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The present contribution is concerned with applying beam-type expansion to planar aperture time-harmonic elec-
tromagnetic field distribution in which the propagating elements, the electromagnetic beam-type wave objects, are
decomposed into transverse electric (TE) and transverse magnetic (TM) field constituents. This procedure is essen-
tial for applying Maxwell’s boundary conditions for solving different scattering problems. The propagating field is
described as a discrete superposition of tilted and shifted TE and TM electromagnetic beams over the frame-based
spatial–directional expansion lattice. These vector wave objects are evaluated either by applying differential op-
erators to scalar beampropagators, or byusingplane-wave spectral representations. Explicit asymptotic expressions
for scalar, aswell as for electromagnetic, Gaussian beampropagators are presented aswell. © 2011Optical Society
of America
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1. INTRODUCTION
The directional and spatial localization of beam-type (phase-
space) spectral representations make these schemes highly
suitable for propagation in complex environments [1–6]. In
these expansion schemes, the propagating elements are Gaus-
sian beams, which have been termed phase-space (spectral)
Green’s functions [7,8]. Such scalar propagators have been
obtained in homogeneous [1–4], anisotropic [9–11], dispersive
[12–14], and inhomogeneous media [15–17]. Several electro-
magnetic beam scattering and diffraction problems have been
solved for rough surface scattering [18,19], dielectric inter-
faces [20], surfaces of perfectly electric conductor [21,22],
stratified [23] and negative isotropic media [24], and more.
Recently, novel time-harmonic [25–27] beam-type wave ob-
jects were obtained by applying a nonorthogonal coordinate
system that is a priorimatched to localized aperture field dis-
tributions. These wave objects, which were termed tilted
Gaussian/pulsed beams, are suitable for planar beam-type ex-
pansions and exhibit enhanced accuracy over the commonly
used paraxial solutions.

Exact continuous beam decompositions of scalar time-
harmonic fields have been introduced in [1] and in [2] for a
two-dimensional (2D) and a three-dimensional case, respec-
tively. These representations are highly overcomplete and,
therefore, may be a priori discretized. A discrete field expan-
sion, the frame-based beam summation method [4], over-
comes the inherent problems of Gabor representation [28]
by introducing overcompleteness into the beam-type spectral
representations. In this representation, the field is described
by a discrete superposition of beams, which emanate from a
discrete set of points in the aperture and in a discrete set of
directions. The excitation amplitudes of the beam propagators
are samples of the local (windowed) spectrum of the aperture
field distribution over the frame spatial–directional lattice.

In [29–31], Gaussian beams have been used for the analysis
of large reflector antennas, in which the expansion coeffi-

cients are obtained by numerically matching Gaussian beams
to the far zone field of the feed antenna. These methods,
which employ only propagating spectrum information and do
not match the beam spectra to the evanescent spectral con-
stituents, cannot be applied for near-field analysis or in exact
field calculations.

Recently, the scalar field expansion scheme was extended
to include electromagnetic (EM) field expansion in which
an exact frame-based expansion of planar aperture time-
harmonic EM field was introduced [32]. The propagating
EM field is described as a discrete superposition of tilted
and shifted EM Gaussian beams over the frame lattice. The
propagating wave objects are localized solutions of Maxwell’s
equations that carry a Gaussian decay away from the beams’
axes. Nevertheless, these solutions include both transverse
electric (TE) and transverse magnetic (TM) wave polariza-
tions, and thus are not suitable for applying Maxwell’s bound-
ary conditions for solving different scattering problems. In
the present paper, the EM field is a priori decomposed into
the two polarizations by processing (expanding) the trans-
verse field components into novel TE and TM EM beam-type
wave objects.

The paper outline is as follows: In Section 2, a brief descrip-
tion of TE and TM plane-wave decomposition of aperture
fields is given. The scalar frame-based beam decomposition
is given in Section 3 with the necessary extensions, which
are required for the vectorial representation. In Section 4, the
EM field is decomposed into TE/TM EM beams over the frame
spatial–directional lattice. The special case of Gaussian win-
dows is discussed in Section 5, as is the corresponding as-
ymptotic expressions for the beam propagators. Finally, a
numerical example is given in Section 6.

2. PLANE-WAVE DECOMPOSITION
We are concerned with obtaining a discrete exact TE and TM
(with respect to constant z planes) spectral representation for
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the time-harmonic EM field in z ≥ 0 due to sources in z < 0,
given the transverse electric field components over the z ¼ 0
plane:

E0ðrtÞ ¼ ExðrtÞx̂þ EyðrtÞŷ; ð1Þ

where x̂ and ŷ are the conventional Cartesian unit vectors and
rt ¼ ðx; yÞ denotes the transverse coordinates. We use the
conventional Cartesian coordinate system in which the con-
figuration space is described by r ¼ ðx; y; zÞ. The propagation
medium is homogeneous with ϵ0 and μ0 denoting the free
space permittivity and permeability, respectively, and a time
dependence of expðjωtÞ is assumed for all field quantities. The
plane-wave spectrum of the aperture field transverse compo-
nents, which is denoted here by

~E0ðktÞ ¼ ~ExðktÞx̂þ ~EyðktÞŷ; ð2Þ

is given by the spatial Fourier transform

~E0ðktÞ ¼
Z

d2rtE0ðrtÞ expðjkt · rtÞ; ð3Þ

where kt ¼ ðkx; kyÞ is used to denote transverse spectral
wavenumbers, so that the exponent in Eq. (3) reads
kt · rt ¼ kxxþ kyy. Throughout this work, all integral limits
of −∞ to∞ are omitted and plane-wave (wavenumber) spectral
distributions, such as ~E0ðktÞ, are denoted by an over tilde (∼).
By applying a standard plane-wave analysis, which follows
directly from Gauss law, the longitudinal spectrum, ~Ez, is
given by

~EzðktÞ ¼ −ðkx ~Ex þ ky ~EyÞ=kz; ð4Þ

where kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2x − k2y

q
, with Imkz ≤ 0 and Rekz ≥ 0 is the

longitudinal wavenumber. Here k ¼ ω=c denotes the med-
ium’s wavenumber with c denoting the speed of light in free
space. Thus, the electric field in z ≥ 0 is given by the plane-
wave superposition:

Eðr; tÞ ¼ 1
ð2πÞ2

Z
d2kt~EðktÞ expð−jk · rÞ; ð5Þ

where k ¼ ðkx; ky; kzÞ, d2kt ¼ dkxdky, and ~EðktÞ is the aperture
spectral distribution on z ¼ 0 plane, i.e.,

~EðktÞ ¼ ~E0ðktÞ þ ẑ~EzðktÞ; ð6Þ

where ~Ez is given in Eq. (4).
The plane-wave representation in Eq. (5) describes the elec-

tric field in terms of EM plane-wave propagators, which ema-
nate from the z ¼ 0 plane in the direction of unit vectors
κ̂ ¼ k=k. This representation can be rewritten as a superposi-
tion of TE and TM plane-waves spectra with respect to planes
of constant z [33,34]. To that extent, two spectral unit vectors
are defined for a given spectral plane wave. n̂ðktÞ denotes
the normal to the so-called plane of incidence, whereas the
tangent unit vector is denoted by t̂ðktÞ ¼ κ̂ × n̂. Thus, for a
given kt,

n̂ðktÞ ¼
1
kt
ðkyx̂ − kxŷÞ; t̂ðktÞ ¼

kz
kkt

ðkxx̂þ kyŷÞ −
kt
k
ẑ; ð7Þ

where kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Note that both unit vectors are normal

to the spectral plane-wave direction, i.e., n̂ · κ̂ ¼ t̂ · κ̂ ¼ 0.
The TE and TM spectral distributions are obtained by

projecting the aperture spectral distribution, ~EðktÞ, on the unit
vectors in Eq. (7), so that the aperture spectral distribution
in Eq. (6) is recast as a sum of the TE and TM spectral
distributions:

~EðktÞ ¼ ~ETEðktÞn̂ðktÞ þ ~ETMðkt Þ̂tðktÞ; ð8Þ
where

~ETEðktÞ ¼ ~EðktÞ · n̂ðktÞ ¼
1
kt
ðky ~Ex − kx ~EyÞ;

~ETMðktÞ ¼ ~EðktÞ · t̂ðktÞ ¼
k

kzkt
ðkx~Ex þ ky ~EyÞ: ð9Þ

By using Eqs. (7) and (9) with Eq. (8) in Eq. (5), we decompose
the electric field:

Eðr; tÞ ¼ ETEðr; tÞ þ ETMðr; tÞ; ð10Þ

where

ETEðr; tÞ ¼ 1
ð2πÞ2

Z
d2kt ~E

TEðktÞn̂ðktÞ expð−jk · rÞ;

ETMðr; tÞ ¼ 1
ð2πÞ2

Z
d2kt ~E

TMðktÞ̂tðktÞ expð−jk · rÞ: ð11Þ

Note that, by summing over the spectral representations of
ETEðr; tÞ and ETMðr; tÞ in Eq. (11), we obtain the plane-wave
representation in Eq. (5).

3. SCALAR FRAME-BASED BEAM
DECOMPOSITION
In order to establish the TE/TM EM frame-based beam decom-
position, we shall briefly review here the main results of the
scalar beam expansion that were introduced in [4] along with
essential extensions that are required for the TE/TM decom-
position in Section 4. The frame-based beam summation is
constructed over the discrete frame spatial-directional lattice

ð�x; �y; �kx; �kyÞ ¼ ðNxΔ�x;NyΔ�y;NkxΔ�kx; NkyΔ�kyÞ; ð12Þ

where ðΔ�x;Δ�yÞ and ðΔ�kx;Δ�kyÞ are the unit-cell dimensions in
the ðx; yÞ and ðkx; kyÞ coordinates, respectively, and the index
N ¼ ðNx;Ny; Nkx ; NkyÞ is used to tag the lattice points (see
Fig. 1). These unit-cell dimensions satisfy

Δ �xΔ�kx ¼ 2πνx; Δ�yΔ�ky ¼ 2πνy; ð13Þ

where 0 ≤ νx;y ≤ 1 are the overcompleteness parameters in the
x or y axes. The lattice is overcomplete for νx;y < 1, critically
complete in the Gabor limit νx;y↑1 [28,35,36], and, for νx;y↓0,
the discrete parameterization attains the continuity limit as
in [1,2].

Upon setting the frame lattice, one proceeds by choosing a
proper synthesis (“mother”) window, ψðrtÞ, and constructs
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the windowed Fourier transform frame in the space of all the
square integrable functions L2ðRÞ on the frame lattice. The 2D
synthesis window, ψðrtÞ, is obtained by a Cartesian multipli-
cation of two one-dimensional windows, each yielding a prop-
er frame in L2ðRÞ. The frame representation of some aperture
scalar field distribution over z ¼ 0 plane, which is denoted
here by u0ðrtÞ, is given by

u0ðrtÞ ¼
X
N

aNψNðrtÞ; ð14Þ

where the expansion frame set, ψNðrtÞ, is obtained from the
synthesis window, ψðrtÞ, via

ψNðrtÞ ¼ ψðrt − �rtÞ exp½−j�kt · ðrt − �rtÞ�; ð15Þ

where �rt ¼ ð�x; �yÞ and �kt ¼ ð�kx; �kyÞ are used to denote the
frame lattice points in Eq. (12), and the expansion coeffi-
cients, aN , are given by the inner product of the aperture dis-
tribution with the so-called analysis (“dual”) window, φðrtÞ,
namely,

aN ¼
Z

d2rtu0ðrtÞφ�
NðrtÞ; ð16Þ

where, similarly to (15),

φNðrtÞ ¼ φðrt − �rtÞ exp½−j�kt · ðrt − �rtÞ�: ð17Þ

The analysis window, φðrtÞ, can be evaluated by several ways
that are listed in [4] [see also Eq. (39)].

The scalar field in z > 0, due to sources in z < 0, is obtained
by propagating each ψNðrtÞ window element in summation
(14), into z > 0 half-space. Therefore, the frame-based repre-
sentation of the field in z ≥ 0 is given by

uðr; tÞ ¼
X
N

aNPNðr; tÞ; ð18Þ

where each beam propagator, PNðr; tÞ, satisfies the scalar
Helmholtz equation:

ð∇2 þ k2ÞPNðr; tÞ ¼ 0: ð19Þ

The beam propagator can be evaluated in several ways, such
as Green’s function (Kirchhoff’s) integration or by a plane-
wave spectral decomposition of the form

PNðr; tÞ ¼
1

ð2πÞ2
Z

d2kt~ψNðktÞ expð−jk · rÞ; ð20Þ

where

~ψNðktÞ ¼ ~ψðkt − �ktÞ expðjkt · �rtÞ; ð21Þ

with ~ψðktÞ denoting the plane-wave spectral distribution of
ψðrtÞ as in Eq. (22). The spectral representation in Eq. (18)
describes the field as a discrete superposition of beam-type
wave objects, that emanate from points ð�x; �yÞ on the frame
lattice, in a discrete set of directions that are determined
by the spectral wavenumbers ð�kx; �kyÞ over the frame lattice
(see Fig. 1). In Section 4, a vectorial EM analogue of this re-

presentation is obtained, in which the electric and magnetic
fields are described by a superposition of TE and TM EM

beam propagators.
In order to obtain a discrete vectorial frame-based repre-

sentation, we shall relate the plane-wave spectrum of the aper-
ture field distribution to its frame representation in Eq. (14).
The (scalar) plane-wave spectrum, ~u0ðktÞ, is obtained by
applying the Fourier operator in Eq. (3) to u0ðrtÞ, i.e.,

~u0ðktÞ ¼
Z

d2rtu0ðrtÞ expðjkt · rtÞ: ð22Þ

By inserting Eq. (14) with Eq. (15) into Eq. (22) and inverting
the order of integration and summation, we obtain

~u0ðktÞ ¼
X
N

aN ~ψNðktÞ; ð23Þ

where ~ψN is given in Eq. (21).
By applying the convolution theorem to Eq. (16), we may

evaluate the expansion coefficients aN directly from the
plane-wave spectral distribution, ~u0ðktÞ, via

aN ¼ 1
ð2πÞ2

Z
d2kt~u0ðktÞ~φ�

NðktÞ; ð24Þ

where

~φNðktÞ ¼ ~φðkt − �ktÞ expðjkt · �rtÞ; ð25Þ

is the plane-wave spectrum of φNðrtÞ.

4. VECTORIAL EM FIELD DECOMPOSITION
In order to obtain a TE/TM frame-based representation of the
electric field, Eðr; tÞ, we introduce the TE/TM coefficients

aTEN ¼ 1
ð2πÞ2

Z
d2ktk−1t ~ETEðktÞ~φ�

NðktÞ;

aTMN ¼ 1

ð2πÞ2
Z

d2ktk−1t ~ETMðktÞ~φ�
NðktÞ; ð26Þ

Fig. 1. Discrete frame lattice. The fields in z ≥ 0 are evaluated by a
superposition of tilted and shifted beams that originate from the
aperture distribution plane over the discrete frame spatial–directional
lattice in Eq. (12). Each beam propagator emanates from a lattice
point ð�x; �yÞ ¼ ðNxΔ�x;NyΔ�yÞ and in a direction of ð�θx; �θyÞ ¼
cos−1½ð�kx; �kyÞ=k� with respect to the corresponding axis.
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where ~φNðktÞ is given in Eq. (25) and the spectral distribu-
tions, ~ETE and ~ETM, are given in Eq. (9). The motivation to in-
troduce the k−1t term in Eq. (26) is discussed after Eq. (32).
Thus, by using Eq. (23) for each TE/TM electric field spectral
component, we may write

~ETEðktÞ ¼
X
N

aTEN kt~ψNðktÞ;

~ETMðktÞ ¼
X
N

aTMN kt~ψNðktÞ; ð27Þ

where ~ψNðktÞ is given in Eq. (21). By inserting Eq. (27) into
Eq. (11) and inverting the order of integration and summation,
we obtain, for each field component in Eq. (10),

ETEðr; tÞ ¼
X
N

aTEN ETE
N ðr; tÞ;

ETMðr; tÞ ¼
X
N

aTMN ETM
N ðr; tÞ; ð28Þ

where

ETE
N ðr; tÞ ¼ 1

ð2πÞ2
Z

d2ktktn̂ðktÞ~ψNðktÞ expð−jk · rÞ;

ETM
N ðr; tÞ ¼ 1

ð2πÞ2
Z

d2ktkt t̂ðktÞ~ψNðktÞ expð−jk · rÞ; ð29Þ

are the electric field TE/TM beam propagators over the frame
lattice. Assuming that ψðrtÞ is wide on a wavelength scale, the
spatial and spectral distributions of ψN are localized around
the lattice point rt ¼ �rt and kt ¼ �kt, respectively. Conse-
quently, ETE

N and ETM
N are collimated EM beams whose axes

emerge from a processing-dependent point rt ¼ �rt over the
z ¼ 0 plane, in a processing-dependent direction:

�̂κ ¼ ð�kt; �kzÞ=k; �kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − �k2t

q
; ð30Þ

where �kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2x þ �k2y

q
. Propagating beams occur for �kt <

k −Δkt , where Δkt denotes the (plane-wave) spectral width
of ~ψðktÞ. For �kt > kþΔkt , the spectral distribution is localized
in the evanescent spectral range, and the corresponding beam
propagators decay exponentially with z.

The vectorial propagation formulation in Eq. (29) can be
reduced to a scalar one in the following manner: by inserting
n̂ and t̂ in Eq. (7) into Eq. (29), we obtain

ETE
N ðr; tÞ ¼ 1

ð2πÞ2
Z

d2ktðkyx̂ − kxŷÞ~ψNðktÞ expð−jk · rÞ;

ETM
N ðr; tÞ ¼ 1

kð2πÞ2
Z

d2kt½kzðkxx̂þ kyŷÞ − k2t ẑ�~ψNðktÞ

× expð−jk · rÞ: ð31Þ

Next, by using kx expð−jk · rÞ ¼ j ∂

∂x
expð−jk · rÞ, and so forth,

we rewrite Eq. (31) in the form

ETE
N ðr; tÞ ¼ jðx̂∂y − ŷ∂xÞPNðr; tÞ;

ETM
N ðr; tÞ ¼ −k−1ðx̂∂x∂z þ ŷ∂y∂z − ẑ∇2

t ÞPNðr; tÞ; ð32Þ

where the scalar beam propagators, PNðr; tÞ, are given in
Eq. (20). In Eq. (32) we denote ∂x ¼ ∂=∂x, ∂2x ¼ ∂2=∂x2,

∇2
t ¼ ∂2x þ ∂2y, and so forth. Note that applying the differential

operators in Eq. (32) was made possible due to the introduc-
tion of the k−1t term in Eq. (26).

Equations (10), (28), (32), and (20) represent the electric
field, Eðr; tÞ, as a discrete superposition of EM beam-type
wave objects, ETE

N and ETM
N , which are the TE and TM electric

field propagators. The excitation amplitudes of these EM
wave objects are obtained from the aperture field spectral dis-
tribution, ~E0, via Eq. (26). The beam propagators are charac-
terized by transversal localization and high directivity (see
specific example for Gaussian windows in Section 5). The re-
presentation in Eq. (32) reduces the full vectorial formulation
to a scalar one, in which the vector fields are obtained directly
from the scalar beam propagators, PNðr; tÞ in Eq. (20).

The magnetic field in z ≥ 0 can be obtained by applying
Faraday’s law, H ¼ ð−jωμ0Þ−1∇ × E, to Eq. (28) and inserting
Eq. (32). Thus,

Hðr; tÞ ¼ HTEðr; tÞ þHTMðr; tÞ; ð33Þ

with

HTEðr; tÞ ¼
X
N

aTEN HTE
N ðr; tÞ;

HTMðr; tÞ ¼
X
N

aTMN HTM
N ðr; tÞ; ð34Þ

where aTEN and aTMN are given in Eq. (26) and HTE
N and HTM

N de-
note the magnetic fields of the TE and TM EM beam propa-
gators, which can be evaluated from the scalar beam
propagator PNðr; tÞ in Eq. (20), via

HTE
N ðr; tÞ ¼ −1

kη0
ðx̂∂x∂z þ ŷ∂y∂z − ẑ∇2

t ÞPNðr; tÞ;

HTM
N ðr; tÞ ¼ −1

jη0
ðx̂∂y − ŷ∂xÞPNðr; tÞ; ð35Þ

where η0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
is the (vacuum) wave impedance. In de-

riving Eq. (35), we have used ∇2PN ¼ −k2PN , which follows
from Helmholtz equation (19). Note that the z component is
canceled out in the TM magnetic field propagator.

Alternatively, plane-wave spectral representations for H-
fields, similar to the one in Eq. (29), may be practical for
asymptotically evaluating these fields in the high-frequency re-
gime. Such representations are obtained by applying the well-
known plane-wave spectral relation, ~H ¼ η−10 κ̂ × ~E, to Eq. (29),
which results in

HTE
N ðr; tÞ ¼ 1

η0
1

ð2πÞ2
Z

d2ktkt t̂ðktÞ~ψNðktÞ expð−jk · rÞ;

HTM
N ðr; tÞ ¼ −1

η0
1

ð2πÞ2
Z

d2ktktn̂ðktÞ~ψNðktÞ expð−jk · rÞ; ð36Þ

where the spectral unit vectors, n̂ and t̂, are given in Eq. (7),
and ~ψN is the synthesis set spectral distribution in Eq. (21).

5. GAUSSIAN FRAMES AND ASYMPTOTIC
EVALUATION
The general frame representation in Eq. (28) is applied here
for the special case of Gaussian frames, which have been used
extensively for modeling beam propagation because they
maximize the localization as implied by the uncertainty
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principle and yield analytically trackable beam-type propaga-
tors [1,2,4–7,9,10,15,16]. The Gaussian synthesis windows are
defined as

ψðrtÞ ¼ expð−jkΓr2t =2Þ; ð37Þ

where r2t ¼ x2 þ y2 and Γ ¼ Γr þ jΓj is the window complex
frequency-independent parameter with Γj < 0. By applying
the Fourier operator in Eqs. (22)–(37), we obtain the plane-
wave spectral distribution of these windows:

~ψðktÞ ¼ −2πjðkΓÞ−1 exp½jk2t =ð2kΓÞ�: ð38Þ

In order to evaluate the corresponding Gaussian anal-
ysis window, we shall make use of the high-oversampling
approximation:

φðrtÞ ≅ νxνy∥ψ∥−2ψðrtÞ; ð39Þ

which, for Gaussian windows, is valid for νx;y < 0:4 (further
details are given in [4]). Thus, by inserting ∥ψ∥2 ¼ −π=ðkΓjÞ
into Eq. (39), we may approximate the corresponding
Gaussian analysis window by

φðrtÞ ¼ ð−ν2kΓj=πÞ expð−jkΓr2t =2Þ; ð40Þ

and its plane-wave spectral distribution by

~φðktÞ ¼ j2ν2ΓjðΓÞ−1 exp½jk2t =ð2kΓÞ�; ð41Þ

where ν ¼ νx ¼ νy is the overcompleteness parameter in
Eq. (13). This type of windows gives rise to Gaussian beams
that exhibit frequency-independent collimation (Rayleigh)
lengths [see Eq. (49)] and, therefore, have been termed iso-
diffracting [37]. The isodiffracting feature makes these wave
objects highly suitable for ultrawideband representations
[2,4,10,38–40].

The scalar Gaussian beam propagators, PNðr; tÞ, are ob-
tained by inserting Eq. (38) into Eq. (20). The resulting
plane-wave spectral integral can be evaluated asymptotically
(see details in Appendix A). The paraxial asymptotic scalar
Gaussian beam propagators are obtained by utilizing the local
beam coordinates, rb ¼ ðxb; yb; zbÞ, which are defined, for a
given spectral point ð�x; �y; �kx; �kyÞ on the frame lattice, by the
rotation transformation:

"xb
yb
zb

#
¼

" cos �θ cos �ϕ cos �θ sin �ϕ − sin �θ
− sin �ϕ cos �ϕ 0

sin �θ cos �ϕ sin �θ sin �ϕ cos �θ

#" x − �xx
y − �xy

z

#
; ð42Þ

where ð�θ; �ϕÞ are the spherical angles that define the spectral
unit vector �̂κ in Eq. (30), i.e.,

cos �θ ¼ �kz=k; cos �ϕ ¼ �kx=�kt; sin �ϕ ¼ �ky=�kt: ð43Þ

Thus, on-axis observation points, for which (see Fig. 2)

rt − �rt ¼ z tan �θðcos �ϕx̂þ sin �ϕŷÞ; ð44Þ

are identified by xb ¼ yb ¼ 0. By utilizing the beam coordi-
nates, the beam propagators are evaluated asymptotically
as (see details in Appendix A)

PNðr; tÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓxðzbÞ
Γxð0Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓyðzbÞ
Γyð0Þ

s
exp½−jkΨðrbÞ�;

ΨðrbÞ ¼ zb þ
1
2
½ΓxðzbÞx2b þ ΓyðzbÞy2b�;

ð45Þ

where

ΓxðzbÞ ¼ 1=ðzb þ cos2 �θΓ−1Þ; ΓyðzbÞ ¼ 1=ðzb þ Γ−1Þ;
ð46Þ

are the so-called complex curvatures of the Gaussian beam.
In order to parameterize the Gaussian beam propagator, we

denote the real and the imaginary part of 1=Γ by −Z and F ,
respectively, i.e.,

Γ−1 ¼ −Z þ jF: ð47Þ

Thus, the complex curvatures in Eq. (46) can be recast in the
form

Γx;yðzbÞ ¼ 1=ðzb − Zx;y þ jFx;yÞ; ð48Þ
where

Zx ¼ Z cos2 �θ; Zy ¼ Z; Fx ¼ F cos2 �θ; Fy ¼ F:

ð49Þ
By using Eq. (48) in Eq. (45), one finds that the Gaussian beam
exhibits (pure) quadratic decay in the ðxb; ybÞ directions with
corresponding e−1 beam widths of

Wx;yðzbÞ ¼ Dx;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðzb − Zx;yÞ2

F2
x;y

s
; ð50Þ

where Dx;y ¼ ffiffiffiffiffiffiffiffiffiffiffi
8Fx;y

p
=k are identified as the principal beam

widths at the waists. By using Eq. (50), we identify Fx;y as
the beam collimation lengths and Zx;y is identified as the beam
waist locations on the ðxb; zbÞ and ðyb; zbÞ principal planes.
The beam field remains collimated near the waist where
jzb − Zx;yj ≪ Fx;y, whereas, away from the waists, it opens
up along constant diffraction angles of Θx;y ¼ ðkFx;y=8Þ−1=2.
Finally, by taking the real part of the complex curvatures
in Eq. (46), we find that the principal phase-front radii of
curvature in the ðxb; zbÞ and ðyb; zbÞ planes, Rx;y, are given by

Rx;y ¼ ðzb − Zx;yÞ þ F2
x;y=ðzb − Zx;yÞ: ð51Þ

Fig. 2. Local beam coordinates. The asymptotic Gaussian beam pro-
pagator is described in terms of the local beam-coordinates,
rb ¼ ðxb; yb; zbÞ, which are defined in Eq. (42). The beam propagates
along the zb axis and exhibits a Gaussian decay in the transverse co-
ordinates xb and yb.
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The electric field Gaussian propagators are evaluated
asymptotically by inserting Eq. (45) into Eq. (32) and collect-
ing the highest asymptotic (k−) order (note, that according to
Eq. (45), the transverse coordinates, xb and yb, are of the
order of 1=

ffiffiffi
k

p
[15]). Alternatively, these propagators can be

evaluated directly from their plane-wave spectral representa-
tions in Eq. (29). Note that the electric field spectral integrals
in Eq. (29) and the scalar field representation in Eq. (20) differ
only in the amplitude functions, which, in the asymptotic
procedure, are sampled at the on-axis stationary point
ðkx; kyÞ ¼ ð�kx; �kyÞ. Thus, by using Eq. (38) in Eq. (21) and in-
serting into Eq. (29), the asymptotic electric field TE propa-
gators, ETE

N , are evaluated asymptotically by

ETE
N ðr; tÞ ∼ �ktn̂ð�ktÞPNðr; tÞ; ð52Þ

where PNðr; tÞ is given in Eq. (45), and n̂ð�ktÞ ¼ n̂jkt¼�kt is
defined in Eq. (7). By applying the same procedure to the
spectral integral in Eq. (36), we obtain the corresponding mag-
netic field

HTE
N ðr; tÞ ∼ 1

η0
�kt t̂ð�ktÞPNðr; tÞ: ð53Þ

The TM field propagators, ETM
N and HTM

N , are obtained in a
similar manner from Eqs. (29) and (36), yielding

ETM
N ðr; tÞ ∼ �kt t̂ð�ktÞPNðr; tÞ; HTM

N ðr; tÞ ∼ η−10 �ktn̂ð�ktÞPNðr; tÞ:
ð54Þ

Equations (52)–(54) describe the asymptotic TE and TM EM
Gaussian beam propagators corresponding to the Gaussian
synthesis window in Eq. (37) in terms of the scalar beam
propagators in Eq. (45).

6. NUMERICAL EXAMPLE
A. Scalar Formulation
This section demonstrates the implementation of the scalar
beam summation process. The reference field is a complex
source beam field of the form

uðrÞ ¼ A
kR

expð−jkRÞ;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2

q
; ð55Þ

where A is some constant and the source location, r0 ¼
ðx0; y0; z0Þ carries a complex shift, which is taken in this exam-
ple to be r0 ¼ λð2j; 2j;−2þ 10jÞ, where λ denotes the wave-
length. The resulting beam field source disk is centered at
z ¼ −2λ and the beam propagated in a direction of the unit
vector κ̂b ¼ ð1; 1; 5Þ= ffiffiffiffiffi

27
p

. The aperture field is obtained by
sampling uðr; tÞ in Eq. (55) over a 10λ × 10λ square in the z ¼ 0
plane.

The processing (analysis) window is given by Eq. (37) with
Γ ¼ ð0:013 − 0:32jÞ=λ. This choice results in a Gaussian
window with e−1 width of 1λ and beam waist location of
z ¼ 5λ. The overcompleteness parameter is ν ¼ 0:5 and, ac-
cordingly, Δ �x ¼ ffiffiffi

2
p

=2λ and Δ�kx=k ¼ ffiffiffi
2

p
=4. The coefficients

were evaluated for j �x j ¼≤ 15λ and j�kx;yj ≤ k (only propagating
spectrum components are included).

The absolute value of resulting aN coefficients 45 × 45 × 5 ×
5 array is plotted for �y ¼ 0, �ky ¼ 0 in Fig. 3. The �kx axis was
normalized with respect to the wavenumber k. Note that most
of the spectrum is located in the propagating j�kxj < k region.
The evanescent spectrum was excluded from the recon-
structed field.

The field was reconstructed as a summation of Gaussian
beams of the form in Eq. (18) with Eq. (45) over the z ¼ 7λ
plane. The resulting scalar field is plotted in Fig. 4. The real
part of the reference analytic solution in Eq. (55) is plotted in
Fig. 4(a) and the frame-based summation solution in Fig. 4(b).
In order to compare the reference field in Eq. (55) with the
reconstructed one in Eq. (18), the absolute values of the
difference of their real and imaginary parts are plotted in
Figs. 5(a) and 5(b) respectively. The figures show that the
error is less than −62 dB from the reference field maximum.

B. EM Formulation
In this subsection we evaluate numerically the EM field using
the TE/TM decomposition in Section 4. We process the aper-
ture field distribution E0ðrtÞ ¼ ExðrtÞx̂, where Ex is the scalar
distribution in Eq. (55). The processing (analysis) window
is given by Eq. (37). The expansion parameters are all as in
Subsection 6.A.

The absolute value of the aTEN and aTMN coefficients 45 × 45 ×
5 × 5 arrays are plotted for �y ¼ 0, �ky ¼ 0 in Fig. 6. The TE and
TM electric fields were reconstructed as a summation of the
form in Eq. (28) over the TE/TM Gaussian beam propagators
in Eqs. (52)–(54) over tthe z ¼ 7λ plane. In order to compare
the resulting fields with the reference analytic solution in Eq.
(55), we sum the x components of ETE and ETM. The absolute
values of the difference of the real and imaginary parts of the
resulting Ex field and the reference field in decibels are
plotted in Figs. 7(a) and 7(b), respectively. The figure shows
that the error is less than −50 dB from the reference field max-
imum. Note that the accuracy of the TE/TM expansion is
about −12 dB of the scalar representation in Subsection 6.A.
This reduction in the accuracy is due to the vectorial proces-
sing, which involves an additional computation effort. The ac-
curacy can be enhanced by applying a dancer spectral grid.
For the specific example, by using ν ¼ 0:25, the maximum
error reduces to −61 dB.

7. SUMMARY
Application of an exact beam-type expansion to EM waves
was introduced, inwhich the basic building blockwaveobjects,
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Fig. 3. Coefficients map for u0ðrtÞ over the ð�kx; �xÞ plane.
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the EM Gaussian beams, were decomposed into TE and TM
fields with respect to constant z planes. This procedure is es-
sential for applying Maxwell’s boundary conditions for solving
different scattering problems. In Eqs. (28) and (34), the propa-
gating EM field is described as a discrete superposition of the
TE and TM EM beam propagators in Eqs. (29) and (36), which
are shifted and tilted to points and directions according to the
frame spatial–directional lattice in Eq. (12). These vectorwave
objects can be obtained from the scalar propagator in Eq. (20)
via the differential operators in Eqs. (32) and (35). Explicit
asymptotic expressions for the scalar Gaussian beam propaga-
tors, PN , as well as for the EM ones, were obtained in Eqs. (45)
and (52)–(54).

APPENDIX A: ASYMPTOTIC EVALUATION
OF EQ. (20)
In order to asymptotically evaluate the scalar Gaussian beam
propagator, we express Eq. (20) with Eq. (21) for spectral
window (38), in the form

PNðr; tÞ ¼ ð2πjkΓÞ−1
Z

d2kt exp½−jqðktÞ�;

qðktÞ ¼ kTt ðrt − �rtÞ þ kzz − ð2kΓÞ−1ðkt − �ktÞT ðkt − �ktÞ; ðA:1Þ

where, here and henceforth, all vectors are assumed to be col-
umn vectors and superscript T denotes vector or matrix trans-
pose. Integral (A.1) has a stationary point kts in the complex kt
domain, which is defined by

∇ktq ¼ rt − �rt − kts z=kzs − ðkΓÞ−1ðkts − �ktÞ ¼ 0; ðA:2Þ

where kzs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − kTtskts

q
. Note that, for an on-axis observa-

tion point, where �kzðrt − �rtÞ ¼ �ktz [see Eq. (44)], this equation
has a real solution, kts ¼ �kt. For off-axis observation points,
the solution of Eq. (A.2) is complex and cannot be found ex-
plicitly. However, the stationary point can be approximated
for observation points near the beam axis, by expanding
qðktÞ into a Taylor series about the on-axis stationary point
�kt, i.e.,

qðktÞ ¼ qo þ qT1 ðkt − �ktÞ þ
1
2
ðkt − �ktÞTq2ðkt − �ktÞ; ðA:3Þ

with the coefficients

qo ¼ �kTt ðrt − �rtÞ þ �kzz; q1 ¼ rt − rt − z�kt=kz; ðA:4Þ

and

q2 ¼ −

"
1
kΓ þ zð�k2xþ�k2zÞ

�k3z

z�kx�ky
�k3z

z�kx�ky
�k3z

1
kΓ þ

zð�k2yþ�k2zÞ
�k3z

#
: ðA:5Þ

By using Eq. (A.3), the stationary point is approximated by

kts ¼ �kt − q−12 q1; ðA:6Þ

and the scalar propagator, PNðr; tÞ, may be asymptotically
approximated over the SDP path via [41]

PNðr; tÞ ∼
ðkΓÞ−1ffiffiffiffiffiffiffiffiffiffiffiffi
det q2

p exp

�
−j

�
qo −

1
2
qT1 q

−1
2 q1

��
: ðA:7Þ

Next, by utilizing the beam-coordinates in Eq. (42), we may
evaluate the Taylor coefficients, qo ¼ kzb:

q1 ¼
�
cos �ϕ= cos �θ − sin �ϕ
sin �ϕ= cos �θ cos �ϕ

��
xb
yb

�
; ðA:8Þ

and, thus,

−qT1 q
−1
2 q1 ¼ x2bΓxðzÞ þ y2bΓyðzÞ; ðA:9Þ

with

ΓxðzÞ ¼ ðz= cos �θ þ cos2�θΓ−1Þ−1;
ΓyðzÞ ¼ ðz= cos �θ þ Γ−1Þ−1: ðA:10Þ

Finally, the conventional (paraxial) Gaussian beams are
obtained by applying the small-angle approximation. By using
Eq. (42), we can substitute z= cos �θ ¼ zb − xb1 tan

�θ ≃ zb
into Eq. (A.10), and obtain the final result in Eq. (46). By using
Eq. (A.8) in Eq. (A.6), we note that the displacement of the
stationary point, kts , from the corresponding on-axis real val-
ue, kt, is proportional to ½xb; yb�, thereby justifying the Taylor
analysis for observation points with small transverse devia-
tion from the beam axis.
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