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Multiple-object input to the recently introduced phase-extraction correlator may cause difficulties owing
to interference effects. Similar effects have been observed previously in the nonlinear joint transform
correlator. It is shown theoretically and by computer simulations that these effects are seldom
observable in practice, and even then they can be substantially reduced by employing a proper
space-variant threshold. The implementation of this scheme by a hybrid electro-optical architecture is
also explained briefly and demonstrated. The results presented permit manipulation of information
(spectral phase) that was previously believed to be contaminated beyond recovery.

1. Introduction
Recently we presented' an optical system that per-
forms correlations based purely on the phase distribu-
tion in the Fourier-transform (FT) plane23 (phase-
only correlation). The performance of this phase-
extraction correlator (PEC) was demonstrated 4 to be
superior to its linear counterpart except for some
special cases of inputs with multiple identical objects.
It was indicated that good performance could be
restored for these cases as well by modifying the PEC
through the use of a spatially varying threshold.

Our purposes are to analyze further the problem of
multiple-object inputs, to determine its extent, and to
derive procedures for its alleviation. The analysis
presented here, although developed originally for the
PEC, is quite general and can be extended for the
treatment of other aspects of signal processing in
which phase extraction is involved. Specifically, the
analysis may be applied to the nonlinear joint trans-
form correlator (JTC)5 and its observed problems,
such as the binarization of the JTC spectrum.6 Also,
it may be applied for the reconstruction of signals
from their Fourier phase under conditions that were
previously believed to cause signal irrecoverability.

After a short review of earlier research in Section 2
we present a comprehensive analysis of the multiple-
object problem in Section 3 that is based on a
statistical model treated in Appendix A. Modifica-
tion of the PEC to a space-variant threshold PEC, the
SVTPEC, is described in Section 4, and we demon-
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strated how it can alleviate problems that may arise
during the use of the simple PEC. In Section 5 the
theoretical predictions are confirmed by computer
simulations, and laboratory experiments are de-
scribed in Section 6. It should be noted that the
SVTPEC yields results that were not foreseen,7 by
manipulating the Fourier phase only at those fre-
quency regions at which the amplitudes of the input
spectral distributions are not less than some input-
dependent threshold. Conclusions are given in Sec-
tion 7.

2. Phase-Extraction Processing: Review
The system architecture is presented in Fig. 1. The
point nonlinearity operator N1 is defined with the help
of a general function R(u, v) = (u, v) I expjp(u, v) by
the relation

N1[R(u, v)]

fiR(u, v) expjqy(u, v), 0 < < 1, forR(u, v) •0 

otherwise

(1)

Concentrating on I = 0, we deal with the extraction of
the phase function from R (u, v). The input function
q(x, y) is Fourier transformed to Q(u, v), from which
the phase is extracted by Eq. (1), yielding Q'(u, v).
The filter functionp(x, y) undergoes a transformation
identical to the input function q(x, y). The two phase
functions are multiplied, and the result G'(u, v) is
inverse-Fourier transformed to yield the correlation
output C(x, y). Note that in the classical case, P(u, v)
in Fig. 1 is the matched filter of the specific object to
be detected and P'(u, v) is the phase-only MF (POMF).9

By the nature of the PEC, the higher frequencies of
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Q'(uv) G'(u,v) C(x,y) where A(u) = 9[a(x)] and ¢(u) = arg[A(u)]. Taking
1 = 0 in Eq. (1), we obtain the phase distribution of

}_ the input pattern as

UTPUT
CHANNEL

N

E expj2rrux

Q'(u) = expjk(u) i=1

E expj2ruxi
t=1

(4)

Assuming that a filter functionp(x) is matched to a(x),
we have the phase distribution extracted from the
filter function, obtained by

p(x,y)

Fig. 1. Block diagram of the symmetric nonlinear pattern-
recognition system: FT and IFT denote the Fourier transform
and its inverse, respectively; q(x, y) and p(x, y) are the input and
filter functions, respectively; N is a point nonlinearity, operating
on the function R(u, v), and is defined by Eq. (1).

the input are amplified, enhancing discrimination
capabilities. In fact, it was shown4 that the output
correlation response to an input consisting of one and
two objects, to which the filter is matched, are delta
functions at the correct positions with subsidiary
low-amplitude grass, or noise, in the two-object input
case. For multiple-object inputs, however, the situa-
tion is more complicated. This is the main subject
here and is examined in Section 3.

3. Phase Extraction for Multiple-Object Input
When several objects are presented in the input plane
of a coherent optical processor their FT's are super-
posed coherently over the FT plane. As long as only
linear processes are considered, this superposition
has no harmful effects. However, if a nonlinear
process takes place at the FT plane, interference
effects may manifest themselves, resulting in an
impairment of system performance. Since phase
extraction is such a nonlinear process, one should
expect difficulties, as indeed was indicated by simula-
tion results4 6 when four objects were presented at
regular intervals.

For convenience and clarity we describe in detail
objects positioned along one linear dimension only,
but generalization to two dimensions is straightfor-
ward. Assume that we have N objects a(x) in the
input plane, each centered at xi, where i = 1, . . , N.
The input distribution can be written in the form

N

q(x) = , a(x - xi), (2)

with its FT obtained by

N

Q(u) = A(u) I expj(u) expj2ruxi, (3)
i=1

P'(u) = exp -j-(u). (5)

Thus, before performing the inverse-Fourier trans-
form (IFT) we have the distribution

N

I expj2ixiu
.

c(u) = P'(u)Q'(u) = (6)

expj27rxiu

Hence the output correlation function C(x) is ob-
tained by the convolution theorem and is

C(x) = S 1
c(u) = 1 exPj27uxi)

expj2Truxi )
N

i=1

N

=Ei=l

8- Xi) * i([N + D(U)]1/2)

8(X- xi) * V(x), (7)

where

V(x) = '([N + D(u)]1/2)
N N

D(u)= z 2 expj27ru(xi - x1)
i=1 l=1,I-i

(8)

are functions of the input-object positions alone, with
no dependence on their shape or size and * denotes
the convolution operator. If the positions of the
input objects are random, then D(u) is derived from
many uncorrelated terms, and the function V(x),
defined by Eq. (8), describes a random process.
Under these circumstances we expect V(x) to be
comparable with 8(x), as is confirmed in the detailed
mathematical analysis presented in Appendix A.
If a large number of objects, for which the filter is
matched, are randomly distributed along x, then xi
can be considered a random variable, and V(x), which
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we call the modulating term, has B(x)//N as its mean,
and its variance is of the order of 1/N. This is a
narrow, spatially confined modulating term.

The important result of the above considerations is
that the response of the PEC to the input obtained by
Eq. (2) is, with xi as a random variable,

N

(x -xi)

CQx) i. (9)

This is a series of delta functions at the correct
positions with a relatively low normalized variance
[see relation (A19)]. To first approximation, all the
energy in the correlation plane is uniformly distrib-
uted among the N correlation peaks.

The above results were derived for objects matched
to the filter function that were randomly scattered
over the input plane, and they indicate that the
performance of the PEC is not impaired by such an
input. Naturally, if many objects that are not
matched to the filter are present too, they will not
correlate, regardless of their arrangement in the
input plane, and they will leave the proper correlation
peaks intact, as is demonstrated in Section 5.

Our derivation, however, breaks down if statistical
considerations of random variables are not applicable.
An extreme case consists of identical objects that are
matched to the filter and arranged in a regular array.
Such an array, in one dimension, can be represented
by the xi values in Eq. (2), obtained by xi = x1 +
(i - 1)b (i = 1, . . . , N), with the modulating function
[Eq. (8)] obtained in the form

V(X) =9-1[I sin(rub) 
V~~x) = I sin ~i ruI b) IJ (10)

The primary contributions to Eq. (10) are from points
at which sin(7rub)/(sin TruNb) has poles. Since there
is an infinite number of these, the IFT is similar to a
train of delta functions multiplied by some envelope
function. Therefore V(x) is a wideband signal, and
hence the system is no longer shift invariant. Each
object affects the correlation response of all the other
objects in an essentially unpredictable way. This
results in poor performance of the PEC for a regular
array of equally spaced identical input objects, as has
been indicated by computer simulations.4

To support our results, we generated V(x) with 8
objects separated regularly from each other by 4
pixels and two random distributions of 50 and 5
identical objects along a one-dimensional line. The
respective forms of V(x) I obtained are shown in Fig.
2. The spatial width of I V(x) l, as observed in Fig.
2(a), is much larger than the separation between the
objects (4 pixels), and hence the correlation response
at the center of each object is strongly affected by the
presence of the other objects in the input plane. In
contrast, in the case of a random distribution [Fig.
2(b)], V(x) is essentially a delta function that leads to
1-pixel-wide peaks in the true positions. It is inter-
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Fig. 2. Distribution of V(x) for the following: (a) 8 objects
equally spaced (4 pixels apart), (b) 50 objects randomly scattered in
the input plane, and (c) 5 objects randomly scattered in the input
plane.

esting to note that, although the mathematical analy-
sis for the random input in Appendix A seems to
require a large N for the analysis to be valid, Fig. 2(c)
indicates that, even for N = 5, the results are
functionally correct. Nevertheless, we observed that
the level of the noise in V(x) increased as the number
of randomly spaced objects decreased. This is in
good correspondence with relation (A18), in which we
refer to the noise a as the low-amplitude grass
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surrounding the delta functions in Figs. 2(b) and 2(c).
Also, it should be emphasized that, even for a similar
number of objects in the input [Figs. 2(a) and 2(c)], the
modulating term can be substantially different, de-
pending on the arrangement of the objects in the
input.

In a separate study, in which 50 identical objects
were placed randomly in a two-dimensional plane, we
obtained the ratio of minimal true peak/maximal
true peak equal to 0.8 (in intensity), implying small
peak variance, and the ratio of minimal true
peak/maximal false peak equal to 53, implying small
sidelobes (noise). This is in accordance with our
analysis regarding the performance of the PEC when
objects are scattered randomly in the input plane.

To recapitulate this section, we have demonstrated
that the high-level performance of the PEC was
preserved for randomly distributed multiple objects
in the input plane as for a single object.' However,
the PEC exhibited poor performance, at least theoret-
ically, when several identical input objects were ar-
ranged in a regular array. The question is, what
happens when the input distribution lies between
these extremes? Simulations (Section 5) indicate
that the PEC performs well even for a pseudo random
distribution, and narrow peaks of approximately iden-
tical strengths with low sidelobes are generated at the
center position of the objects. Basically, the PEC
performs well for any nonpatterned input, in which
the linear phases generated by the displacement of
the objects do not modulate the amplitude distribu-
tion of the FT of the input to a large extent.

Study of the random case indicates that the prob-
lem of the PEC can be mitigated by eliminating the
sidelobes. Two obvious ways to achieve this objec-
tive are as follows:

(1) One can add low-amplitude noise to the input.
When this is done, the pattern of the low-amplitude
sidelobes in the spatial frequency plane, which is the
primary reason for the impairment of the perfor-
mance of the PEC (generated by the sum of the linear
phases), is eliminated. Indeed, as reported in Ref. 4,
laboratory results that were supposed to generate
correlation peaks unequal in height, according to
both theory and simulation, did not do so; they
generated correlation peaks approximately equal in
height.4 The good laboratory results were attrib-
uted to the noise present in the laboratory system.
This assumption was also supported by adding noise
to an arrayed input in a computer-simulation experi-
ment.

(2) One can eliminate the sidelobes by some pro-
cessing method. This idea is the subject of Section 4.

4. Space-Variant Thresholding
As indicated in Section 3, the PEC encounters difficul-
ties when presented with several identical objects in a
regular pattern. Although this is an infrequent
occurrence, it is useful to modify the PEC in such a
way that it performs well under these rare circum-

stances also. In this section we show that the diffi-
culties can be alleviated by using a spatially varying
threshold that processes the phase of the FT of the
input function only if certain conditions are satisfied.

The difference between the SVTPEC and the regu-
lar PEC is that, whereas in the PEC the threshold is
fixed at zero, in the SVTPEC it is spatially varied.
The threshold used for the PEC can be represented in
the complex domain by mapping every point onto the
unit circle [Fig. 3(a)]. In the SVTPEC a threshold
circle is defined for each point (spatial frequency) in
the Fourier plane. A point on or outside the thresh-
old circle is mapped, as before, onto the unit circle,
but any point within the threshold circle is mapped to
zero [Fig. 3(b)]. This procedure is repeated for every
spatial frequency with a frequency-dependent thresh-
old circle. The size of the circle usually decreases as
the spatial frequency increases to take into account
the decreasing amplitude with increasing spatial fre-
quency of most objects. This ensures that low-
amplitude information content present at the high
spatial frequencies is not ignored, which maintains
high-discrimination capabilities.

The space-variant-thresholding phase-extraction op-
eration can be represented by the relation

Nt[Q(u, v)]{expj arg[Q(u, v)]

0

if IQ(U, V) I /Qmax 2 t(u, v)

otherwise

(11)

Re

DOMAIN RANGE
(a)

Re

DOMAIN RANGE
(b)

Fig. 3. Mapping performed by the nonlinearity: (a) the fixed
(zero) threshold for the simple PEC and (b) the space-variant
threshold for the SVTPEC.

1922 APPLIED OPTICS / Vol. 32, No. 11 / 10 April 1993



where t(u, v) is a threshold function that should aid in
achieving the following goals:

(1) The true correlation peaks generated in the
output (correlation) plane corresponding to the proper
detection of objects in the input should be higher than
any false peak.

(2) The variance of the true peaks should be
small.

(3) The SVTPEC should be immune to noise.

Unfortunately, the above goals cannot be fully met
simultaneously; nevertheless, good performance is
possible, as is demonstrated in Subsection 4.C.

An input distribution composed of a regular array
of N objects, each represented by a function a(x, y)/2,
can be written in the form

N-1 a(x - nb - x, y)
q(x,y) = I2

n=0
(12)

where x is the location of the center of the first
object. This function is Fourier transformed to

Q(u, v) (2 v)epjp(u, v)

N-1

x exp(j2irux 0) z exp(-j27runb)
n=O

= IA(u, v) I exp[jp(u, v)]R(u) 2 sin(ub)

(13)

where we define

A(u, v) A(u, v) expjcp(u, v) = Y[a(x, y)], (14)

R(u) = exp(-j27rux.)exp[-jru(N - 1)b]. (15)

To detect the input patterns a(x, y), we define a
matched filter function

p(x, y) = a(-x, -y), (16)

where we assume real input functions for simplicity.
Choosing a spatially varying threshold by the rela-

tion (as first suggested in Ref. 4)

t~ ~ (u, v u|( ) -u<1 uERe, (17)
max

we obtain an output that is totally independent of the
specific object under consideration, as is shown in
Subsection 4.C. Here, Amax = max[ IA(u, v) I ]. This
choice of t(u, v) guarantees that the envelope of
1 -9[a(x, y)] l, to which the filter is matched, is followed,
and it guarantees that low-amplitude information of
the subsidiary maxima [caused by the sidelobes of
sin(irubN)/2 sin(Qrub) in Eq. (13)], which may degrade
system performance, is not amplified. Nevertheless,
the phase information in the higher spatial frequen-
cies is still used for the recognition process owing to

the decreasing amplitude of t(u, v), which is propor-
tional to the reduction in amplitude of A(u, v).

A. Similarity of Phase-Extraction Correlator and Offsprings
of Binary Joint Transform Correlator
It should be noted that the entire analysis presented
in Section 3 and the analysis in this section may be
adapted and applied directly to the binarization of the
JTC spectrum" (severe nonlinearity) by the use of an
appropriate threshold function.'1 Following the no-
tation of Javidi et al.,'0 let the input and reference
functions, s(x - x0, y) and r(x + x0, y), respectively,
both be displayed on an input transparency. Denot-
ing their FT 's by S(u, v) and R(u, v), we obtain at the
FT plane, after performing the FT of the input
transparency, an intensity distribution

I(u, v) = IS(u, v)12 + R(u, v)12 + 2IS(u, v)R(u, v)l

x cos[PR(u, v) - 'kS(U, v) + 2uxo], (18)

where (u, v) are the spatial frequencies, R(U, v) =
arg[R(u, v)], and s(u, v) = arg[S(u, v)]. Defining
H(u, v) as the result of a bipolar binarization process
that operates on I(u, v),

H(u, v) = _1
if I(u, v) 2 t(u, v)

otherwise

where the spatially varying threshold function t(u, v)
(as opposed to the constant threshold function used
by Javidi et al. 10) is chosen as

t(u, v) = IR(u, v)12 + IS(u, v)12 , (20)

and performing the FT of H(u, v), yields the correla-
tion plane that is functionally identical to the correla-
tion plane generated by the PEC (except for the
carrier frequency, which is also introduced actually in
the optical implementation of the PEC4). That is,
the FT of H(u, v), which yields the binary joint
transform correlation plane, is totally independent of
the Fourier amplitude (intensity) of S(u, v) and R(u,
v), depending only on its Fourier phase like the PEC.
Employing this specific threshold function [Eq. (20)]
in the binary JTC, we obtain a response that is
functionally identical to phase-only correlation (filter
and input). This is different than other thresholding
procedures used previously."",12

At this point it should also be emphasized that the
space-variant thresholding employed by the SVT-
PEC, as given by Eq. (17), is totally different than the
adaptive threshold employed by Hahn and Flannery"
for the binary JTC. The adaptive threshold was
employed basically to obtain clean periodic fringes in
the FT plane (see Fig. 2 of Ref. 11), similar to the
function of the PEC [or its equivalent binary JTC
implementation that uses an adaptive threshold ob-
tained by Eq. (20)]. However, in the SVTPEC, rather
than enhancing the information contained in the
interference fringes, we tend to ignore some of it
because this information is unimportant and may
lead to poor results, as is explained in Subsection 4.B.
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Thus, although the threshold obtained by Eq. (20) in
the binary JTC may also be termed an adaptive
threshold, as it is in Ref. 11, it should not be confused
with the type of thresholding employed by the SVT-
PEC, obtained by Eq. (17), which leads to different
results.

B. Discussion
At this point it is useful to understand the fundamen-
tal underlying reason for the failure of the PEC in the
case of regular-array input configurations. In Refs.
7 and 8 it was shown that a signal cannot be restored
from its Fourier phase alone if the original signal q(x)
can be represented as

q(x) = a(x) * b(x), (21)

where, for clarity we use one-dimensional functions
and b(x) is a zero phase sequence [the FT of b(x) being
a real function].

The input obtained by Eq. (12) is obviously such a
case, as is evident from Eq. (13), since sin(TrubN)/
sin(7Tub), which is the FT of the displacement se-
quence, if properly centered, is always a real quantity.
Moreover, the displacement information is largely
coded into the amplitude distribution, leaving the
phase information almost transparent to it. There-
fore the phase distribution alone does not contain
adequate information to restore the complete signal
or to perform correlations. The SVTPEC is de-
signed to perform detection and discrimination with a
high reliability by selectively processing the phase
based on the input's spectral amplitude distribution.
Thus the additional information present, although
not actually manipulated, is used as a means to
process the phase more appropriately. Figure 4
shows the operation of the SVTPEC.

Assume that the input is obtained by Eq. (12) with
N = 4 andx 0 = -1.5b. Without loss of generality, let
A(u, v) be obtained as shown in Fig. 4(b). The sum
of linear phases, sin(8rrux.)/2 sin(2'ruxo), is shown in
Fig. 4(a). Hence Q(u, v) is obtained by the product of
Figs. 4(a) and 4(b) and is shown in Fig. 4(c). Defining
Ama, in a similar manner to Qmn, we obtain Fig. 4(d)
as the result of applying the simple nonlinearity of
Eq. (1), to Q(u, v). If we apply the space-variant
nonlinearity of Eq. (11) with t(u, v) of Eq. (17) and p1 =
0.25 to Q(u, v) we obtain Fig. 4(e). The above-
mentioned value for . was chosen since it is the
maximum value that will still eliminate the low-
amplitude subsidiary maxima in the four-identical-
object input case. Examination of Fig. 4(d) reveals
that the PEC fails in the regular arrayed input
because the low-amplitude sidelobes are turned into a
periodic high-frequency grid that multiplies the Fou-
rier phase of the input objects. This high-frequency
grid is not present in Fig. 4(e), in which the phase is
purified, retaining only the phase corresponding to
the main lobes.

Dwelling on this point further, we note that the
high-frequency grid, produced by the PEC, can be
shown to correspond to a separation of (N - 1)b

between correlation spots in the correlation plane.
This grid becomes more dominant as the number of
objects is increased, since the number of sidelobes
increases as well. In this case, Fig. 4(c) would be-
come a train of delta functions that is multiplied by
an envelope function [Fig. 4(a)]. This is shown in
Fig. 5(a), but for the envelope function, which is
suppressed for convenience. Application of simple
nonlinearity to Fig. 5(a) yields Fig. 5(b), in which the
dominance of the high-frequency grid is clear. This
is in contrast to the operation of the SVTPEC, which,
by preserving solely the main lobes, produces a signal
that is free of the high-frequency artifact, as is shown
in Fig. 5(c). The resulting frequency of the grid in
Fig. 5(c) can easily be shown to correspond to the
correct separation b between the correlation peaks in
the correlation plane. Consequently, the close resem-
blance that Fig. 5(c) bears to Fig. 5(a) (which retains
all displacement information) is expected, and the
distortion put forward by the simple nonlinearity (the
simple PEC) is also clear. Hence the good perfor-
mance of the SVTPEC that is shown in simulations in
Section 5 and that is derived analytically in Subsec-
tion 4.C, is to be expected.

However, this raises a serious question. We claim
that we are able to manipulate the phase in some
manner and to generate true correlation peaks even
when b(x) of Eq. (21) is a zero phase signal. This
seems to contradict results obtained by Hayes et al.

7

and others. However, this is not so since after
application of the SVTPEC we incorporate some
amplitude variation as well and do not just extract the
phase from b(x). Hence we have not only the limited
phase information of b(x) [and a(x)], we also multiply
by an appropriate modulating term.

C. Space-Variant-Threshold Phase-Extraction Correlator:
Analytical Derivation of Correlation
A block diagram of an SVTPEC that uses the thresh-
old function t(u, v) of Eq. (17) is shown in Fig.
6. Setting V. in Eq. (17) to a value that guarantees
that the largest subsidiary maximum in Eq. (13) is
eliminated, which preserves only the spectral regions
corresponding to the main lobes of [sin(irubN)/2
sin(rrub)] [where sin(rrubN)/2 sin(Trub) 2 p], leads to
the complex amplitude distribution

n

bc(u, v) = R(u) rect 2
n -,n even 2ut

+ z rect b(-1)N+1l
n=-,n odd 2ut

(22)

just before the IFT is performed. The parameter 2ut
is a constant and is the width of the samples in the
frequency plane, which depends on the spatially
varying threshold t(u, v). Note that, as mentioned
above, the phase is sampled at regular intervals, and
the high spatial frequencies contribute to the output
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correlation function. It should also be noted that
the wider the samples, the more phase information is
processed.

The final correlator output is obtained by perform-
ing the IFT on Eq. (22):

C(x, y) = Y'1c(u, v) = B sinc[2ut(x - xc)]

x E 8(x - nb - x,, y)
n even

-~~~~~~~~~~~
+ 2; (-1)N+18(x - nb - x,,y) 

n odd
(23)

where x, = xo + [(N - 1)b/2] (the center of the shifted
input) and B is some constant depending on ut and b.

The proper choice of the parameters pu and ut is
closely interrelated and needs to be determined.
Equating the normalized amplitude of Eq. (13) (the
spectral distribution of the input) to the amplitude of
Eq. (17) (the spectral distribution of the threshold)
yields

sin('rrubN) IA(u, v)I JA(u, v)IN.
sin('rrub)

(24)

Since I sin(,rubN)/sin(rrub) is periodic, we may con-

10 April 1993 / Vol. 32, No. 1 1 / APPLIED OPTICS 1925

0

0

0

0

0

0

0

0

a

1.51-

F .�. L.J

0.51

I .5

0

-1.5
50

I

__11\ /\_� f\_� N-\�



2U

15

10

5

0

-5

-10

0 50 t00 150 200 25

(a)

L.u

0.5

0

-0.5

-1 f 1I1 1H

0 50 100 150 200 2

(b)

0.03 

0.6

0.4

0.2

0

-0.2

-0.4

-0.6 I
-0.8

0 50 100 150 200 25

This constraint guarantees that u is in the region in
which Eq. (24) can be satisfied (between the principal
maxima and the first zero), but it does not guarantee
that the sidelobes are reduced. For most practical
cases, however,

1
ub <-

since in principle we want a large p, for reasons that
become apparent from the analysis below. This
automatically takes care of the sidelobe reduction.

Assuming that inequality (27) is satisfied, we may
0 approximate

iO

(c)
Fig. 5. (a) Distribution of sin(80rux0)/2 sin(2rruxo). (b) Result of
the simple nonlinearity, obtained by Eq. (1), applied to (a) above.
(c) Result of the selective nonlinearity, obtained by Eq. (11),
applied to (a) above.

fine our analysis to 0 < rub < rr and assume that this
condition is satisfied periodically, with period 'r. To
attain this first goal, we require

< TrubN < r (25)

to be between the maximum of I sin('rubN)/sin(rub) 
at u = 0 and its first zero. This can also be written as

1
0 <ub <- (26)

N

sin(srubN) [ ubN- (6rUbN 1

sin( rrub) (rub).

In relation (28) we take two terms into account since
Nrrub is not as small as irub in relation (29), in which
one term suffices for the series expansion. Substitu-
tion of relations (28) and (29) into Eq. (24) yields a
quadratic equation whose solution is (since u E Re+)

[6(1 - [)]1/2
Ut =+J- Ni -b

where ut can now be interpreted as the spatial
50 frequency below which the variable threshold will

process the phase of Q(u, v). In other words, for 0 <
u < ut and 1/b - ut < u < 1/b the phase of Q(u, v) is
processed. (Remember, this analysis is periodic with
period ir on the quantity 7rub.)

Thus the thresholded signal of Eq. (22), which may
also be written as

(u v) { [(2U - ) +(1)N+(- 2n + 1)1

* rect( 2u R(u)

yields the correlation output by performing the IFT
on Eq. (31), which is

C(x,y) = (21rutb)sinc[2ut(x - x)]

co ( b
x 8x-xc - y y[1 + (-1)nf+N+1].

n=- 2a

(32)

Thus functions are obtained at the correct posi-
tions of the objects, but these are multiplied by an
envelope of a sinc function. Thus ut should be
adequately small to make the sinc function barely
change over the interval of interest [xO < x < +
(N- 1)b].

Determining ut solely by this consideration may
lead to unfavorable results since t sets a unique
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(30)
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Fig.6. Block diagram of the SVTPEC, in which BI(u, v) is the binary output of the COMPARATOR & THRESHOLDER.
the following values:

It may assume

1 if (u, (U ) It/Qmri 2 l[ P(u, V) I/Pmax]
BIu )=0 otherwise

value on the threshold parameter.
(30), we have

Inverting Eq.

(Nirbut)2

p.= 1- 6

Decreasing u (making the rectangular pulses in the
frequency domain thinner) implies, effectively, in-
creasing the threshold factor p.. Theoretically, this
would not pose a problem. Practically, however, if
the frequency plane contains noise, and if the thresh-
old is too high, some principal maxima in the fre-
quency plane generated by the sum of linear phases
might be missed, thus corrupting the location informa-
tion. Hence some compromise has to be made be-
tween immunity to noise (the third goal) and the
variance of the output delta peaks (the second goal) in
the choice of the threshold. The ratio between the
minimal and maximal peaks for an input described by
Eq. (12) is obtained by

minimum true peak
maximum true peak

Ut sinc(2utx)@x=Nb/2 _

Ut sinc(2utx)@X=b/2

sin[6(1 - p)]l/21
([6(1 - )]1/2}

As the threshold factor p. approaches unity, the ratio
approaches unity, implying zero variance of the out-
put correlation peaks. Numerical investigations
demonstrated a maximum ratio of the deltas at the
centers of the objects in the output correlation plane
of 0.77 to 0.95 as p was changed from 0.75 to 0.95.

These ratios were almost completely independent of
the number of objects present. Hence for a low-
noise background the SVTPEC performs equally well
for single- or multiple-object detection.

The computer experiments presented in Section 5
support our conclusion that the problem of peak
position dependence is dramatically reduced. It is
also demonstrated that, for objects arranged ran-
domly in the input plane, the performance of the
SVTPEC is not substantially inferior to the regular
PEC; thus the SVTPEC may be employed for any
input configuration and is preferential when periodic
inputs can be expected. The remaining concern
about the SVTPEC is the reduction in discrimination
owing to some disposition of (phase) information.
As shown in Section 5, this feature too is barely
impaired by the SVTPEC and in some cases is even
improved.

5. Simulation Experiments
For the simulation experiments we set the threshold
factor to p. = 0.25 [see Eqs. (11) and (17)]. This value
of p is the lowest permitted value that still ensures
the elimination of the sidelobes generated in the case
of four equally spaced objects centered on a line.

Letters of the size 10 x 10 pixels were created and
placed in an input plane of size 128 x 128 pixels.
The FT of the input was taken with an FFT. The
POMF was also stored in 128 x 128 pixels. The
output correlation was obtained by taking the FT of
the product of the POMF, which was multiplied by
the result of the nonlinearity applied to the input.
The input distributions for some experiments are
shown in Fig. 7. The correlation outputs shown in
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Fig. 7. Four input distributions used in the simulations.

Fig. 8 were obtained by the simple PEC; they show
generally good performance but demonstrate the
problem of periodic input. In Fig. 9 we have the
output of the SVTPEC for the inputs of Fig. 7.
Various observations can be made with reference to
Fig. 9:

(1) The discrimination provided by the SVTPEC
is comparable with that provided by the simple PEC,
as expected.

(2) The widths of the peaks, generated by the
SVTPEC, are no different from those of the simple

1,
(a)

(a)

(b)

P

A fili
(c)

Fig. 9. Output correlation planes of the SVTPEC when Figs.
7(a)-(c) are the inputs: (a) Fig. 7(a) as the input, (b) Fig. 7(b) as the
input, and (c) Fig. 7(c) as the input. (in all cases the filter is
matched to the letter P).

PEC. Hence it may be stated that the inverse-filter-
like performance is still achieved with the SVTPEC.
This is in accordance with the theory developed for
the SVTPEC for the case of equally spaced objects, in
which we obtained delta functions at; the true loca-
tions of the centers of the objects with no spurious
peaks [see Eq. (32)].

(3) Although the concept of the specific type of the
space-variant threshold originated from an equal-
spacing setup, in which strong main lobes are pre-
sent, the SVTPEC performed equally well in the
pseudo-random-spacing setup [Fig. 9(c)].

Consider the input in Fig. 7(d). Clearly the spec-
trum of the input will be composed primarily of the
spectrum of the letter P (as there are eight P's), and
hence when extracting the phase of the spectrum, one
would expect that the phase of F is buried in the
heavier weight of the eight P's. Indeed, in Fig. 10(a)
we see that the simple PEC is not able to provide
sufficient discrimination against the letter F (actually
not at all) when the filter function is phase matched to
P. However, the SVTPEC, which acts as a selective
phase extractor, is able to provide good discrimina-
tion against the letter F [see Fig. 10(b)]. This phe-
nomenon is not yet well understood; compare the
good discrimination provided by the PEC when the
filter is matched to F, shown in Fig. 11. However,
since the SVTPEC contains more information than
the PEC, as the phase processing is based on some
spectral amplitude variation information that is un-
available to the PEC, it is expected to yield similar or
better discrimination than the PEC, despite the
partial disposition of phase. Also, the operation of
the SVTPEC (selective phase extractor) on the spec-
tral input distribution is conceptually similar to that
of a phase-only filter multiplied by a binary unipolar
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(b)

Fig. 8. Correlation plane of the PEC, with a POMP matched to
the letter P: (a) Fig. 7(b) as the input and (b) Fig. 7(c) as the input.
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Fig. 10. Output correlation distribution when Fig. 7(d) is the
input for (a) the simple PEC and (b) the SVTPEC.

amplitude filter. These types of combined phase-
amplitude filters are known to obtain better discrimi-
nation than their phased-only filters counterparts.13

Hence the SVTPEC, whose nonlinear operation is
similar conceptually to the combination of the above
filters, is expected to obtain better discrimination and
selectivity than the simple PEC, as we observed in the
case of the filter matched to P, which is shown in Fig.
10.

6. Optical Implementation of Space-Variant-Threshold
Phase-Extraction Correlator
To keep this section brief, we refer the reader to our
earlier research" 4 concerning the simple PEC and its
optical implementation. The SVTPEC can be opti-
cally implemented by the addition of a third 0 state (in
addition to the + 1 and -1 states employed in our
earlier research) in order to record the frequency
mask. This may be performed with commercially
available magneto-optic spatial light modulators.
In addition to the two stable bipolar states used
earlier,4 one may use the mixed magnetization state
for the zero modulation required.14 Empirically,
when the input's amplitude distribution is not less
than the threshold, the phase is processed, as de-
scribed previously (assigned either a + 1 or - 1 state);
otherwise it is ignored and assigned the 0 state.
Unfortunately, however, because of the degradation
of our Semetex magneto-optic spatial light modulator
(- 30% dead lines), we were not able to employ this
option. Instead, we had to use the less-efficient
unipolar implementation of the PEC' by recording
the frequency mask on a transparency in the follow-
ing manner: (1) The 1 state is assigned as 1, as in the
bipolar case. (2) The 0 state is assigned to the /2

state. (3) The -1 state is assigned to the 0 state.

Fig. 11. Simulated output of the PEC with a POMF matched to
the letter F and with the input obtained by Fig. 7(d).

The experiment proceeded as follows: The FT of the
input and filter functions was performed optically so
that both the phase of the FT of the filter and input
functions and the amplitude distribution of the FT of
the filter and input functions were recorded (the
latter was not needed in the optical implementation
of the simple PEC). Thresholding was then per-
formed electronically by computer, and the result was
recorded on a transparency according to the unipolar
implementation mentioned above. Finally, the IFT
was performed (optically) to obtain the correlation
plane.

At this point we recall that the addition of low-
amplitude noise to the input destroys the low-
amplitude subsidiary sidelobes created by the sum of
linear phases. Since in the laboratory there is sub-
stantial noise, the problematic features of the PEC
were never observable in laboratory experiments.
Therefore it is not expected that the results from the
optical implementation of the SVTPEC would be
substantially different from those obtained by the
PEC. This was indeed confirmed experimentally.
Also the discrimination provided by the SVTPEC was
similar to that provided by the PEC. We show just
one of the outputs obtained experimentally by the
above-mentioned method in order to keep our scope
within reasonable bounds. With the input shown in
Fig. 7(a) and a filter matched to P, we obtained by the
optical SVTPEC the first diffraction order of the
output correlation plane, which is shown in Fig. 12.
Both the discrimination provided by the SVTPEC
and the correlation-peak sharpness are similar to the
results obtained by the PEC (Fig. 13). In Ref. 4
these were shown to be better than could be obtained
by similar linear correlators.4 This demonstrates
the superiority of the PEC and its offspring over the
conventional linear correlators for optical detection

Fig. 12. First diffraction order of the output correlation plane
generated by the SVTPEC when the input function q(x,y) is
obtained by Fig. 7(a) and the filter is a POMF matched to the letter
P. The transverse cross section of the correlation peaks corre-
sponding to the letters P and F is also shown. Note that the
transversal cross sections' physical dimensions are equal to the
transversal dimensions of the input shown in Fig. 7(a).
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object inputs located in the input in either an ar-
ranged or a random pattern.

This work was performed within the Technion
Advanced Opto-Electronics Center, which is sup-
ported by the American Technion Society, New York.

Appendix A: Derivation of Mean and Variance
Define E[f,(x, y)] as the statistical expectation value
of f(x, y) with respect to x; i.e.,

Ex[f(x, y)] = f(x, y)p(x)dx,

where p(x) denotes the probability density function of
x. Let xi be an independent and identically distrib-
uted random variable, with its probability density
distributed as

p(x1)= 2a

0

for lxi < a

otherwise
(A2)

We have from the definition of D(u) in Eq. (8) that

N N

Ex[D(u)] = I E[expj27ru(xi -Xl)].
i=1 l=1,lei

(A3)

(b)
Fig. 13. (a) Output correlation plane (marked by window) of the
PEC with the input shown in Fig. 7(a). (b) Transverse cross
section of the correlation plane corresponding to the letters P and F
in Fig. 7(a).

and recognition purposes, except, possibly, for the
lack of strict shift invariance. We also note that the
similarity between Figs. 12 and 13, except for the
level of noise present in the figures (which is irrele-
vant to discrimination and peak sharpness), is in
accordance with our expectations as presented in
Sections 4 and 5.

7. Conclusions
We have demonstrated and analyzed the practical
feasibility of achieving a phase-extraction pattern-
recognition system. We have also examined an im-
proved space-variant phase-extraction pattern-recog-
nition system that may be a practical solution to the
problems of the former simple PEC. Simulation,
optical results, and analytical results revealed that
the space-variant-threshold PEC still maintained the
discrimination and narrow correlation peaks ob-
served with the simple PEC. The price, however, is
a lower optical efficiency since the phase distribution
of those spatial frequencies that are not processed is
ignored and does not contribute to the output correla-
tion function. Finally, it has been shown that the
SVTPEC performs well for either single- or multiple-

Since xi and xl are for i • 1 independent random
variables, from statistical analysis we have

Ex.[exp(j2rruxi )exp(-j2wruxl)]

= {E[exp(j2'rrux)]}2 [fexP(i2ux ) dXi] (A4)

since xi and xl are identically distributed as well, with
their distribution obtained by Eq. (A2). Hence

E, [D(u)] = N(N - 1)sinc2(2ua).

We define the random process

v(u) = YIV(x)] = [N + D(u)]1/2

(A5)

(A6)

and wish to prove that V(x) is a spatially narrow-band
function with low variance as compared with its
mean. To simplify notation, we omit the index xi in
the following discussion. By definition, we have

E[V(x)] = E{19-1[v(u)]} = E ex[j2Dm]/ du
J[N + D(U)]1/2 j

(A7)

We know that the FT of an input, in the region of the
zero spatial frequency, obtains the average (dc) term
of the input. Hence we separate this region from the
rest in Eq. (A7) and subsequent formulas. Also,
remember that we have a finite aperture in the spatial
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frequency domain and that its size is A. Thus we
may write

E[V(x)] E{[N + D()1'/ 2

since D(u) is a symmetric function. After separating
the double integral we may again use a series expan-
sion:

E[V(x) ~N p=2 + p E[ N ]]JfA/2 expj2Trux

-A/2,u+ O [N + D(u)]'/2
du , (A8)

which, after some algebraic manipulation and expan-
sion in a series, leads to

1 A/2

N -A/2,u*0

/A/2 1 0

+EH1+
12-AN P=l

2

x exp(j27ru'x)du' 

(- l)Pap

p !

[D(u')]P}

(A15)
expj2irux

AN

X 1 + " P (|u) Pdu) 

where ap is obtained by

(A9)

which, to first-order approximation, can be written in
the simple form

E[V2 (X)] N A + [A sinc(AX)]2 (A16)

where

(A10)

Since the mean of D(u) is zero except in the neighbor-
hood of u 0, where it is N(N - 1) [see Eq. (A5)], if
the input aperture size (2a) is large, we may approxi-
mate the above equation by keeping only the first
term in the series expansion:

E[V(x)] + A sinc(Ax) (All)

Note that, for a large aperture in the Fourier domain
(A), this expectation value is highly concentrated:

E[V(x)] - -f (A12)

The second moment of V(x) is obtained by

E[V2 (x)]

= E{S- 1[v(u) * v(u)]}

EA/2
E

A/2

A/2

~~~exp j2rux v(u ')v(u - u ')du 'du|
A/2 

(A13)

Analogous to our treatment above, we separate the
u 0 region and obtain

E[V2 (x)]

rA/2 rA/2

= E| v2 (u')du' + J expj27rux
-A/2 -A/2,u * 0

A/2 1

-A/2 [N + D(u')]1/ 2[N + D(u - >,)]1/2 du'du

(A14)

Relations (A16) and (All) can now
computing the variance:

(A17)

be used for

o-2 = E[V2 (X)] - {E[V(X)]} 2

A 1 2A sinc(Ax) A
N N2 NN N' (A18)

where we neglect a second-order term that compares
with terms already neglected from the series expan-
sion. The last approximation is valid for a relatively
large number of identical input objects N. The
above approximations were examined by computer
simulations, and the functional dependence on
(N, N 2 ... .) was verified. Note that the mean and
the variance are position dependent unless a large
number of objects are present.

For a large aperture A we may approximate
A sinc(Ax) by a Dirac delta function. Hence, from
relation (A12) we see that the mean of V(x) is large
only near x = 0 and negligible elsewhere, in particular
for a large number of objects N in the input to which
the filter is matched. Since the mean is nonzero at
x 0 only, we compare the variance with the mean at
x 0 and obtain

2_ A/N_ 1

(V(x)) A 2 /N A
(A19)

Hence, as the aperture size increases, this ratio
decreases, implying a low normalized variance. This
proves that V(x) is a narrow function with low
variance when xi is a uniformly distributed random
variable.
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