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Pattern recognition by optical spatial filtering procedures is discussed using general considerations with the

objective of reducing the information content in the spatial filter. The achievement of this objective is very
useful toward the wide application of spatial light modulators and also for facilitating distortion invariant
recognition. The proposed novel approach is demonstrated by an example employing bipolar spatial filters
for rotation invariant pattern recognition.

1. Introduction

Usually the emphasis in research toward a useful
optical pattern recognition architecture is the attain-
ment of higher and narrower correlation peaks em-
ploying holographic spatial filters", 2 with high infor-
mation content. For real-time applications one would
like to use devices like spatial light modulators that
cannot handle these large amounts of information.
The high information content is also a hindrance when
distortion invariance such as rotation or scale change is
considered. For example, both the matched filter2

and its more recent variant, the phase-only matched
filter,3 '4 yield high correlation peaks. Unfortunately,
these filters are the most intolerant of any distortion
because a large part of their information content is that
of the orientation and scale of the object.

The main objective of this work is development of a
pattern recognition approach taking into consider-
ation the resolution limitations of presently available
spatial light modulators. To achieve this goal we seek
a procedure for reducing to a minimum the amount of
information to be written on these modulators when
they are employed in the input and filter planes of a
pattern recognition system. It is evident that the
penalty to be paid is a reduction in the quality of the

Joseph Rosen is with Technion-Israel Institute of Technology,
Department of Electrical Engineering, Haifa 32000, Israel; the other
authors are with University of Alabama in Huntsville, Center for
Applied Optics, Huntsville, Alabama 35899.

Received 1 December 1986.
0003-6935/87/122311-04$02.00/0.
© 1987 Optical Society of America.

correlation peaks, but this will be a suitable price for
higher flexibility and easier applicability.

We start from general considerations that are inde-
pendent of the particular architecture to be adopted.
Most of the steps described may be applied to a diverse
set of configurations. For example, they are valid for
coherent or incoherent pattern recognition performed
by employing spatial frequency filtering or template
matching. To obtain shift invariance we shall restrict
the discussion to spatial filtering procedures over the
Fourier transform plane.

I1. General Considerations

We define our goal to be the recognition of each
pattern in a set of N patterns, fi(xy), (i = 1,2,.. . ,N).
The limitation to N predetermined patterns is not so
severe as it seems at first sight, since one or more of
these patterns may be noise or background. We form
2-D Fourier transforms (FTs), Fi(u,v), and wish to
manufacture a set of filters Mj(u,v), (U = 1,2,. . ,N) in
such a manner that we obtain an optimal response
represented schematically by the relation

Ri = O[Fi(u,v); Mj(u,v)] = j (1)

where 0 is some operator. The degree to which we can
approach this ideal response depends on the operator,
the set of filters, and the patterns involved. For exam-
ple, we may consider the integral power reaching the
output plane of the optical system, O(x,y), indicated in
the schematic representation of Fig. 1. By Parseval's
theorem this power is identical with the power trans-
mitted by the filter positioned at the FT plane [M(u,v)
in the figure]. For this configuration criterion (1) has
the form

Rij = SlF,(uV)Mj(uV)I2dudv = bip (2)

This, however, is a paradoxical requirement since we
deal with a positive definite integrand, and one may
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Fig. 1. Spatial filtering system: L, Fourier transforming lenses of
focal length f f(x,y), input pattern; O(x,y), output pattern; and

M(u,v), filter function.

have a nonvanishing filter function only for i = j.
Naturally, such a criterion cannot lead to a selective set
of filters, and one should seek a solution that involves
the analysis of a power redistribution over the output
plane.

As our starting point we refer to Fig. 1 and define the
response according to Eq. (1) as the power incident at
the origin of the output plane. (Since we are dealing
with Fourier plane filtering the position of this origin
corresponds to the position of the object in the input
plane.) Denoting by Oij(x,y) the output distribution
produced by pattern Fi(uv) illuminating filter Mj(u,v)
this recognition criterion states

This is a very far reaching consequence as it means that
to discriminate among N patterns it is adequate to use
filters with N transmittance values. We have to point
out, however, that the above conclusion is only theoret-
ical and holds if filters and detection can be imple-
mented with infinite dynamic range and infinite accu-
racy. Furthermore, the above relations were obtained
by constraints imposed on a single point in the output
plane. For a satisfactory discrimination, taking into
account practical considerations, this will usually not
be adequate, and the number of equations (and sam-
ples) will have to be multiplied by the number of
required discriminating points. This procedure es-
sentially generates a synthetic discriminant function
(SDF). 5

We considered up to this point N X L rectangular
sample regions just as an example. To attain efficient
recognition the area and shape of these samples must
be optimized according to the recognition task. For
another example we consider rotation invariant pat-
tern recognition with rotationally invariant filters.
For this case the filter division is along concentric
rings. Denoting the radius of the kth ring by rk we may
have to look for an optimal function h(k) that gives the
various radia

R j = I O°j(0,0)1 2 = 5,j, (3)

where, in the configuration of Fig. 1,

oij(x,y) = 57[Fi(u,v)Mj(u,v)], (4)

and Eq. (1) is now equivalent to

I fF(u,v)Mj(u,v)dudv = ij. (5)

This relation represents a set of linear equations
that can be solved, at least in principle, to generate the
filters Mj(u,v).

111. Filter Generation

To solve Eq. (5) for each filter and generate Mj we
have to sample the Fourier plane. Assuming a rectan-
gular coordinate system we divide the Fourier plane
into K X L regions of area SkI, each (not necessarily
equal) with k = 1,2, . K and I = 1,2, . L. To each
of these regions we designate a constant value Mjkl as
its (generally complex) amplitude transmittance.

Integrating the incident complex amplitude over
each region we form the matrix elements

Fikl =1I Fi(u,v)dudv, (6)

and we may generate the filter samples by solving the
set of N 2 linear equations:

K L

Z ZFiklMjkl =ij, (7)
k= 1=1

where i, j = 1,2,. .. N.
Equation (7) gives N equations for each of the N

filters Mj(u,v) consisting of K X L unknown samples.
Thus one may obtain a unique solution if K X L = N.

r = h(k). (8)

An interesting and simple class of these functions
can be written in the form

h(k) = rk , (9)

where r1 and q are constants. The special case of q = 1/2
is the Fresnel zone division where all the rings have the
same area, while the case q = -1/2 may be termed the
inverse Fresnel zone plate (i.e., the kth radius of the
Fresnel zone plate multiplied by the kth radius of the
inverse Fresnel zone plate is a constant for all k).
These two kinds of division complement each other
with respect to the nature of patterns to be discrimi-
nated. The first kind of division has rings that become
very narrow for high spatial frequency values, thus
making it a good rotation invariant filter for patterns
having their important features at high frequencies.
Conversely, the second choice will be suitable for filter-
ing information at low spatial frequencies. An inter-
mediate case may be treated with filters having q = 1
where the width of the rings is constant. This analysis
is reminiscent of the procedures utilized in Ref. 6
where a specific circular harmonic was chosen for each
recognition task depending on the objects to be dealt
with. Sometimes the useful information is concen-
trated only in certain regions of the filter plane. For
example, in many cases the low frequency region does
not contain selective information, and better filtering
is obtained by eliminating the energy in this region
altogether.

A similar procedure would be implemented for com-
plete scale invariant pattern recognition where the
filter should depend on angular orientation only and
not on the distance from the origin. For this case one
would need radial division lines to split the filter plane
into L sectors.
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Fig. 2. Two random patterns to be discriminated.

IV. Bipolar Filters and Experiment

In principle the filters described in this work can be
generated similarly to other composite filters7 or circu-
lar harmonic filters6 as computer generated holo-
grams. However, the present procedure has a more
general attitude, and other implementations are also
possible. Although the information content of these
filters is relatively low, a holographic filter needs still a
quite large bandwidth. To reduce this requirement
we show now that filters with real, positive, and nega-
tive valued transmission characteristics can perform
reasonably well even for rotation invariant pattern
recognition. It has been shown8 that the implementa-
tion of such bipolar filters is possible, and with the
advent of spatial light phase modulators the procedure
becomes rather simple. One major advantage of work-
ing with nonholographic spatial filters is the in-line
architecture of the whole optical system.

In a bipolar filter the amplitude transmittance of
each filter element is real and satisfies the relation

-1 SMjkl 1. (10)

This is a very serious constraint on the equations de-
termining these values [Eq. (7)], and in many cases
such solutions are not available. The only way to get
around this problem is to relax the conditions on the
right-hand side of the equations and optimize the solu-
tions.

To demonstrate the procedure we implement a com-
pletely rotation invariant filter. For a general treat-
ment of rotation or scale invariant pattern recognition,
it is useful to represent the input pattern in polar
coordinates. We denote by F(r,O) the complex ampli-
tude distribution produced by the input pattern at the
filter plane, and we employ a circularly symmetric
filter. We divide the filter plane into N concentric
rings (where N is now the total number of divisions as
discussed in the previous section) and denote by MJk
the transmittance (real, positive, or negative) of the
kth ring in the jth filter. Equation (6) can be now
rewritten in the form

Fig. 3. Rough representation of a rotationally invariant bipolar
filter made for recognizing the top pattern of Fig. 2.

Fig. 4. Output intensity distribution with input of Fig. 2 and opera-
tion with the filter of Fig. 3.

Fik = j Fi(r,0)27rrdrdO, (11)

where integration is performed over the area of the kth
ring Sk. With these definitions Eq. (7) will be replaced
by

|I FikMjk = 5ij. (12)

Since this relation concerns the absolute values of each
equation, an arbitrary phase may be assigned to render
the values of Mjk real.

To test the viability of the present approach some
computer experiments were performed, and rotation
invariant recognition was demonstrated. One experi-
ment involved random patterns as shown in Fig. 2.
The filter plane was divided into sixty-four concentric
rings, and filters were generated according to Eq. (12).
Figure 3 is an approximate representation of the rota-
tionally invariant filter made for one of the patterns,
while Fig. 4 is the intensity distribution over the fil-
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Fig. 5. Cross section along a diameter of the filter with removal of
low frequency components.

11 I ' Ii 111 '...

Fig. 6. Output intensity distribution for the input of Fig. 2 and
filter of Fig. 5 prepared for recognizing the top pattern.

tered output plane. The result is quite noisy in part
due to a large fraction of energy transmitted at zero
spatial frequency that contains no information about
the object. If this frequency component is removed by
a modified filter, the cross section of which is shown in
Fig. 5, the filtered output shown in Fig. 6 is obtained
with an appreciably enhanced SNR.

V. Conclusions

A simplified approach to optical pattern recognition
was proposed to make its practical application more
feasible. As an example of possible implementation of
the present approach a recognition criterion was cho-
sen so that the filters contain information about the
complete complex amplitude distribution of the pat-
terns. Using computer experiments it was shown that
adequate information may be contained in bipolar fil-
ters to recognize patterns even in a completely shift
and rotation invariant manner with no need for holo-
graphic filters. In a subsequent publication it will be
shown that the approach presented here can be em-
ployed for different kinds of filter, i.e., phase filters,
and patterns of various nature.

It should be emphasized that criterion (1) can never
be exactly satisfied. Further studies are carried out to
search for possibly better criteria that may also be
easier to implement optically.

This work was partially supported by a contract with
NASA Johnson Space Center under contract NAS9-
27598.
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