinic data). Three 
of the algorithms are non-temporal: (1) Random forest (RF) 
[10], the most common method for ALS predictions; (2) 
XGBoost (XGB), an open-source software library which 
provides a gradient boosting framework [11]; and (3) the feed 
forward multilayer perceptron (MLP) neural network, whose 
input structure is identical to the ensemble tree algorithms (1 
and 2), but also is suitable for further incremental learning and 
domain adaptation. The fourth is the long short-term memory 
(LSTM) [12], which is more appropriate to sequential and 
temporal data as opposed to models such as RF and XGB. The 
latter two models aggregate data and may therefore discard 
important information, or only partly exploit it [13]. 

In addition, the commonly used PRO-ACT database 
includes information from ALS patients who participated in 
industry clinical trials, but this population does not reflect the 
clinical patient population due to some requirements that 
needed to be met in order to participate in that trial. For 
example, the clinical trial patients, compared to those in our 
clinic database, were younger, higher functioning (expressed 
by low disease state deterioration), and more homogeneous in 
terms of clinic visit frequency. Although relevance to the 
clinic of models trained on the PRO-ACT have been tested 
[14], we asked whether using this biased database as the basis 
of the trained model is justified, and if so, whether it could 
improve clinic patient predictions. We evaluated the clinic 
patients’ disease state prediction accuracy with two 
approaches using the PRO-ACT patient data and compared 
this to a model that was trained only on the clinic patients. The 
first approach is a naïve one, relying on training a model on 
the PRO-ACT patients and evaluating its predictions on the 
clinic patients. The second, the domain adaptation approach, 
uses the PRO-ACT trained model as the initial model, and the 
training is continued only on the clinic (TASMC) patients for 
fine-tuning to the clinic. This approach is suitable for ALS 
clinics that based on the openly available large PRO-ACT 
database can utilize their small databases (since ALS is a rare 
disease) to achieve better predictions on their own patients. 
Note also that this approach is not restricted to ALS and can 
be applied to other (neurodegenerative) diseases. 

II. BACKGROUND AND RELATED WORK 
The most popular rating instrument for monitoring the 

progression of disability in ALS patients is the ALSFRS. 
ALSFRS scores range from 0=no functionality to 4=full 
functionality. Each of ten ALSFRS items describe different 
physical functionality, e.g., breathing, speaking, walking, etc. 
that sums to the total ALSFRS score (0–40) [15]. In 1999, the 
revised ALSFRS (ALSFRS-R) was designed in order to 
balance the weighing between the limb and bulbar as 
compared to the respiratory function by incorporating 
additional assessments of dyspnea and orthopnea [16]. 
Although today the ALSFRS-R is a more popular target 

variable, in this study, we used the ALSFRS due to the amount 
of missing data that the TASMC database contained in the 
additional two respiratory ALSFRS items. 

Using the PRO-ACT database, [17] used a non-linear 
Weibull model to describe ALS disease progression. The 
parameters of the Weibull model were estimated using a non-
linear mixed-effect modeling approach: Patients are first 
assigned to one of two clusters based on their deterioration 
rate—slow progression or fast progression, and then the 
correspondent Weibull function is applied. The patient's 
deterioration rate is calculated based on the difference 
between the baseline value of the ALSFRS-R score and the 
last value. In  [18], different algorithms. e.g., a pre-slope 
model, a generalized linear model (GLM), and an RF 
algorithm used for prediction disease progression based on the 
PRO-ACT database and suggested that past disease 
progression is a strong predictor of future disease progression. 
They also found that larger variability in initial ALSFRS 
scores is linked to faster future disease progression. Another 
conclusion reported was that an RF model using only baseline 
data could accurately predict disease progression for a clinical 
trial research dataset, as well as for a population being treated 
at a tertiary care clinic. The RF outperformed the pre-slope 
and GLM models mainly at farther time points, while at early 
time points, the GLM and the RF were quite similar. The most 
important features found were the time from baseline 
(prediction time), the ALSFRS-R score at baseline, and the 
ALSFRS slope. Another work used three months of patient 
data to predict the changes in ALSFRS scores over time [19]. 
They applied model-based (linear models) and model-free 
[RF and Bayesian adaptive regression trees (BART)] 
methods. The BART was slightly better than the RF, but the 
authors reported that both were only moderately successful. In 
another study, [14] developed models based on the PRO-ACT 
for classifying patients into two classes: slow and fast 
progressors. Others [13] applied the LSTM to the PRO-ACT 
and used the patients' last visit data to predict further visits. 

III. METHODOLOGY 

A. Data 
Two databases we transferred between are: the clinical 

trials database—the PRO-ACT, and a tertiary care ALS clinic 
database—the TASMC. In this section, we will compare 
between patient characteristics in the two databases to 
anticipate the influence of these characteristics on the success 
of the transfer.  

The PRO-ACT database. The PRO-ACT database was 
created by Prize4Life and the Neurological Clinical Research 
Institute (NCRI) at Massachusetts General Hospital in order 
to enhance ALS research by building a data set that would 
merge data from a large number of completed ALS clinical 
trials [8]. We used data of ALSFRS, demographics, family 
history, laboratory data, vital signs, and forced vital capacity 
(FVC). 
The TASMC database. The data were collected in the ALS 
clinic of this medical center during the years 2000–2019. The 
clinic is a large tertiary referral center for ALS that today 
follows approximately 100 new cases annually. The database 
contains records of patients with clinically probable or definite 
ALS who were followed in the clinic. For all patients, age at 
disease onset, age at diagnosis, gender, ethnicity, and disease 
form at onset, as well as ALSFRS in each visit were recorded. 
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 Not only does the PRO-ACT contain records of many 
more patients (3,171 patients in the PRO-ACT and 1,328 in 
TASMC), it also contains more clinical visits per patient than 
the TASMC (6.97 vs. 4.39 on average, respectively). A patient 
in the PRO-ACT database had more visits with shorter 
intervals between each consecutive visits. Recall that the 
PRO-ACT merges data of clinical trials which go on for a 
limited time period, where patients are asked to visit the clinic 
at fixed time intervals. Additionally, patients who visited the 
clinic frequently for a long period of time were considered 
stable, and using the last visits of those patients might cause 
an over-fitting problem to our models. Thus, for fair 
comparison between the databases, from the TASMC 
database, we used only visits that occurred in the first two 
years from the first visit. Missing data that could be imputed 
using the clinical staff were completed. 

Patients' age and time since onset (the estimated time 
between disease onset and the first clinical visit) were quite 
similar in both databases, as were as gender and onset site 
distribution. 

B. Models and data preparation 
We used four state-of-the-art models suitable for 

regression problems: RF, XGB, MLP, and the LSTM artificial 
neural network. Although RF is the most popular method for 
ALS prediction problems, we also used the XGB, one of the 
most popular gradient boosting algorithms that is found to be 
a powerful tool in many domains. Both the RF and the XGB 
are non-temporal models that require "flattening" of the 
temporal data by some aggregation. For each temporal feature, 
we extracted main temporal characteristics, e.g., mean, 
standard deviation, slope, minimum, maximum, etc. (Fig. 1). 

In contrast, one of the advantages of the LSTM model is 
that it can process entire sequences (longitudinal clinical data), 
i.e., the full information in the patient’s data is extracted and 
used for model training. In addition, the neural network 
architecture of the LSTM can be used for the domain 
adaptation problem by fitting a layer's weights for a certain 
task (i.e., the source) and then using these weights as the initial 
ones for further training on a different but similar task (i.e., the 
target). This approach can be very beneficial when the target 
domain is, e.g., a small data set of ALS patients from the clinic 
(say TASMC), while the source domain is a large data set, 
e.g., of clinical trials data (say PRO-ACT). There is no 
straightforward way to implement domain adaptation with the 
XGB and the RF, but an MLP model, whose input is also 
flattened data, has the ability to adapt to new domains 
similarly to the LSTM. 

C. Experimental design 
In our suggested methodology, inspired by [13], each  

patient does not contribute only one training or test 
observation. Any clinical visit of the patient is a candidate to 
be the target visit whose value we want to predict or an 
explanatory visit to train the model with. 

Note that for non-temporal models, in order to flatten the 
temporal data (for example, to calculate the slope), values of 
two visits are required. Hence, this is the only restriction in 
order to consider a split of patient visits to explanatory visits 
and a target visit. Each training or test patient provides several 
valid observations. As a result, the training and test sets 
contain as many observations as possible with different 
prediction times, which contribute to better generalizing and 
evaluating the model for any prediction time. 

 
Fig. 1. Example of a feature vector for a 51-year old patient. In this 

example, the patient had four explanatory visits, and the target visit was 
two months after the last explanatory one (with a true value of 15). The 
deterioration pattern of the patient in speech and salivation is shown in 
the graph. For each temporal feature, the minimum, maximum, slope 
(deterioration rate between the first and last visit), etc. are calculated 
and concatenated with the static features and prediction time.  

In the first experiment we performed, the goal was to 
compare between the prediction performances of the four 
algorithms. In the second experiment, we tested whether a 
clinical trials-based model could be used to predict future 
outcomes of clinic patients. In the third experiment, we used 
domain adaptation to test whether initial weights of a PRO-
ACT-trained LSTM and MLP models could be fine-tuned 
using the clinic's data to improve the ALS clinic's patient 
disease state predictions. Note that, in the second and third 
experiments, we used only shared features of the PRO-ACT 
and TASMC databases. 

Experiment 1—Model comparison. For each of the four 
algorithms, we searched randomly 60 sets of hyper-
parameters using 60 permutations of training–validation–test 
of the PRO-ACT data, and averaged performance over the 60 
test sets for the best configuration. 

Experiment 2—Clinical trials vs. clinic data-based 
prediction models. Using the same permutations and best 
configurations, we evaluated performance on the TASMC test 
sets of a model trained using the PRO-ACT data compared 
with another trained using the TASMC training set. 

Experiment 3—Domain adaptation from clinical trials to 
the tertiary-care clinic. As illustrated in Fig. 2, the 
experiment involves two training phases: (1) fitting initial 
MLP and LSTM models on the PRO-ACT database, and (2) 
fine-tuning the trained models using the clinic (only training) 
patients' data. Like in Experiment 2, performance is evaluated 
only with the clinic test patients, averaged over 60 
permutations of the training–test patient split. 

D. Evaluation 
The mean absolute error (MAE) and the RMSE are both 

suitable metrics to evaluate the ALS predictions because both 
metrics express the average model prediction error in the units 
of the variable of interest, which in our case, is the ALSFRS 
score of the target visit. Although the RMSE gives relatively 
high weight to large errors compared to MAE, in this study, 
and due to their importance, we provided both RMSE and 
MAE in each experiment. While a test set contains 
observations with different prediction times, most are short-
term predictions (as the disease average duration is between 3 
and 5 years), the RMSE and MAE calculated over the whole 
test set might not be informative enough for evaluating the 
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prediction accuracy for long-term predictions. Hence, we also 
provide prediction evaluations for four time-intervals: from 0 
to 6 months, 6 to 12 months, 12 to 18 months, and 18 to 24 
months. For each prediction time interval, we estimate the 
RMSE and MSE using bootstrapping analysis by computing 
for each prediction time interval the RMSE and the MAE for 
1,000 test subsets, each containing 800 test observations 
randomly sampled without replacement. 

 

 
Fig. 2. The first stage in Experiment 3 is fitting LSTM and MLP models 

using the PRO-ACT database. In the second stage, these models are 
fine-tuned using the TASMC training set. Then prediction performance 
using the TASMC test set is reported as the average over 60 (90/10% 
TASMC training/test sets) random patient splits.  

IV. RESULTS 

A. Experiment 1—Model comparison 
Feature importance. The average relative feature 

importance by the RF, which is calculated as the decrease in 
the RF node impurity weighted by the probability of reaching 
that node, over 60 models (a model for each data permutation) 
demonstrated a similar trend between the PRO-ACT and 
TASMC databases. In both cases, the two most important 
features to predict the next ALSFRS score are the last known 
ALSFRS score ("ALSFRS_last") and the prediction time 
("t_pred"). In addition, in both databases, the ALSFRS items 
are more important in general than the other temporal features 
the database contains (e.g., laboratory tests in the PRO-ACT 
database). Hence, we will use only the ALSFRS items in the 
next two experiments. 

Prediction evaluation. Table I shows the estimated 
RMSE and MAE in four prediction time intervals (and in their 
union) for the PRO-ACT database. It can be seen that the XGB 
model outperforms all the other models, demonstrating the 
lowest RMSE and MAE values regardless of the prediction 
time (except for the RMSE in 18–24 months). As expected, 
regardless of the algorithm, the farther away the target visit is, 
the more challenging the prediction task is, and as a result, the 
prediction error is greater.  

Note that the RF performances are very similar to those of 
the XGB algorithm, whereas those of the LSTM are inferior 
to both. In addition, the MLP achieved mediocre 
performances, better than the LSMT but inferior to the two 
ensemble methods, indicating that, for this type of 
longitudinal data where the sequences are relatively short, 
flattening the data is the most beneficial method to use. 

B. Experiment 2—Clinical trials vs. clinic data-based 
prediction models 
Fig. 3 shows increasing prediction errors as a function of 

the prediction time (regardless of the algorithm and the 
training set: PRO-ACT or TASMC) and the almost always 
superiority of the XGB over the RF, MLP, and LSTM. It can 
be seen that the predictions for early-time intervals (up to 6 
months) are more accurate using the PRO-ACT trained model. 

The salient improvement belongs to the LSTM model, 
suggesting that the larger PRO-ACT dataset better utilizes this 
model's abilities. The LSTM is a model in which the 
prediction time does not increase the differences between 
using the TASMC or PRO-ACT patients. The LSTM model 
can better capture the temporal dimension of the data, 
compared with the flattened data for the non-temporal models, 
and might reduce the risk of over-fitting to short-term 
predictions. In general, the ALS disease predictions using the 
LSTM for the clinic's (test) patients is quite similar when the 
model is trained on the PRO-ACT or on the clinic (training) 
patient population. Thus, the PRO-ACT-based LSTM model 
can be generalized and used in the ALS clinic, even if the 
clinic lacks sufficient records to create its own model using its 
own patients, and might even be more accurate for short-term 
predictions tasks. 

In addition, comparing the RMSE to that of the previous 
experiment, we can see that feature removal (omitting all the 
features from the TASMC database that do not exist in the 
PRO-ACT) did not change the estimated prediction error, 
strengthening the conclusion from the feature importance 
analysis, that the features of the clinical trials data are also 
appropriate for the clinic data.  

C. Experiment 3—Domain adaptation from clincal trials to 
the tertiary-care clinic 
Although the naïve PRO-ACT-trained model was found 

(Fig. 3) reasonable to use on the clinic patients, we might be 
able to improve its predictions further by also using relatively 
small amount of information already available in the clinic.  

In this experiment, we applied domain adaptation to 
combine information from the two datasets with the hope of 
improving the LSTM and MLP predictions for the clinic's 
patients. The training process included two stages: (1) Train 
an LSTM/MLP model using the PRO-ACT patients, and (2) 
fine-tune training using the TASMC (training) patients. This 
type of training and re-training allowed us to fit a model using 
a large, even if biased, clinical trials database while reducing 
the risk of over-fitting the data. 
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TABLE I.  RMSE AND MAE BOOTSTRAPPING RESULTS (AVERAGE AND STANDARD DEVIATION) OVER 1,000 REPETITIONS OF SAMPLING 800 TEST 
OBSERVATIONS WITHOUT REPLACEMENT FOR EACH ALGORITHM AND PREDICTION TIME INTERVAL IN THE PRO-ACT DATABASE. 

 

 

 
Fig. 3. Boxplots of the RMSE over 1,000 test subsets (each having 800 random observations) divided into four prediction time intervals .

Tables II and III show that training a model that was first 
trained on the PRO-ACT database and next fine-tuned on 
patients belonging to the TASMC test patient population 
improves the predictions for any prediction time, expressed by 
lowering of both the RMSE and MAE of TASMC test patient 
predictions (except for short-term prediction performances of 
the MLP model). Since the PRO-ACT, compared to the clinic 
data set, is characterized by frequent visits in a short period of 
time, its contribution to training is for short period predictions. 
However, adaptation to the domain of clinic data for which the 
intervals between visits are longer gives the adapted model 
advantage for longer periods at the expense of short period 
predictions, what explains the larger advantage of domain 
adaptation to long period predictions over short ones. 

Not only that domain adaptation helped LSTM improve 
performance compared to when it used only, but the entire, 
clinic data set (Table II), but also compared to XGB (Fig. 3). 

XGB is not significantly better with RMSEs of: 3.50, 4.73, 
and 5.89 compared with RMSEs of 3.75, 5.13, and 6.27 with 
domain adaptation for prediction time intervals (0, 6], (6, 12], 
and (12, 18]. As for prediction to farther time intervals (18–24 
months), the adapted LSTM (Table II) is even more accurate 
than the XGB (Fig. 3), achieving a lower RMSE of 6.68 vs. 
6.90. 

Fig. 4 demonstrates the prediction improvement when 
using the PRO-ACT trained MLP model and fine-tuning using 
the TASMC clinic data rather than training a model only using 
TASMC. When using up to 60% of the data of the training 
patients (320 patients), fine-tuning the PRO-ACT pre-trained 
MLP model was better than training a model based only the 
clinic training set. In other words, data of at least 320 patients 
are necessary to develop a model accurate enough for the 
clinic usage as if it used a pre-trained model using a much 
larger database of clinical trials.

TABLE II.  COMPARISON OF TASMC (TEST) PATIENTS' PREDICTIONS FOR LSTM TRAINED BASED ONLY ON: (1) TASMC (TRAINING) PATIENTS, (2) PRO-ACT 
PATIENTS, AND (3) BOTH DATASETS (DOMAIN ADAPTATION).

 

 

 

 

 

 

 

TABLE III.  COMPARISON OF TASMC (TEST) PATIENTS' PREDICTIONS FOR MLP TRAINED BASED ONLY ON: (1) TASMC (TRAINING) PATIENTS, (2) PRO-ACT 
PATIENTS, AND (3) BOTH DATASETS (DOMAIN ADAPTATION). 

 

 

 

 

 

 

 

 

 XGB RF MLP LSTM 
Prediction time 
interval (moths) 

RMSE MAE RMSE MAE RMSE MAE MAE RMSE 

(0, 6] 2.65 (.10) 1.98 (.06) 2.69 (.10) 2.01 (.06) 2.91 (0.12) 2.15 (0.07) 2.98 (.11) 2.19 (.07) 

(6, 12] 3.98 (.12) 3.09 (.09) 4.10 (.12) 3.20 (.09) 4.15 (0.14) 3.19 (0.09) 4.35 (.14) 3.34 (.10) 

(12, 18] 4.92 (.13) 3.93 (.11) 5.07 (.14) 4.05 (.11) 5.19 (0.13) 4.17 (0.11) 5.42 (.15) 4.32 (.12) 

(18, 24] 5.57 (.14) 4.42 (.12) 5.56 (.12) 4.53 (.11) 5.97 (0.14) 4.78 (0.13) 6.27 (.15) 5.06 (.13) 
(0, 24] 3.42 (.13) 2.54 (.09) 3.51 (.12) 2.61 (.08) 3.65 (0.13) 2.71 (0.09) 3.78 (.13) 2.78 (.09) 

 Only TASMC Only PRO-ACT Domain adaptation 
Prediction 

time (months) RMSE MAE RMSE MAE RMSE MAE 

(0, 6] 4.65 (0.17) 3.44 (0.11) 4.02 (.15) 2.95 (0.09) 3.75 (.11) 2.89 (.08) 
(6, 12] 5.74 (0.16) 4.46 (0.12) 5.70 (.18) 4.28 (0.12) 5.13 (.16) 4.01 (.11) 
(12, 18] 6.67 (0.15) 5.46 (0.13) 6.72 (.16) 5.36 (0.14) 6.27 (.14) 5.14 (.13) 
(18, 24] 7.08 (0.15) 5.63 (0.14) 7.12 (.16) 5.68 (0.15) 6.68 (.16) 5.24 (.15) 
(0, 24] 5.45 (0.18) 4.15 (0.14) 5.20 (.17) 3.84 (0.12) 4.76 (.15) 3.65 (.11) 

 Only TASMC Only PRO-ACT Domain adaptation 
Prediction 

time (months) RMSE MAE RMSE MAE RMSE MAE 

(0, 6] 3.84 (0.11) 3.01 (0.09) 3.64 (0.13) 2.72 (0.09) 3.68 (0.11) 2.89 (0.09) 
(6, 12] 5.06 (0.13) 4.01 (0.11) 5.14 (0.15) 3.99 (0.12) 4.94 (0.12) 3.92 (0.11) 

(12, 18] 6.30 (0.15) 5.08 (0.13) 6.42 (0.16) 5.17 (0.13) 6.14 (0.15) 4.97 (0.13) 
(18, 24] 7.19 (0.16) 5.88 (0.14) 7.05 (0.17) 5.75 (0.14) 7.00 (0.16) 5.63 (0.14) 
(0, 24] 7.19 (0.16) 5.88 (0.14) 4.85 (0.16) 3.65 (0.11) 4.74 (0.14) 3.65 (0.11) 
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Fig. 4. The RMSE on the TASMC test set achieved using the MLP model 

trained only using TASMC clinic training data (blue) vs. the fine-tuned 
PRO-ACT pre-trained model (MLP) (orange) as a function of the 
TASMC training set size (% of the original training set). 

V. DISCUSSION AND FUTURE WORK 
The ability to accurately predict the ALS disease course is 

very important to ALS patients, their families, and doctors, as 
well as pharmaceutical companies. The high heterogeneity of 
the disease regarding its progression in the patient population 
is considered to be the main challenge in assessing accurate 
disease state prediction models. Furthermore, due to the rarity 
of the disease and its data, it is difficult for ALS clinics to 
establish a large enough dataset to be the basis of machine-
learning models, which increases the necessity of alternative 
and creative ways to exploit the data the clinic possesses. 

In this study, we compared four state-of-the-art algorithms 
and concluded that, in terms of prediction error, the most 
suitable approach is to use non-temporal algorithms such as 
XGB, which outperformed the RF, MLP, and the LSTM (as 
the latter highly parameterized model is more prone to 
overfitting). Nevertheless, for an ALS clinic, which might not 
possess a complete dataset of the patients' clinic visit history 
or observations for enough patients, using the clinical trials 
PRO-ACT database as the training set to initiate domain 
adaptation might be a good alternative for developing a 
prediction model using only the small clinic data alone. 
Indeed, domain adaptation for the LSTM and MLP using a 
pre-trained PRO-ACT model provided a model that is superior 
to both the PRO-ACT trained model and the TASMC trained 
model, and is even on par with the best XGB model. As the 
amount of clinic data increases, so will increase the gain from 
domain adaptation. 

It is important to understand the advantages and 
disadvantages of each approach. The non-temporal model (say 
XGB) might be the best choice in terms of prediction accuracy 
and interpretation for ALS clinics with large enough 
databases. On the other hand, more effort in data pre-
processing and feature engineering is needed compared to 
using the LSTM-based model. For ALS clinics with only 
small databases, it is better to use the PRO-ACT trained model 
or, even better, the domain adapted model. There is no 
straightforward way to apply an approach like domain 
adaptation, as we implemented with the LSTM and MLP, 
using tree-based models like the RF and XGB, hence, this may 
be a direction of future research. 

Another possible way to improve prediction accuracy for 
clinic patients is by handling the short-term prediction 
overfitting caused by the biased training set using, e.g., up-

sampling long-term prediction observations, different 
architectures of the LSTM to benefit more from its abilities in 
domain adaptation, or the XGB input (the flattened temporal 
data) as an additional input on top of the LSTM layer. Our 
code is available online, and so is the processed The PRO-ACT 
dataset. The TASMC data set, however, cannot be shared due 
to privacy issues. 
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