
m
e
c
b
c

t

Three-dimensional pattern recognition with a
single two-dimensional synthetic reference function

Youzhi Li and Joseph Rosen

A novel, to our knowledge, method of distortion-invariant three-dimensional ~3-D! pattern recognition is
proposed. A single two-dimensional synthetic discriminant function is employed as a reference function
in the 3-D correlator. Thus the proposed system is able to identify and locate any true-class object in the
3-D scene. Preliminary simulation and experimental results are presented. © 2000 Optical Society of
America
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1. Introduction

Recently, Rosen extended the optical correlator from
operation in two dimensions to three.1,2 His method
involves fusing images of objects from a few different
points of view and allows objects to be identified and
located in three-dimensional ~3-D! space. This 3-D
correlation has been demonstrated on a 3-D joint
transform correlator ~JTC!, in which a reference and
tested objects are observed together from a distance.
The reference object and the tested objects are pro-
jected a few times from different points of view on a
spatial light modulator ~SLM!, and the projected im-
ages are electro-optically processed yielding the de-
sired 3-D correlation. However, this scheme suffers
from limitations similar to those of the conventional
two-dimensional ~2-D! optical correlators,3 namely,
sensitivity to geometrical distortions. Objects from
the same class as the reference ~i.e., the true class!

ust appear in the same in-plane and out-plane ori-
ntation, and be the same size as the reference, to be
orrectly identified. Otherwise, these objects might
e mistakenly classified as belonging to the false
lass.

In this study we present a preliminary solution to
he problem of sensitivity to distortions. Instead of
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lacing the reference object in the observed scene
ith the tested objects,1,2 we propose a different

method of computing and employing the reference
function. Our proposed synthetic reference is ob-
tained as a function of the training set, and it is
invariant to some distortions determined by this
training set. The same 2-D synthetic reference func-
tion is displayed side by side with each projected
image for all the different points of view. The refer-
ence function is designed to recognize every object
from the true class, with any distortion defined by the
training set, and is capable of locating this object in
3-D space. The fact that the reference function is
uniform for all the projections simplifies the system
and yet enables us to achieve some degree of distor-
tion invariance in the 3-D pattern-recognition sys-
tem.

In this preliminary project we concentrate on a
limited kind of distortion. Let us assume that the
observed scene, with the coordinates ~x, y, z!, is ob-
served from various points of view, all distributed on
the x–z plane. In Ref. 2 and here the points of view
are located along an arc lying on the x–z plane, where
the origin of the ~x, y, z! space is used as the arc’s
center point ~see Fig. 1!. The type of distortion we
consider in the present study is object rotations on
the x–z plane. In other words, the demonstrated
system is invariant to any object’s rotation, within a
limited angular interval, on the x–z plane. Our aim
is to guarantee that each object from the true class
will be identified and located in 3-D space no matter
what its orientation within the limited angular inter-
val on the x–z plane. However, the same concept
can be extended toward other kinds of distortions by
10 March 2000 y Vol. 39, No. 8 y APPLIED OPTICS 1251
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inclusion of appropriate representatives of these dis-
tortions in the training set.

The reference function is actually a synthetic dis-
criminant function ~SDF!,4–6 appearing side by side
with all object projections. The SDF can be com-
puted by any known optimization algorithm.5 The
fact that the correlation’s dimensions have been ex-
tended from two to three does not increase the di-
mensions of the computational problem in our case.
Thus one can choose any off-the-shelf 2-D SDF algo-
rithm and implement it in our distortion-invariant
3-D correlator. In recent years many SDF algo-
rithms for distortion-invariant problems have been
widely investigated.5 Among them, the minimum
average correlation energy SDF ~MACE-SDF!6 has
been successfully demonstrated in a few independent

Fig. 1. Schematic of the 3-D joint tra
252 APPLIED OPTICS y Vol. 39, No. 8 y 10 March 2000
experiments. With the MACE-SDF one can control
the whole correlation plane as well as keep a sharp
easily detectable correlation peak. For demonstra-
tion purposes of our general concept we choose the
MACE-SDF as the reference function in our first
distortion-invariant 3-D correlator.

2. Three-Dimensional Correlator with a Virtual
Reference Function

The distortion-invariant 3-D JTC is shown in Fig. 1.
The cameras ~or a single camera that moves from point
to point! record the input scene from different points of
view. Each image is displayed on SLM1 located on
plane P3. Unlike previous versions of the 3-D JTC,1,2

here the reference function is not a real object located
in the input scene. Instead, plane P3 is divided into

m correlator equipped with the SDF.
nsfor



I
b
m
e
l
n
g
f
t

1
p

w

s
j
g

d

two parts. The various projections of the observed
scene, from the various points of view, are displayed,
one by one, on one side of plane P3. On the other side
of plane P3 the same single 2-D reference function
constantly appears. In general the reference function
is complex valued, and therefore one should consider
the technique for implementing complex-valued func-
tions in a JTC. The direct and simple method is to
use a transparency with the desired amplitude and
phase modulations. Alternatively, if such transpar-
ency is not available, one can employ indirect methods
such as holographic coding,7 or interferometric tech-
niques,8 to get an effective complex reference function.
n this study we demonstrate the new procedure by
oth computer simulation and electro-optical experi-
ent. Obviously, in the computer simulation the ref-

rence function can in general be complex without any
imitation. In the experiment we used a similar tech-
ique employed before in Ref. 9. The Fourier holo-
rams of the input objects are multiplied by a filter
unction in the Fourier plane, and another Fourier
ransform ~FT! of this product yields the desired cor-

relation results. Such a correlator is actually a com-
bination of the JTC ~with a delta function as the
reference! and the VanderLugt correlator. As a hy-
brid configuration it combines the superb features of
both types of correlators. Explicitly, it enables us to
implement an effective complex reference function as
is usually possible with VanderLugt correlator. It
also lets us perform complicated mathematical manip-
ulations ~in our case it is coordinate transformations,

Fig. 2. Three images of plane P3 out of 19 as observed from
different points of view.
as explained below! on the spatial spectrum of the
input function, as is inherently possible with the JTC.

Other than the new concept of the 2-D reference
function, the system is similar to the previous one
presented in Ref. 2. We briefly summarize the cor-
relation process in the following. A 3-D input func-
tion o1~x, y, z!, describing all tested objects in the
observed scene, is located in the coordinate system ~x,
y, z!, where P1 is the transverse plane z 5 0 ~see Fig.
!. From each point of view the camera observes on
lane P1 through an imaging lens located a distance

L from plane P1. In each point of view the line OC
between the center of the camera’s plane and the
origin point ~x, y, z! 5 ~0, 0, 0! is orthogonal to the
camera’s plane. The angle between the z axis and the
line OC is denoted by u. For each u, the projected
function o3~xi, yi; u! is displayed on SLM1, where ~xi,
yi! are the coordinates of plane P3. The relation be-
tween ~xi, yi, u! and ~x, y, z! is given by2

~xi, yi! 5 M0~x cos u 1 z sin u, y!, (1)

here M0 is the magnification factor of the imaging
lens. It is assumed that the distance L is much
longer than the depth of the object function o1~x, y, z!,
and therefore the magnification factor is approxi-
mately the same constant M0 for all the object points.

In addition to the projected function o3~xi, yi; u!,
plane P3 contains the reference function r3~xi, yi!. We
choose to locate r3~xi, yi! in the origin of plane P3, and
o3~xi, yi; u! is centered around the point ~xi, yi! 5 ~au,
0!. Returning to the ~x, y, z! space, we can describe
the whole distribution on plane P3, for all various val-
ues of u, as a collection of projections of the virtual 3-D
function g1~x, y, z! located in plane P1 and given by

g1~x, y, z! 5 o1~x 2 x̃, y, z 2 z̃! 1 r1~x, y, z!. (2)

From Eq. ~1! it is clear that x̃ and z̃ satisfy the relation
M0~ x̃ cos u 1 z̃ sin u! 5 au. Thus we see indeed that
au depends on u. r1~x, y, z! is a virtual 3-D function,
atisfying the condition that, for any angle u, its pro-
ection function is always r3~xi, yi!. The functions
1~x, y, z! and r1~x, y, z! are termed virtual, because

they do not exist in physical reality. However, the
3-D JTC effectively yields a real 3-D autocorrelation
result of the virtual function g1~x, y, z!, and therefore
g1~x, y, z! and r1~x, y, z! should be considered in our
analysis. The collection of 2-D functions that does
exist on plane P3, each of which for different values of
u, is given by g3~xi, yi; u! 5 o3~xi 2 au, yi; u! 1 r3~xi, yi!.
Next we consider the intensity distribution on plane
P4, for any angle u. With the 2-D FT relation between
planes P3 and P4, the intensity on plane P4 is

I4~u, v, u! } U** g3~xi, yi; u!

3 expFi
2p

lf
~uxi 1 vyi!GdxidyiU2

, (3)

where l is the optical wavelength and f is the focal
istance of the Fourier lens. Let us look now at the
10 March 2000 y Vol. 39, No. 8 y APPLIED OPTICS 1253
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intensity distribution I4~u, v, u! as a function of the
irtual image g1~x, y, z!. For a single element of
he size ~Dx, Dy, Dz!, and brightness g1~x, y, z!, from
he entire 3-D object function the intensity on plane
4 is

I4~u, v, u! } Ug1~x, y, z!expFi
2p

lf
~uxi 1 vyi!GDxDyDzU2

5 Ug1~x, y, z!expFi
2pM0

lf
~ux cos u 1 vy

1 uz sin u!GDxDyDzU2

, (4)

where the final part of Eq. ~4! is obtained after sub-
stitution of Eq. ~1! into the first part of Eq. ~4!. Next
we examine the influence of all points of the virtual
object g1~x, y, z!. Since the SLM is illuminated by a
coherent plane wave, the electromagnetic field con-
tributed from each virtual image point is summed.
The virtual object is three dimensional, and therefore
the overall intensity at plane P4 is obtained by a 3-D
integral as follows:

I4~u, v, u! } U*** g1~x, y, z!expFi
2pM0

lf
~ux cos u 1 vy

1 uz sin u!GdxdydzU2

. (5)

Our goal is to get the magnitude square of the 3-D FT
of g1~x, y, z! on plane P4. That is because the effect
of the 3-D JTC can be obtained when an additional
3-D FT is performed on this magnitude square.
Looking over relation ~5!, we see that it has the form

Fig. 3. Intensity of the correlation re
254 APPLIED OPTICS y Vol. 39, No. 8 y 10 March 2000
of a 3-D FT with Fourier coordinates ~u cos u, v, u sin
u!. However, the real coordinates of the physical
space in P4 are ~u, v, u!. Therefore, to get the desired
3-D FT, we must transform the recorded data from
coordinate systems ~u, v, u! to ~u cos u, v, u sin u!.
The intensity I4~u, v, u! is recorded into a computer in
which this coordinate transform is performed. In
this stage the transformed function Ĩ4~u cos u, v, u sin
u! is actually ~part of ! the square absolute magnitude
of the 3-D FT of the virtual function g1~x, y, z!.
Therefore, following the convolution theorem, an-
other 3-D FT of Ĩ4~u cos u, v, u sin u! yields the auto-
correlation of g1~x, y, z! as follows:

c~x0, y0, z0! } *** Ĩ4~u cos u, v, u sin u!

3 expF2i
2pM0

lf
~x0 u cos u 1 y0 v

1 z0 u sin u!Gd~u cos u!dvd~u sin u!

5 *** g1~x, y, z!g*1~x 2 x0, y 2 y0,

3 z 2 z0!dxdydz. (6)

This final 3-D FT is performed by two steps: first, a
one-dimensional digital FT from u sin u to z0 and
then, multiple 2-D optical FT’s from ~u cos u, v! to ~x0,
y0!, each one for a different value of z0. In case one
has only a single SLM, the series of 2-D optical FT’s
is done sequentially one at a time. The number of a
2-D transform in the sequence is actually the mea-
sure of z0.

of the 3-D joint transform correlator.
sults
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Similar to a conventional JTC, one of the four
terms1,2 of this autocorrelation is the requested 3-D
ross correlation between the object function o1~x, y,

z! and the virtual reference function r1~x, y, z!. In
Section 3 we describe the process of synthesizing
r3~xi, yi! to get a distortion-invariant pattern recog-
nition from the 3-D cross correlation between o1~x, y,
z! and r1~x, y, z!.

3. Synthetic Discriminant Function Synthesis

Searching for an efficient SDF algorithm, we wish to
maintain the dimensionality of the computation
problem, even though the correlation dimensions in-
crease from two to three. For the purpose of the
SDF computation only, we use, as the training set,
2-D images of the object instead of the real 3-D ob-
jects. The training set contains the object’s projec-
tions from various angles according to the desired
limits of the rotation invariance. The use of 2-D
images is a kind of approximation. It avoids the
necessity to increase the dimensionality of the SDF
algorithm. This approximation is justified under
the assumption that the maximal angle u is small
~the maximal angle is 11° in our experiment! and that
the object’s dimension along the z direction is no more
than its dimension along the x axis. These condi-
tions let us further assume that most of the informa-
tion about the object’s pattern is given by the 2-D
image obtained from its central projection ~i.e., from
u 5 0!. Looking from other points of view up to the
most extreme points does not add significant infor-
mation that can substantially change the correlation
results. However, we realize that this approach is
not suitable for all cases of 3-D correlation, and it is
demonstrated here only as a preliminary simplified
example of the use of a synthetic reference function in
a 3-D correlator. It should be emphasized, however,
that, although we use a 2-D correlation for the SDF
synthesis, after the computation is done, the result-
ing reference is employed in the 3-D correlator. In
other words, although the SDF is computed with 2-D
correlations, in the recognition tests we perform 3-D
correlation between real-input 3-D objects and the
effectively 3-D reference function. Reducing the
computation problem to two dimensions enables us to
choose any known SDF algorithm.5 As mentioned
above, for this preliminary demonstration we chose
the MACE-SDF as a well-proved algorithm, but we
realize that other SDF’s might be suitable as well.

The MACE-SDF achieves full correlation-plane
control by minimizing the average correlation energy.
Under the above-mentioned approximation, it is a
minimization of the energy of 2-D correlation func-
tions. It thus produces a sharp and easily detected
correlation peak with minimum sidelobes and false
peaks. Our objective is to design a reference func-
tion that ensures sharp correlation peaks while keep-
ing the object’s location accurately and retaining shift
invariance. The algorithm of the MACE-SDF6 oper-
ates in the spatial-frequency domain. Therefore, in
the case of the JTC, the final result of the algorithm,
the filter function, is converted by a 2-D inverse FT to
the image domain to be employed as a reference func-
tion. We briefly summarize here the main points of
this algorithm, which is extensively described in Ref.
6.

Without losing generality, we consider two classes
of the problem. Let f1~x, y; u1!, . . . , f1~x, y; uM!, f2~x,
y; u1!, . . . , f2~x, y; uM! denote the 2M training images
btained from the 2-D projections of the 3-D objects
rom different view angles uj’s. f1 and f2 designate

the true and the false classes, respectively. F1~u, v;
u1!, . . . , F1~u, v; uM!, . . . , F2~u, v; uM! denote the 2-D
FT’s of the training images, and R*~u, v! denotes the
filter function. We constrain the filter to satisfy the
following correlation-peak values:

** Fi~u, v; uj!R*~u, v!dudv 5 ci, j, i 5 1, 2,

j 5 1, . . . , M, (7)

where ci, j is the expected correlation-peak value be-
tween the object fi rotated by uj and the reference
function. The energy of the ~i, j!th correlation plane
s defined by

Ei, j 5 ** uFi~u, v; uj!u2uR*~u, v!u2dudv. (8)

The optimization is carried out with a vector nota-
tion.5,6 Assuming that each 2-D image has d pixels
overall, Fi, j and R denote the d-dimensional vectors
obtained by sampling in a lexicographic order the
functions Fi~u, v; uj! and R*~u, v!, respectively. The
column vector c contains the expected correlation
value ~c1,1, . . . , c1,M, c2,1, . . . , c2,M!T, and F# is a d 3
M matrix with Fi, j as its @ j 1 ~1 2 1!M#th column.

To minimize the average correlation-plane energy,
we average all the energy values given by Eq. ~8!. In
a vector-matrix notation the function to be minimized
is

Eav 5 ~1yM!R1DR, (9)

Fig. 4. Correlation peak of one true-class object versus the ob-
ject’s rotation angle for the conventional reference function ~rect-
angles! and for the SDF reference function ~triangles!.
10 March 2000 y Vol. 39, No. 8 y APPLIED OPTICS 1255
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where D is a diagonal matrix of size d 3 d whose
diagonal elements are given by

D~k, k! 5 (
i51

2

(
j51

M

uFi, j~k!u2.

Fi, j~k! is the kth element of the vector Fi, j. In a
vector notation Eq. ~7! becomes

F# 1R 5 c. (10)

Finally, the MACE filter that minimizes Eq. ~9! sub-
ect to the constraints in Eq. ~10! is6

R 5 D21F# ~F# 1D21F# !21c. (11)

The computed optimal vector R is converted to the
function R*~u, v! and transformed to r~xi, yi! of the
mage domain by a 2-D inverse FT.

Fig. 5. Schematic of the exper
256 APPLIED OPTICS y Vol. 39, No. 8 y 10 March 2000
4. Computer Simulation

In our simulated example the training set is com-
posed of 42 projections, 21 from the true class and 21
from the false class. The true class contains 21 pro-
jections of a cube of 16 3 16 3 16 pixels with the
characters B, G, and U on three of its faces. In the
central projection ~u 5 0! one sees only the letter G.
In the projections of a negative u, the letter B is
gradually exposed, whereas in the projections of a
positive u, the letter U appears. The false class also
contains 21 different projections of a cube of the same
size but with the characters C, E, and E on three of its
faces. The angular interval of the training set is
100°, 50° to each side, and the angle between any two
successive images in this set is 5°. These 42 projec-
tions of the true and the false classes were used to
synthesize the synthetic reference function by the

tal setup of the 3-D correlator.
imen
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above-mentioned algorithm. In our simulation the
value of c for the true class is 1 and for the false class
s 0.2.

When the reference function is displayed on plane
P3, the system should be able to recognize and locate

Fig. 6. Three images of the input scene out of 23, as observed from
different points of view by the CCD camera on plane P2.
true class members, which appear in any orientation
within 650° in the x–z plane. In the test shown in
Fig. 1 the input space contains four objects. Two of
them, I and III, belong to the true class. Object III is
rotated 20° from the z axis in the x–z plane. The
other two objects, II and IV, belong to the false class,
and they should be ignored by the system. In the
test stage of our simulation the point of view was
shifted along an arc of 18°, 9° to each side of the z axis.
The arc’s center is in the origin of the xyz space, and
all the simulated cameras are directed to this point.
The total number of projections in the test stage is 19
in 1° increments. Each projection was mapped on
plane P3 side by side with the reference function.
Three examples of plane P3, out of 19, are shown in
Fig. 2. Figures 2~a!, 2~b!, and 2~c! show the most
xtreme projections to the left-hand side of the z axis,

on the z axis, and to the right-hand side of the z axis,
respectively. The magnitude of the same reference
is shown in the right-hand side of these figures. All
19 images of plane P3 were processed by the 3-D JTC
as described in Section 2. The output result of this
system appears as a collection of correlation planes,
each for a different value of the output longitudinal
axis z0. As with every JTC, the expected cross-
correlation results between the tested objects and the
reference are obtained near the first diffraction order.
This region is shown in Fig. 3 for a few values of z0.
The high correlation peaks on planes z0 5 25 and
z0 5 21 indicate the successful identification of the
wo cubes, I and III, of the true class.

A comparison between two methods of 3-D corre-
ation is presented in Fig. 4. In the first method,
ndicated by triangles, the true class object is corre-
ated with the MACE-SDF for various values of ro-
ation angle in the x–z plane. In the second method,
ndicated by rectangles, the same object is correlated
ith the conventional reference function described in
efs. 1 and 2. In the range between 0° and 50°,
hich is the angular range of the training set, the
ACE-SDF keeps a stable peak value, whereas the

orrelation peak of the conventional reference func-
ion gradually decreases.

5. Experimental Results

The optical experiment was carried out by the system
shown in Fig. 5. Instead of displaying the reference
function on the SLM, we display only the projections
of the 3-D input scene. Three examples, out of 23, of
these projections are shown in Fig. 6. Figures 6~a!,
~b!, and 6~c! show the scene seen by the CCD posi-
ioned in angles of 211°, 0°, and 11° from the optical
xis, respectively. The angular increment between
very two successive projections was 1°, and there-
ore 611° were the extreme angles of this experi-
ent. The distance between the center of the scene

nd the CCD on plane P2 was 64 cm. The observed
scene contained three cubes of size 5 cm 3 5 cm 3 5
cm. The lower left has the letters BGU on three of
its faces, and its lowest forward left-hand corner is
used as the origin of the input space. From this
origin point, at the point ~x, y, z! 5 ~6, 5.6, 27.5! cm
10 March 2000 y Vol. 39, No. 8 y APPLIED OPTICS 1257
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was located the lowest forward left-hand corner of the
other cube with the letters BGU. This cube, how-
ever, was rotated 22° to the left compared with the
lower cubes. The third cube was used as the false
object, and the letters LRL appeared on three of its
faces, whereas R was on the front face. The location
of its lowest forward left-hand corner is at the point
~10.2, 0, 22.5! cm.

From the SLM each projection was Fourier trans-
formed and interfered with a reference plane wave on
the CCD plane P4. As a result, 23 Fourier holo-
grams of the various projections went into the com-
puter. Inside the computer each hologram was first
multiplied by the SDF filter, computed by the algo-
rithm described in Section 3. Of course, in this case
we use the direct result from the SDF algorithm in
the Fourier plane, without transforming it to the im-
age plane. We obtained the training sets for the
algorithm by recording the BGU, and later the LRL,
cubes at the origin from an angle 220° to 35° with 5°
increments. The magnitude and the phase angle of
the computed 32 3 32 pixel SDF filter are shown in

igs. 7~a! and 7~b!, respectively. As expected, the
ACE-SDF is more transparent in the high-

Fig. 7. ~a! Magnitude and ~b! phase angle of the MACE-SDF filter
sed in the experiment.
258 APPLIED OPTICS y Vol. 39, No. 8 y 10 March 2000
requency region, and this feature is responsible for
he sharp correlation peaks for the true-class objects.

After multiplying all 23 holograms by the complex
DF filter, we performed the coordinate transforma-
ion mentioned in Section 2. Finally, the computer
alculated the second 3-D FT, whereas the proposal
o cooperate optics in this final transform is post-
oned for a future study. The correlation results are
epicted in Fig. 8. Each 3-D plot shows the intensity
istribution on a transverse plane along the z0 axis.

Two recognizable peaks appear in the locations of the
two true-class objects, whereas the false cube did not
grow any peak at all.

6. Conclusions

In conclusion, we have demonstrated a process of 3-D
correlation between a real-world 3-D function and a
3-D virtual complex reference function. This final
function is virtual, because it does not exist in its 3-D
form. The only thing we see from this function is its
2-D projections on SLM1. All reference’s 2-D projec-
tions are equal to the same function computed by the
off-the-shelf algorithm MACE-SDF. On one hand, it
is convenient to maintain the low dimensionality, at
least for SDF calculation. However, on the other
hand, such is also the limitation of this system. In
case objects from the training set have crucial infor-
mation along their depth dimension, the 2-D
algorithm does not achieve the goal of distortion-
invariant recognition. In such cases a 3-D function
should be synthesized, and currently we seek an ef-
ficient 3-D algorithm for this purpose.

In this preliminary study we wanted only to exam-
ine and demonstrate the evolution from a real-object
reference 3-D function1,2 to a synthetic complex ref-
erence function. The goal of this new correlation
method has been achieved, namely, a limited
distortion-invariant optical pattern recognition to-
gether with locating the true-class object in 3-D
space.

Fig. 8. Intensity of the correlation plane resulting from the ex-
periment of the 3-D correlation. The values of z0 are given in
entimeters.
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