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Snake beam: a paraxial arbitrary focal line
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The creation of paraxial arbitrary focal lines by a Fourier computer-generated hologram is demonstrated. The
desired focal line is represented by a series of connected straight line segments, each of which is implemented
by a radial harmonic function located on a different radial portion of the entire hologram. Each subhologram
is multiplied by appropriate linear and quadratic phase functions and is shifted by some distance from the
center. The two phase factors determine the location of each line segment, while the in-plane shift determines
the tilt angle of the segment.  1995 Optical Society of America
Recently we introduced a new beam characterized by
an almost constant intensity along a finite propagation
distance and a beamlike shape in the transverse
dimensions.1 This beam is generated by a Fourier
hologram with the distribution of a radial harmonic
function (RHF). We refer to the beam as a sword
beam. Unlike with other methods of creating sword
beams by Fourier holograms, which are based on
annular2 or approximately annular3 apertures, our
Fourier hologram can be realized by a phase-only
mask. Unlike with the iterative optimization methods
of synthesizing sword beams,4 the RHF is an analytical
solution with a few characteristic parameters.

In this Letter we make use of the RHF and three of
the Fourier hologram’s properties in order to create an
arbitrary twisting focal line. We do this by composing
several holographic elements, each of which creates a
small sword-shaped beam somewhere in the space be-
hind the lens (see Fig. 1). Illuminating the complete
hologram by a plane wave yields a twisted curve of
light, around the front focus, which we term a snake
beam.

Assume that a function gsxi, yid is placed as a
transparency distribution at the rear focal plane ( plane
Pi in Fig. 1) of a spherical lens and illuminated by
a plane wave. Under the Fresnel approximation, the
complex amplitude distribution around the focal plane
Pf is4
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For convenience, we designate Eq. (1) the focal space
transform (FST), such that usx, y, zd ; FST hgsxi, yidj.

Three theorems of the FST, proved in Ref. 1, are
useful for creating the snake beam. In the following
we summarize them in a form suitable for this analysis.

I. Linear phase theorem: If FSThgsxi, yidj 
usx, y, zd, then

FST hgsxi, yidexpfj2psjxi 1 hyidj

 usx 2 lfj, y 2 lfh, zd . (2)
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That is, multiplying gsxi, yid by a linear phase function
shifts the longitudinal beam laterally by distances
slfj, lfhd directly related to the phase constants.

II. Quadratic phase theorem: If FSThgsxi, yidj 
usx, y, zd, then
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That is, multiplying gsxi, yid by a quadratic phase
function shifts the longitudinal beam along the z axis
by a distance 2lf2g directly related to the phase
constant.

III. Lateral shift theorem: If FST hgsxi, yidj 
usx, y, zd, then
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where tan u  ayf , tan w  byf , and sx, y, zd is
the tilted coordinates system, at an angle u from the
xz plane and w from the yz plane. This theorem
states that when the input function is shifted laterally
the output beam is rotated around the focal point by
angles su, wd, whose tangents are directly related to
the lateral shift sa, bd. The longitudinal dimension of

Fig. 1. Schematic of the system used to obtain arbitrary
paraxial focal lines. An example of a snake beam is shown
by the thick line.
 1995 Optical Society of America
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the rotated beam is stretched by the factor sec u sec w,
while the lateral dimensions sx, yd are shrunk by the
factors cos u and cos w, respectively.

From these three theorems it follows that if uszd is
a sword beam, it can be shifted laterally, shifted along
the z axis, and tilted by some angle, respectively. In
other words, as long as we stay in the paraxial regime
(the basic assumption of the Fresnel approximation) we
can design the sword beam in any place and tilt angle
in the three-dimensional space. In practice the beam’s
location is limited to the space defined by a hologram’s
maximal diffraction angle of 618± from the optical axis
(the paraxial regime).

Using the theory of stationary phase approximation,
we found that, among other functions, the following
phase-only RHF (Ref. 1)
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creates a sword beam if gsrid is located at plane
Pi. Note that gsrid is identical to a spherical aberra-
tion factor, suitably isolated in a ring. The longitudi-
nal intensity distribution, around the front focal point,
resulting from this hologram is
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where C is some constant. We have also shown that
z2 > 4lf2R2

2yb4, and, in the case R1  0, z1 > 2lf2yb2;
otherwise z1 > 4lf 2R1

2yb4. It follows from these
relations that
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where DR  jR2 2 R1j and R0  sR2 1 R1dy2.
Relation (7) is the relation between the sword beam’s
length and the radial interval of the hologram.

The snake beam will be composed of a collection of
N connected sword beams, each at a specified loca-
tion, length, and tilt. Suppose, for example, that the
desired beam curve is that shown on the right-hand
side of Fig. 1 as the thick line. The first step of the
design process is to approximate the curve by a collec-
tion of straight lines, as shown in Fig. 2(a). A trade-
off exists between the need to approximate the original
curve with as large a number as possible of straight
lines and the limited resolution and aperture diam-
eter of the single holographic mask. As mentioned
above, each line is implemented by a different radial
portion of the mask. From relation (7) we realize that
the length of each sword beam is proportional to the
width of the radial portion DR and its average radius
R0. Therefore the most efficient order is to implement
the shortest line by the most internal radial portion of
the hologram, to continue in increasing order, and to
finish by implementing the longer line by the most ex-
ternal radial portion.
Each sword beam is characterized by four param-
eters: L, its length projected onto the z axis; h 
shx, hy d, its lateral shift from the z axis; d, its lon-
gitudinal shift (measured from the focal point to the
beginning of the sword); and u  sux, uyd, the tilt angle
between the beam and the z axis. For each straight
line in Fig. 2(a) we recorded all four parameters. The
overall hologram is given by a collection of N RHF’s,
each of which occupies one radial distance, laterally
shifted [by san, bnd], multiplied by a linear phase [with
the parameters sjn, hndg, and multiplied by a quadratic
phase (with the parameter gn). The transparency dis-
tribution of the complete hologram is given by
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Fig. 2. (a) Approximation of straight lines of the focal
curve shown in Fig. 1. All the distances are in arbitrary
units. (b) The real part of the Fourier hologram (128 3
128 pixels) that generates the beam shown in (a). (c)
Output intensity distribution in the x–z plane obtained by
computer simulation of the system shown in Fig. 1. The
small white cross indicates the front focus location.
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Fig. 3. (a) Real part of the Fourier hologram (128 3
128 pixels) that generates the treelike beam. (c) Output
intensity distribution of the treelike beam in the x–z plane
obtained by computer simulation.
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All the above parameters are obtained by interpret-

ing the three theorems and relation (7). It is desirable
that all parts of the hologram have the same value of
the parameter b, in order to guarantee the same inten-
sity level along the curve. The precise value of b may
be determined such that on one hand it will not be too
small in the sense that any local frequency somewhere
over the hologram will not exceed the sampling rate of
the computer’s digital grid and on the other hand it will
not be so large that at some radial portion the RHF will
not have enough cycles to justify the use of the station-
ary phase approximation.

Using the parameters of Fig. 2(a), we synthesized
the hologram following the procedure of Eq. (8). The
real part of the resulting Fourier hologram is shown in
Fig. 2(b). Illumination of this mask, located at plane
Pi, by a plane wave yields the desired snake beam.
The results of a simulation of this snake beam, using
a Fresnel propagator, are shown in Fig. 2(c).

Although the overall beam is a collection of small
sword beams, there is no restriction on the continuity or
the order of these beams. Thus, one can create a more-
complicated three-dimensional patterns than just the
simple snake beam. An example of such a structure,
which belongs to the class of treelike focal lines,
is shown in Fig. 3(b). This is again a three-sword-
beam structure, but this time all three beams share
a common end. The real part of the corresponding
hologram’s function is shown in Fig. 3(a).

The most direct way to implement these holograms
is by gray-scale phase masks.5 As a result of mutual
shifts among the various elements on the mask, there
are intermediate opaque regions. It may be hard to
form such nontransparent regions on the phase mask.
However, our simulations indicate that even if these
regions are completely transparent (and thus the mask
is a pure phase-only mask) we still get the desired
snake beam if it is located far away from the focus.
That is because most of the light that comes from
the uniform intermediate regions concentrates into the
focus.

In conclusion, an arbitrary twisting paraxial fo-
cal line was introduced and demonstrated by two
examples. This method is different by a few aspects
from the technique proposed in Ref. 6. The method of
Ref. 6 is based on one-dimensional Fresnel zone plates
with a variable focal length. Therefore, unlike in our
case, their focal line lacks a circular symmetry. It
cannot be tilted by small angles from the optical axis,
whereas our beam cannot follow large angles. Finally,
in our system the superposed wave vector (of all the
plane waves composing the snake beam) in every lat-
eral plane is parallel to the beam direction. On the
other hand, in Ref. 6 the overall wave vector is always
perpendicular to the hologram plane, no matter what
the focal line’s direction.
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