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Iterative learning procedures on hybrid electro-optic sys-
tems were employed to generate complex reference discrimi-
nant functions. The procedure was implemented using a
joint transform correlator equipped with a single inexpen-
sive spatial light modulator. Experimental results demon-
strate efficient two-class discrimination.

The iterative generation of spatial filters on digital comput-
ers was pioneered in Ref. 1. This was extended in Refs. 2
and 3 to the concept of direct learning on the actual optical
correlator. The basic principle of this concept is the use of
an adaptively variable reference function located alongside
the input pattern in a joint transform correlator (JTC)
configuration.4 The desired reference discriminant function
(RDF) is obtained iteratively by measuring the correlation
output distributions and adjusting the RDF values accord-
ingly. In a conventional JTC application, however, only
real, positive values of the RDF were implemented reducing
the discrimination capabilities compared with complex
discriminant functions.'

In the present work we describe the experiment of
two-class learning with the electro-optical system described
in Ref. 3. This system's procedure makes it possible to
generate a complex-valued RDF on a regular JTC configura-
tion. Although the RDF is displayed on a spatial light
modulator (SLM) as a binary (1, 0) mask, it effectively
behaves like a complex function. This function is generated
by a learning procedure that is also implemented on the
JTC controlled by a personal computer.

In the first stage of the experiment the correlator is
presented with a set of patterns divided into two classes in
any arbitrary way. Defining a recognition criterion, we
instructed the system to discriminate between the two
classes. During this stage of the experiment the JTC
operates in its learning mode. After completing the learning
mode the computer has in its memory an RDF designed for
the specific task, and it can be presented in the proper way
on the SLM. This is done during the second stage of the
process, the operating mode, when the system performs the
classification task.

The fundamental concept behind our approach is that the
learning and operating modes are both implemented on the
same intelligent system in its natural environment. Adopt-
ing this concept will enable in the future quick learning and
updating of the RDF's stored in the system memory during
a real-time recognition process. Moreover, unlike a similar
learning algorithm that is implemented on digital comput-
ers alone,6 the process here takes into account all the

distortions and the constraints induced by the optical
system.

The correlation process, which uses one-dimensional
(1-D) signals for clarity, is illustrated graphically in Fig. 1.
The procedure is started with the learning mode, an
arbitrary binary reference function r(x, y), [r(x, y) E 10, 1}],
which is presented on an SLM in the input plane together
with a pattern to be recognized. We may assume without
loss of generality that the object and the reference are
located at distances b and -b from the origin along the y
axis, respectively [Fig. 1(a)]. The input object function
f(x, y) is multiplied by a 1-D grating, I'=-. rect[(y -
md)/a], as illustrated in Fig. 1(b). The overall amplitude
transmittance at the input plane is shown in Fig. 1(c) and
the complex amplitude distribution at the Fourier plane in
Fig. 1(d). Selecting only the first diffraction order by the
television camera yields the interference pattern shown in
Fig. 1(e). This intensity distribution is displayed again on
the SLM. Given a unit illumination on the SLM the
complex amplitude distribution over the output plane after
another Fourier transformation (FT) is given by [see Fig.
1(f)]

s(x, y) =A [ f (x, y) ED f (x, y) + r'(x, y) r'(x, y)

+ f (x, y + 2b) r'(x, y) + r'(x, y) Gfl f (x, y - 2b)], (1)

where ff denotes correlation. The cross correlation between
f(x, y) and r'(x, y) is obtained around the point (0, 2b).
Although the original reference function r(x, y) is a real
binary function, our RDF r'(x, y) may acquire any complex
distribution. The FT of r(x, y), R (f, ), exists over the
entire Fourier plane and satisfies the condition

R(fx, fy) = R*(-fx, -fy), (2)

as it is the FT of a real function. On the other hand R '(u, v)
[the FT of r'(x, y)] is a band-limited function centered
around the point (0, l Id), and it does not necessarily satisfy
a condition that is similar to Eq. (2). Thus the function
r'(x, y) will no longer be restricted to real values.

The minimal condition to guarantee the concentration of
adequate energy from the distribution of R (u, ) around the
point (0, l Id) is that the pixel size in r(x, y) does not exceed
d. This requirement allows the origin of the reference
spectrum to be shifted along the v direction to create a
region of overlap between the spectrum of the object and
that of the reference pattern. Within this region an interfer-
ence pattern is created that yields a high correlation peak in
the FT plane.

The main advantage of this system is its ability to
perform a correlation between an input signal and a desired
complex, multilevel, reference function without actually
recording one. Although the reference mask is only binary
it contains all the required complex information as a binary
computer-generated hologram. In our JTC with a complex
reference function we exploit the advantages of the conven-
tional JTC architecture together with those of the 4-F
correlator. To be specific the JTC is compact and does not
require tedious alignment procedures, while the 4-F correla-
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Fig. 2. Input training set: (a) patterns of class A to be detected in
the first part of the experiments; (b) patterns of class B to be
rejected; (c), (d) additional test objects.

(C)

tor accepts complex, multilevel, impulse response func-
tions. Our system possesses all these attributes. However,
there is a penalty for these benefits in terms of the reduced
space-bandwidth product. Compared with the conventional
JTC our system has only one third of its bandwidth along
one of the coordinate axes. The reason is that we have to
introduce three diffraction orders of F (u, v) within the
bandwidth provided by the optical aperture.

The algorithm for generating the RDF is based on a
(d) minimization of a cost function, which takes into account

(d) the discrimination demands over the complete correlation
plane. The cost function is defined by using the elements of

v the RDF as variables. Assuming a set of patterns f,(x, y), we
define the goal of the system as the detection of the
presence of patterns out of the subset f(x, y) while
rejecting all other patterns denoted by the subset f (x, y). A
reasonable criterion for detection is the appearance of a
strong peak as contrasted with a uniform distribution for
the patterns to be rejected. Therefore, we define a cost
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Fig. 1. Schematic illustration of the correlation process between
an effectively complex reference function and an object by means of
a JTC (see text for details).

Fig. 3. Input plane distribution. The sampled object is shown
above, and the binary reference is shown below.
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Fig. 4. Two steps toward the convergence of the process (see text for details).
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function M by the relation

M(r) =

max,q{2f Ifn f r' | dxdy

mine{2J J If n r' 2 dxdy

with

X~~~x"-- X ~ ~ .=Yx+-X = X- 2 X = X. + 2' Y. 2' 2

Here (xO, yfl) is the point where (maxi,| fn E r' 12) is achieved
for the nth pattern. The small integration area A2 is chosen
to be the width of the spot where the intensity drops to half
of its maximum value. The meaning of the cost function is
the ratio between the maximum among all the correlation
peaks belonging to the rejected class (n E q) and the
minimum of all the correlation peaks belonging to the
detected class (n E p) for a given reference r. For an efficient
class discriminator the cost function of Eq. (3) must be
minimized. The whole learning and recognition process
introduced here was implemented on the actual optical
correlator; all the constraints and distortions of the system
were taken into account. The iterative minimization pro-
cess employs the direct binary search algorithm.2 378 This
iterative process is continued until there is no significant
reduction for a long time in the low state of M(r).

Unlike similar procedures employed by digital comput-
ers,7 the real-life measurements of the intensity distribu-
tions at each iteration are noisy. A breakdown of the
iterative procedure may occur when a random noise fluctu-
ation causes the value of the calculated cost function to
jump to an unreasonably small value that cannot be
approached by subsequent iterations. To avoid such locking
into an unacceptable value of the cost function, one should
modify the algorithm. For each iteration we calculate the
mean E.(M) and standard deviation orA of the measurements
of the last k iterations (k is large enough to satisfy
statistical conditions). Denoting by M. the last minimum
value of M(r), we define the decision criterion at each
iteration by three distinct situations:

if M(ri+1 ) 2 Mi then Mi+, = Mi,

if M(ri+1 ) < Mi and M(ri+1 ) - Ei(M) • oi then Mi,+1 = M(ri,

if M(ri+1 ) < Mi and M(ri+1) - Ei(M) > vi

then Mi+i = minMi, [Ei(M) - o)I}. (4)

In other words we do not change the actual minimum value
of the cost function unless it is within reasonable statistical
limits.

For our demonstration experiments we used a single
SLM to implement the JTC.3 The SLM is an inexpensive
liquid crystal television set with 162 x 144 pixels. The
operation of the system was controlled by a CUE-2 image
processor. 9 We chose as the training set three objects of
class A and three of class B, as shown in Figs. 2(a) and 2(b),
respectively. Six additional objects [Figs. 2(c) and (d)],
which could be associated with the two classes but did not
participate in the training set, were employed to test the
system performance for more general class discrimination.
Our primary goal was to detect the patterns shown in Fig.
2(a) and reject those shown in Fig. 2(b). Figure 3 is the JTC
input plane where the input pattern is positioned on the

upper part and the binary reference function is placed on
the lower part. The size of the reference function in this
experiment was 64 x 32 pixels. The minimum size of the
smallest element of the reference is one pixel in the y
direction and two pixels in the x direction. Thus we
effectively have the binary reference function represented
on a matrix of 32 x 32 elements. The grating sampling the
input object consists of two pixels for d. The same proce-
dure is repeated for the other objects. The measurements of
the six correlation peaks, three for each class, are used to
calculate the cost function [Eq. (3)], and decisions are made
according to Eq. (4). After the decision is made the new
reference function is displayed and a new cycle starts. The
iterations are repeated until a satisfactory discrimination is
achieved. Based on a set of 30 independent experiments the
search process converged on the average after 20,000
accesses to the RDF mask. The convergence rate depends
on the RDF size and may be improved by changing the
search algorithms, which is a subject for future research.

Figure 4 depicts two stages along the iterative learning
process. Each figure contains the correlation regions of the
six objects along with a 3-D display of the intensity distribu-
tion. The images over the left-hand side in each frame
belong to the three objects of Fig. 2(a), while those on the
right-hand side originate from the patterns of Fig. 2(b). The
discrimination between the different classes is improved
from Fig. 4(a) to Fig. 4(b), which shows the final results of
the learning stage when the process is terminated. The
system achieved a minimum cost function value of 0.67; i.e.,
the ratio between the strongest correlation peak of the
undesired class to the weakest correlation peak of the
desired class is 1:1.5. These results can be improved if we
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Fig. 5. Classification results with the complex reference of the
two classes shown in Fig. 2. The vertical axis is the normalized
correlation strength with the filter for class A, and the horizontal
axis is the filter prepared to detect the patterns of class B. The
triangles represent the patterns in Fig. 2(a), and the patterns in
Fig. 2(d) are represented by triangles with asterisks. The open
rectangles represent the patterns in Fig. 2(b), and the rectangles
with asterisks denote the patterns of Fig. 2(c).
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subtract from the output intensity distribution the dark
signal level of the camera. This level value is 30% of the
maximum intensity. Another technical limitation is the low
contrast of the liquid-crystal television SLM, which sup-
presses the intensity spectrum at high spatial frequencies.

To expose the system to additional tests the procedure
was repeated with the two classes interchanged. An RDF
was generated to recognize the objects of class B shown in
Fig. 2(b) and reject those of class A [Fig. 2(a)]. The
performances of the two RDF's were tested with all six
objects of the training set and also the six objects of the test
set [Figs. 2(c) and 2(d)]. The measured values of the
correlation peaks for all twelve patterns are plotted in Fig.
5. The axes of this plot indicate the correlation peak values
of the two RDF's. The diagonal line denotes all the points of
equal peak values in both filters-the region of nondiscrim-
ination. The farther the clusters are from the diagonal the
better is the discrimination. The patterns of Fig. 2(a) are
denoted by open triangles, and the triangles with the
asterisks represent the test set of Fig. 2(d). The patterns of
Fig. 2(b) are denoted by open rectangles, and the rectangles
with the asterisks represent the test set of Fig. 2(c). As
indicated by Fig. 5, we have successfully demonstrated the
generalization and classification capability of the complex
reference. There was excellent discrimination among the
two classes participating in the training while other pat-
terns were rejected by both filters, although with reduced
discrimination.

The high discrimination capability of these reference
patterns was compared by laboratory experiments to the
performances of a conventional JTC that yielded a discrimi-
nation ratio of only 1:1.05. This emphasizes the need for an
unconventional procedure. The hybrid learning architec-
ture is promising because the FT's are performed optically,

and they take into account the actual optical system
parameters. Thus aberrations and distortions are automat-
ically handled. The optical system is compact and easy to
align and uses a small number of inexpensive components.

This work was performed within the Technion Advanced
Opto-Electronics Center established by the American Tech-
nion Society, N.Y.
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A new, improved version of the arithmetic Fourier trans-
form algorithm is presented. This algorithm computes the
Fourier coefficients of continuous-time signals by using the
number-theoretic technique of Mobius inversion. The im-
proved algorithm can calculate all the Fourier coefficients
including the dc component. It also requires a smaller
number of delays and arithmetic operations than the stan-
dard arithmetic Fourier transform algorithm.

Recently Tufts and Sadasiv' proposed a method for comput-
ing the Fourier coefficients of zero-dc continuous-time
signals by using the number-theoretic technique of Mobius
inversion. They called this method of Fourier analysis the
arithmetic Fourier transform (AFT). 3 We use this algo-
rithm to calculate Fourier coefficients from approximately
2N2 /3 (N is the number of harmonics in the signal)
nonuniformly spaced samples of the signal."- The AFT can
be used for accurate high-speed Fourier analysis and synthe-
sis. The major advantage of the AFT algorithm is that it.

needs mostly addition operations, except for a few multipli-
cations by real-scale factors. The AFT computations are not
complex and are designed for real-time spectral analysis of
signals. The AFT can be easily realized on general-purpose,
signal-processing, very large scale integrated (VLSI) chips.
It is suitable for parallel processors. This algorithm has
been applied to the computation of a discrete cosine trans-
form4 and also extended to two-dimensional signals for
image processing.5 In a previous paper6 we showed that the
AFT algorithm can be realized efficiently on an incoherent
optical parallel processor by using nonuniformly tapped
fiber-optic delay lines. An advantage of the optical AFT
processor compared to the standard optical discrete Fourier
transform calculator' is that we avoid complex number
manipulations and electronic postprocessing for computing
the basic Fourier coefficients.

In this paper, we present two improvements to the AFT
algorithm such that it can be realized more efficiently. The
modified AFT (MAFT) algorithm can calculate all the
Fourier coefficients including the dc component. This addi-
tional feature of dc calculation will allow an incoherent
optical processor to determine the Fourier coefficients of
nonzero-mean light-wave signals accurately. The MAFT
algorithm also requires a smaller number of taps and
arithmetic operations to calculate the Fourier coefficients
than the standard AFT proposed in Ref. 2. The spectral
resolution of an MAFT-based system is dependent on the
spacings between the taps and the number of taps on the
delay line. The basic structure of the MAFT is the same as
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the standard AFT and thus, the MAFT can also be imple-
mented easily on VLSI chips and parallel processors.

The AFT can be used to calculate the Fourier coefficients
of real-value band-limited periodic signals of the form

x(t) = ak COS - + b sin (1)

where ak and bk are the coefficients of the kth harmonic with
a frequency of 27rk/T rad/s. We assume that x(t) is station-
ary, contains no zero-frequency (dc) term, and each har-
monic above the Nth is zero. If we shift the periodic signal
x(t) in Eq. (1) in time by an amount aT where - 1 < a < 1,
we get

N ,rt N .(2rrkt\
x(t + aT) = I ck(a) cOS + d(a) sin T (2)

where

Ck(a) = a, cos(27rka) + bk sin(2rrka), (3)

d*(a) = -ak sin(2irrka) + b cos(2'rrka). (4)

For the AFT we need a new set of averages of the signal
x(t + aT) sampled at n equally spaced points, defined as

1 ni-
s(n, a) = - x(lTIn + aT).n I (5)

The coefficients Ck(a) in Eq. (3) can be evaluated from the
sum s(n, a) by using the Mobius inversion formula for a
finite series as follows:

(Nlkl

ck(a) = I P,(m)s(mk, a) for k = 1, 2, . .. ,N, (6)
r-I

where ju(m) represents a Mobius function.8 The Mobius
function can only take values from the set (-1, 0, 1. The
basic theory of the AFT algorithm is given in the following
theorems.2

Theorem 1A

Let a = 0 and let k be an integer such that 1 < k < N. Then

ak =Ck(O) fork=1,2,...,N. (7)

Theorem 1 B

First, let n be an integer such that 0 < n < [log2(N)], where
[z] denotes the principal part of z. Next let a = 1/2n±2 and
assume k is an integer of the form k = 2(2m + 1) in the
intersection of set N, = 2n(2m + 1) m belongs to the set of
all integers including zero} and the finite set IN) = 1,
2, . .,N}. Then

bk = (1)Ck(1/2 2). (8)

Equations (6)-(8) provide a number-theoretic method for
calculating the kth Fourier coefficients ak and bk from c,,(a),
and the computations can be performed in parallel. Thus in
the AFT each Fourier coefficient is calculated as a linear
combination of the signal x(t) and its delayed samples at a
particular time. Expressing the terms s(n, a) as sums of
delayed samples of x(t) we have shown that the vector of

Fourier coefficients, f = [a, . . . akb, . . . b*j, can be obtained
from

f = 70%, (9)

where X is a vector of nonuniform samples of x(t) and 7is
the AFT coefficient matrix. 6

Numerical analysts suggested a similar way of calculat-
ing the Fourier series of a given function. They calculated
the Fourier coefficients through the numerical approxima-
tion of Fourier integrals. One such method for the computa-
tion of the Fourier coefficients based on the Mobius inver-
sion of the Poisson summation formula (called the MIPS
method in numerical analysis literature) was proposed by
Goldberg and Varga9 and elaborated by Lyness.'0 '" This
method requires a greater number of taps or function
samples compared with the AFT algorithm. This method is
particularly suitable in a situation in which all the Fourier
coefficients are required to have uniform accuracy.0","

From Theorem 1A we observe that a single choice of a =
0 in Eq. (7) supplies every a, k = 1, 2,. . ., N for all N,
while, on the other hand, there is no fixed a (or fixed finite
set of a values) supplying bk, k = 1, 2, . ., N for all N. We
require a to take [log2 N] + 1 different values to obtain all
the b coefficients. In the modified version of the AFT
algorithm, we select a to take one more value other than
a = 0, namely, a = 114N.

Theorem 2

The bk coefficients can be represented as a linear combina-
tion of the signal samples x(lTIn) and x(lT/n + T/4N).

Proof
From Eq. (6) and at = 114N, we derive

1
b = sinrk2N)[c(4N) - ak cos(Trk/2N)]

1

sin(rkI2N) [c(114N) - Ck(0) Cos(rrkl2N)]

fork=1,2,...,N. (10)

When we combine Eqs. (5), (6), and (10), we notice that bk
can be written as a linear combination of the signal samples
x(lT/n) and x(lT/n + T/4N). The theorem is proved.

Our MAFT algorithm comprises Theorems 1A2 and 2,
which replaces Theorem 1B. The MAFT algorithm can still
be formulated as a single matrix-vector multiplication of
Eq. (9) with a different W and X. The main advantage of the
new algorithm is that it requires a smaller number of taps
compared to the standard AFT algorithm. This is mainly
due to the selection of a single value of a as opposed to
[log2 N] + 1 values. When we implement the MAFT algo-
rithm with one nonuniformly tapped delay line, the re-
quired number of signal samples or taps Mtap is twice the
number of distinct samples x(lTIn) where I < n and is
relatively prime to n. The number of taps is given approxi-
mately by the relation Mta 2N2/3 + O(NlnN). Table I
shows the number of taps required for the cases N = 4 and
N = 8. Notice that the difference between the number of
taps required for the standard AFT and the MAFT algo-
rithms increases rapidly as the number of harmonics N
increases.

In all the previous formulations of the AFT algorithm,
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Table 1. Total Number of Signal Samples (Taps) Required for
Implementing the AFT and Improved AFT Algorithms

Number of Taps Required Map

N AFT Improved AFT

4 16 12 (+2)
8 56 44 (+4)

The number of extra taps required for dc calculation is indicated
in parentheses.

the signal x(t) was assumed to be zero mean, i.e., no dc
component. In general, any typical band-limited signal can
be represented as a finite series, i.e.,

N

x(t) = a + d [ak cos(2rrkt/T) + bk sin(27rkt/T)],
k=1

where ao is the dc term (the mean value of the signal). Also,
in the incoherent optical systems, the signal x(t) in the
optical fiber is always positive, having a dc component along
with the harmonics. For signals with a dc component, the
AFT algorithm described in Eq. (9) would produce a vector,

fo = f + Mwa,, (11)

where the ith element of the 2N-vector M. is I wi, the ith
sum of matrix W.6 So we need to modify the AFT algorithm
to handle nonzero-mean signals. The first step in the
modification will be to calculate the dc value. The following
theorem gives a method for calculating the dc exactly from
the delayed samples of x(t). This method is superior to that
of estimating the dc from a moving average of x(t) as
described in our previous paper, Ref. 6.

Theorem 3

Let the finite Fourier series of a signal x(t) be of the form

N

x(t) = a + E [a cos(2'rrkt/T) + b sin(27rkt/T)]. (12)
k=t

Then the mean (dc) of the signal is obtained as follows:

1 N+.-I iT
ao=N+ E X\N+ (13)

But

1 N+r- I j2,rik
ex +m PN + mN+m 7e- k+

1, if (N + m) Ik or k = (N + m) for some integer 

Io, otherwise

(15)

where j = -1 and (N + m) Ik denotes "integer (N + m)
divides k." Hence, by taking the real and imaginary parts,

1 N+.-l I 2T7ik 1, if k=l(N+m)
N+ m~ cos + m = O, otherwise (16)

1 N+m1l 2Trik

N + / sinj +M =0 for all integers k and (N + m).

(17)

Since k varies from 1 to N, the integer (N + m) does not
divide k for all m 2 1. Thus, from Eq. (14),

1 N±(- m aiT ,
N +m j=0\ + O

and the theorem is proved.
The sum in Eq. (13) is equal to s(N + m, 0) according to

the definition of s(n, a), Eq. (5). From Eq. (13) it is clear
that the dc can be calculated as a linear combination of the
signal samples x[iTI(N + m)]. To suppress the additional
component that is due to the dc term in Eq. (11), we
perform the following steps: (1) Add extra taps to the
delay lines to sample the signal also at t = iTI(N + m), i =
0,. . . , N + m - 1. The value of m in Eq. (13) is selected to
keep the number of extra taps required for the dc calcula-
tion at a minimum. (2) Calculate the dc value a,,, using
Eq. (13). (3) Use ao to cancel the extra term Mwao from
the observed vector f and determine the Fourier coeffi-
cients f.

All these steps can be integrated together in one parallel
multiplication of a vector Xnew by a new matrix Wnew. The
vector Xnew consists of the vector X and a few extra samples
for dc calculation. The matrix Wnew is a modified version of
the interconnection matrix W. We model Wnew as the
product of an augmented matrix [W: -M1] and a matrix B.
The matrix B is designed such that

BXnew = [X: a ].

Notice that the product

WnewXnew = fo-Mwa = f
Proof
We use Eq. (12) and get

N+.-l i 
N+ m ix(N+ m)

1 N+r-i N r | 2,rik | 27rik
ao + ~ ~~~cos 10 + bk, sinN

N +m 2,, ,, [a= \N + m} + mi

+ N [ N+n-l | 2Trik +b N+r-i (2Trik
a + Nak cosN +m + b sin

(14)

is the desired vector of Fourier coefficients.6 Thus the
overall strategy for calculating Fourier coefficients using
MAFT's can be realized by a single matrix-vector multipli-
cation:

f = WewXew, (18)

on a parallel processor such as the optical system described
in Ref. 6.

The following example illustrates how a MAFT algorithm
consisting of the results of Theorems 1A, 2, and 3 can be
used to compute all the Fourier coefficients of a nonzero-
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mean signal bandlimited to four harmonics N = 4 in Eq.
(12)].

Step 1: To calculate the dc component a., we use Eq.
(13). The value of m is selected to keep the number of extra
taps required for dc calculation to a minimum. For example,
when m = 1 we need 4 extra taps at TI5, 2T/5, 3T/5, and
4T/5. The choice of m = 2 requires only two extra taps at
T16 and 5T16. Thus the dc component is given by

ao = 1/6[x(0) + x(TI6) + x(T13)

+ x(TI2) + x(2T13) + x(5T16)]. (19)

Step 2: Before calculating the a, and b, coefficients, we
define a new zero-mean signal:

x(t) = x(t) - a,. (20)

We note that the values of the Mobius functions are P(l) =
1, p(2) = -1, pL(3) = -1, and p,(4) = 0.

Step 3: We form the sums s(n, 0) at the output of the
bank of delay lines according to Eq. (5).

Step 4: From Eq. (7) in Theorem 1A, the a, Fourier
coefficients are determined as follows:

14/hi

a = c,(0) = T p(l)s(lk, 0) fork = 1, 2, 3, 4. (21)
1-1

Step 5: To compute bk for 1 < k < 4, let a = 114N=
1/16. From Eq. (10) in Theorem 2, we obtain

1
bk= in( k8) [(1/16) - c,(0) cos(7rk/8)]

1 [4/kl

sin(lmkI8) 2 p.(l) [s(lk, 1/16) - s(lk, 0) cos(7rk/8)]

for k = 1, 2, 3, 4. (22)

The ak and b coefficients determined above can be
expressed as a linear combination of the samples of signal
x(t) by combining Eqs. (20)-(22). These linear equations are
formulated in terms of a matrix-vector multiplication
(WnewX,,). Steps 1-5 can be easily programmed into a

computer to generate the matrix Wnew and the vector Xew
for any value of N.

This research is supported in part by National Science
Foundation grant EET-8707863. Encouragement from S. M.
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