Hidden images in halftone pictures
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A method of concealing an image in a different halftone image is proposed. Continuous-tone levels of the

visible images are represented by the area of the halftone dots.
by the dots’ positions inside their cells.
the hidden image from the halftone picture.

However, the hidden image is encoded
Only a spatial correlator with a unique filter function can reveal
The technique and its robustness to noise and distortions

are demonstrated. © 2001 Optical Society of America

OCIS codes:

1. Introduction

Halftone coding is a common method of representing
continuous-tone images by binary values. In one of
many techniques for halftone binarization! the vari-
ous tone levels are translated to the area of binary
dots. This method, termed binarization by a carri-
er,2 is related to the pulse-width modulation in com-
munication theory. For our purposes it is termed, in
an analog fashion, dot-area modulation (DAM). The
locations of the dots inside their cells in the halftone
picture usually do not represent any information.
When the positions of the dots are not uniform from
cell to cell, the nonuniformity is actually used to re-
duce the difference between the original gray-tone
image and the resultant binary image as viewed by
the detection system.! However, from communica-
tion theory we know that pulse-position modulation
is a common method of representing information that
is similar to pulse-width modulation. We propose a
different method of encoding visual information in a
halftone image independently of the common DAM
coding in a way that is similar to pulse-position mod-
ulation. This method is naturally termed dot-
position modulation (DPM).

The independence of DAM and DPM from each
other permits each method to encode a different im-
age in the same halftone picture. However, one can-
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not see the DPM-encoded image directly by simply
observing the halftone picture. The image encoded
by the DPM is hidden in the halftone picture, and a
specific means of revealing this secret image is
needed. This property indicates possible applica-
tions of DPM for information security and encryp-
tion.3 In general, this technique can be used as a
pictured dot code. On the one hand it is a collection
of dots used as a secret code, which can be deciphered
only by a special key. On the other hand, unlike
other known codes, for example, the common bar
code, this code is a picture in the sense that the code
itself is a meaningful image, encoded by DAM inde-
pendently of the hidden image encoded by DPM.
Another application might be embedding stegano-
graphic information? in halftone pictures. The or-
dinary visible image is conventionally encoded by
DAM, whereas the steganographic image is encoded
by DPM. A possible application for this technique
might be, for example, in identification cards.® A
special halftone photograph of a person on an iden-
tification card can show the card holder’s picture as
usual. However, the same photograph can conceal
confidential data such as an image of the person’s
signature, his or her fingerprint, or some other per-
sonal records. The cardholder in this case must be
matched to both types of image and to all the rest of
the data on the card. Thus counterfeiting of identi-
fication cards by a person who resembles the authen-
tic person, or switching of the photographs on their
identification cards, without being discovered be-
comes much more difficult. The steganographic im-
ages are revealed by a special key in a particular
processor that we discuss next.

Our proposed tool for revealing the hidden image is
the well-known two-dimensional (2-D) spatial corre-
lator.” The spatial filter of this correlator is the key
function that enables the hidden image to appear on



the output plane when the halftone figure is dis-
played on the correlator input plane. In other
words, the hidden image is obtained as the correla-
tion function between the halftone picture and a ref-
erence function. The reference function is related to
the spatial filter function by a 2-D Fourier transform
(FT). Using the correlator has the following advan-
tages:

1. The image reconstruction from the halftone
picture is relatively robust to noise. This is so be-
cause, for some requirements on the size of the key
reference function, the hidden image is memorized
globally in all the halftone’s dots. This means that
every pixel in the output image is obtained as a
weighted sum of the entire input picture’s dots.
Therefore, even if several pixels from the input half-
tone figure are distorted from their correct values, the
output result can still be recognized because of the
contributions from the other, nondistorted pixels.

2. The spatial correlator has the property of the
shift invariance, which means that, no matter where
the halftone image appears at the input plane, the
hidden output image is produced on the output plane.

3. The same deciphering system can be imple-
mented as an optical, electrical, or hybrid system.
This is so because spatial 2-D correlators can be im-
plemented by the optical VanderLugt correlator,® by
the hybrid joint-transform correlator,® or by a digital
computer. The system that we demonstrate in the
present study is based on digital computing, although
the use of optical correlators is also discussed.

4. When digital correlations are used, it is obvious
to use the fast-FT algorithm as a tool for computing
the correlations, both in the coding process and in
reading the hidden images. Therefore the computa-
tion time is relatively short compared with those of
other, more general, linear space-variant proces-
sors.10

2. Encoding of Images in a Halftone Picture

The coding process starts with the data of two im-
ages, the visible image f(x, ¥) and the hidden image
a(¢, m). They are defined in different coordinate sys-
tems because they are observed in two different
planes. f(x, y) is observed on the correlator’s input
plane; a(§, m), on its output plane. Because they
represent gray-tone images, both functions are real
and positive. An additional function is determined
once at the beginning of the process and is referred to
the key function H(u,v). H(u,v)is the filter function
displayed on the spatial-frequency plane, and its in-
verse FT (IFT) is denoted A(x, y). For reasons of
algorithm stability explained below, H(u, v) is a
phase-only function of the form H(u, v) = exp[id(u,
v)], where &(u, v) is a random function generated by
a random-number generator of the computer and is
uniformly distributed on the interval —m to w. The
computational problem is to find the halftone figure
that, correlated with the predefined function A*(—x,
—v), yields the hidden output image a(¢, m). The
visible image f(x, y) is used as the constraint on the

input function. This means that, instead of a mean-
ingless pattern of binary dots in the input, the half-
tone picture presents the image f(x, y).

The proposed algorithm is separated into two stages.
In the first stage we compute a phase function
exp[i0(x, y)] of the complex function g(x, y) = f(x, y)
X exp[ib(x, y)]. In other words, we are looking for a
phase function exp[i6(x, y)] that, when it is multiplied
by the image function f(x, y) and passes through the
correlator, results in a complex function with a mag-
nitude that is equal to the hidden image a(§, ).
Therefore one can get two independent images f(x, y)
in the input plane and a(§, m) in the output. Both
functions are the magnitude of the two complex func-
tions. In the second stage the complex gray-tone
function g(x, y) is binarized to a final halftone image.
In other words, the phase function exp[if(x, y)] is
embedded in the binary pattern by DPM and the
image f(x, y) is encoded by DAM. We next describe
the first part of the algorithm; the second stage fol-
lows.

As we have mentioned, our goal for the first stage
is to find the phase function exp[i6(x, y)] of the input
function g(x, y) such that a correlation between
g(x, y) and h*(—x, —y) yields a complex function
with the magnitude function a(§¢, ). The phase of
the output function is denoted exp[iy(&, m)], and
the complex output function is denoted c(¢, n) = a(§,
n)exp[il(§, m)]. Therefore the output correlation
function is

(& m) = {f(x, y)exp[i6(x, y)]} ® h*(~x, —y)
= IFT{FT[g(x, y)lexp[id(u, v)]}, @)

where ® denotes correlation and we recall that the
operators FT and IFT are the Fourier transform and
the inverse Fourier transform, respectively. From
Eq. (1), the input function is given by

o [FTIeE, )]
g(x,y>—IFT[ i) }

= IFT{FT[c(g, n)lexp[ —id(u, v)]}. (2)

To compute phase function exp[i0(x, ¥)] we choose to
utilize the projection-onto-constraint-sets (POCS) al-
gorithm modified to operate with correlations.!?
This iterative algorithm starts with an initial random
function exp[i6;(x, y)]. Then the function f(x, y)
X exp[if,(x, y)] is transformed by the correlation de-
scribed in Eq. (1). The function c,(§, m) is trans-
formed backward by use of the inverse correlation
defined by Eq. (2). At every iteration in each of the
two domains, (x, y) and (&, ), the functions obtained
are projected onto the constraint sets. In both do-
mains the constraint sets express the expectation
of getting the predefined images a(&, n) at (¢, ) and
f(x,y) at (x, y). The algorithm continues to iterate
between the two domains until the error between the
actual and the desired image functions is no longer
meaningfully reduced.

The constraint on the output plane is defined by the
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requirement to obtain the hidden image a(§, m).
Therefore, in the output plane, projection P; onto the
constraint set at the jth iteration is

a(g’ ”ﬂ)eXP[ld’](g, ’ﬂ)] (E, ’ﬂ) € W}
c;(&,m) otherwise |’

Pl[cj(ga ]l = {

3

where exp[iys;(x, y)] is the phase function of ¢;(§, m) in
the jth iteration. W is a window support of the hid-
den image. The window’s area is smaller than, or
equal to, the area of the output plane. Similarly, in
the input plane, projection P, onto the constraint set
at the jth iteration is

PZ[g](x7 y)] :f(xa y)exp[lej(xa y)]a (4)

where exp[i6;(x, )] is the phase function of g;(x, y) at
the jth iteration. The iteration process is shown
schematically in Fig. 1. Note that H(u, v) is chosen
only once before the iterations. This H(u, v) be-
comes part of the correlator, and it is never changed

3348 APPLIED OPTICS / Vol. 40, No. 20 / 10 July 2001

\

Fourier
Transform

Block diagram of the POCS algorithm used in the first stage of halftone production.

during the iteration process. Moreover, H(u, v) is
not in any way related to any of the encoded images
and is not any kind of system memory. Therefore
H(u, v) does not limit the quantity of image pairs that
can be revealed by the same key function. This half-
tone synthesis can be viewed as a generalization of
the Fresnel computer-generated hologram synthesis.
In this analogy, H(u, v) acts as a generalized medium
between the halftone picture and the reconstructed
hidden image, in a fashion similar to that in which
the quadratic phase factor represents the free-space
medium in the reconstruction of a Fresnel holo-
gram.'?2 The function of the medium can be that of a
key to expose an image, but the medium does not
contain any information about the image and there-
fore its size does not limit the image capacity that can
be utilized by the system.

The convergence of the algorithm to the desired
images in the jth iteration is evaluated by two aver-
age mean-square errors between the two complex
functions, before and after the projections in the two
domains. As the phase functions are not changed by
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Fig. 2. Schematic of a single cell from an entire halftone picture.

the projections, the errors are the average mean
square of the difference between magnitudes before
and after the projections. The mean-square errors
are

1
€ej ™ ]TWZ J:[ |Pi[c;(€, m)] — (&, M)|? dédm

=M, ” la(g, M) — |e;(& m)||” dédm,

1
€e = 2 fj |Plgi(x, y)] — g;(x, y)|” dxdy

1
:M” £t ) — lgy(x, )

where the size of the input planes is M X M and the
size of the window support of the hidden image in the
output plane is My, X My,. When the reduction rate
of these error functions falls below some predefined
value, the iterations can be stopped.

As discussed in Ref. 11, there are two conditions to
guarantee that these errors will never diverge.
First, the correlator should be an energy-conserving
operator. This property is inherently achieved if
H(u, v) is a phase-only function, as is indeed so in the
present case. The second condition is satisfied if,
among all the functions that belong to the constraint
sets, the two projected functions in the jth iteration,
Py[c;(&, m)] and Py[g;(x, )], are the functions closest
(by means of the mean-square metric) to the func-
tions c;(§, m) and g;(x, y), respectively. Because the
phase distributions are the same before and after the
projections in both domains, it is obvious that the
second condition is also fulfilled. Therefore the
POCS algorithm here can never diverge, and at most

> dxdy, (5)

Fig. 3. Spatial spectrum of a typical halftone picture. The area
surrounded by the white square is the region that is multiplied by
the filter.

the errors may stagnate at some values. Note that
the nondiverging feature of the algorithm is the rea-
son to favor phase-only functions as filters in the
spatial-frequency domain. The optical realization of
the correlator yields another reason to prefer phase-
only filters. These filters theoretically do not absorb
energy and thus promote maximum system effi-
ciency.

The first stage of the algorithm is terminated in the
nth iteration when the correlation between g,,(x, y) and
h*(—x, —y) yields a complex function whose magni-
tude, it is hoped, is close enough to the hidden image
a(g, m) by means of a relatively small mean-square
error. Note that small error values are not guaran-
teed and depend on the nature of the given images a(&,
m) and f(x, y). The algorithm is terminated before
projection P,, as indicated in Fig. 1. This is so be-
cause, in the next stage, the function g, (x, y) is bina-
rized, an operation that causes the output image to
become only an approximation of the desired image.
If we chose to terminate the algorithm after projection
P,, the error in image a(§, n) would be increased, be-
cause the magnitude of the correlation between
Pyl g, (x,y)] and h*(—x, —y) is only an approximation of
a(&, 1), and the binarization adds more error.

The goal of the second stage in our process is to
convert the complex function g, (x, y) into a binary
function b(x, y). By displaying b(x, y) on the input
plane, we should obtain the hidden image in the out-
put of the correlator equipped with the same filter
function H(u, v). In the usual halftone binarization,
only a single, positive, real gray-tone function is con-
verted into a binary function. However, in the
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Fig. 4. Optical correlator that can be used to reveal the hidden
image in the halftone picture.

present case there are two positive real functions to
be encoded, phase 0,(x, y) and magnitude |g,(x, y)|,
which is close enough to the visible image f(x, y) ife, ,,
is indeed small. Following computer-generated ho-
logram (CGH) techniques,'? we propose to encode
magnitude |g,(x, y)| in the conventional way with
DAM and phase 6,,(x, y) with DPM. Every pixel of
the complex gray-tone function g,,(x, y) is replaced by
a binary submatrix of size d X d. Inside each
submatrix there is a dot represented by some binary
value, say, 1, on a background of the other binary
value, say, 0. The area of the (%, [)th dot is deter-
mined by the value of |g,,(x,,y;)|. The position of the
(k, 1)th dot inside the submatrix is determined by the
value of 0,,(x;, v;). Without loss of generality, we
choose the shape of the dot as a square, and each dot
is translated only along the horizontal axis. There-
fore the expression for the binary halftone image be-
comes

b(x, y)
- (ME/2; “”2/2;3 rect{x — dlk + 0.(x, yz)/2’ﬂ']]

k=—M/2 1=—-M/2 d[|gn(xk7 yl)|]1/2

y‘ld] ©
d[|gn(xk’ yl)|]1/2 ’

X rect{

Fig. 5. (a) Original set of gray-tone pictures used as the visible images.
(d) The hidden images revealed by the correlation between the set in (c) and the key function.

(c) The resultant halftone images.
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(b) Original set of binary pictures used as the hidden images.



(®)

Fig. 6. Enlarged region of a halftone picture (a) with and (b)
without dot-position modulation.

where the values of 6,,(x, v) are defined in the interval
[—m, ], and 0 = |g,(x, y)| = 1. The function
rect(x/a) is defined as 1 for |x| = a/2 and as 0 other-
wise. The superscript B in Eq. (6) indicates that the
summation is Boolean, such that, if two adjacent rect
functions overlap, their sumis 1. A schematic of one
of the (%, I)th cells is shown in Fig. 2. b(x, y) is the
final halftone binary picture, in which an approxima-
tion of the visible image f(x, y) [i.e., |g,(x, y)|] is
encoded by the area of the dots. 6,,(x, y) is embedded
into the halftone pattern by the position of the dots,
and the hidden image a(§, n) is exposed at the output
plane of the correlator that is described next.
b(x,y)is a 2-D grating, and its Fourier transform is
an array of 2-D Fourier orders on the spatial-
frequency plane separated by M pixels from one an-
other. An example of a typical spatial spectrum of

the grating b(x, y) is depicted in Fig. 3. Following
the analysis of the detour-phase CGH,3 it is possible
to show that an approximation of the complex func-
tion G, (u, v)[the FT of g,,(x, v)] is obtained in the vi-
cinity of the first Fourier-order component. Thus
the approximation is expressed as

B(u,v) = G,(u, v), lu — MAu| = MAu/2,

lv| = MAv/2, (7)

where Au X Av is the size of the pixel in the spatial-
frequency plane and B(u, v) is the FT of 6(x,y). The
fact that the distribution about the first order is only
an approximation of G,,(u, v) introduces some error in
the reconstructed image. This error is inversely de-
pendent on the number of quantization levels used in
the halftone picture. The number of quantization
levels is naturally determined by cell size d. Future
improvements in the DPM coding may minimize this
error in a fashion similar to the evolution of the CGH
from the first detour-phase CGH?!3 to the more recent
and more accurate iterative CGHs.'* Because the
interesting distribution, that is, the approximation of
G, (u, v), occupies only part of the spatial-frequency
plane about the first-order component, we isolate this
area of M X M pixels about point (M, 0). Next, the
isolated area is multiplied by filter function H(u, v)
and inversely Fourier transformed onto the output
plane. Because the output distribution is approxi-
mately

c(&, m) = IFT[G,(u, v)H(u, v)], 8)

the magnitude of output function |c(¢, v)| is approxi-
mately equal to the hidden image, a(§, n).

The optical version of this correlator is shown in
Fig. 4. The halftone figure is displayed on plane P,
and illuminated by a plane wave. As a result, mul-
tiple diffraction orders are obtained on the back focal
plane of lens L,, each at a distance \f/d from its
neighbors. The area of the first diffraction order of
the size (\f/Md X \f/Md) is multiplied by the phase-
only filter mask H(u, v), whereas the entire spectral
area is blocked. The last product is Fourier trans-
formed again by lens L, onto plane P5, where the
hidden image is assumed to come into sight. In this
scheme we assume that the input halftone picture is
a transmission mask that modulates the plane wave.
When the halftone picture is printed on regular
opaque paper, it has to be recorded first by a digital
camera. Then the recorded binary image can be dis-
played on a spatial light modulator!® and processed
as shown in Fig. 4.

3. Experimental Results with the Digital Correlator

The proposed halftone coding method was examined
with a digital correlator. We used five pairs of vis-
ible and hidden pictures, as shown in the first two
rows of Fig. 5. Originally the visible pictures were
gray-tone images of the size of 128 X 128 pixels, and
the hidden pictures were binary images of various
sizes (but always smaller than 128 X 128 pixels).
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Fig. 7.
figure to 55% at the leftmost figure.

(a) Set of halftone pictures covered by a zero-valued square with area values that vary from 11% of the picture area at the rightmost
(b) Correlation results between the set in (a) and the key function.

(c) Set of halftone pictures in

which various amounts of their pixel values have been randomly flipped from their original values shown in Fig. 5(c). The number of

flipped pixels is varied from 8% at the rightmost figure to 40% at the leftmost figure.

the key function.

The size of each one of the three planes in the POCS
algorithm is 128 X 128 pixels. An experiment with
all five pairs was performed with the same phase
filter H(u, v), for which the phase distribution was
generated by the random-number generator of the
computer. The POCS algorithm was iterated on av-
erage as many as 50 times. Additional iterations
have not meaningfully reduced the two errors e, ; and
e, .
“After completing the POCS algorithm, we bina-
rized the resultant complex functions g,,(x, y) accord-
ing to the rule of Eq. (6). The size of each cell in
these experiments is 19 X 19 pixels, and conse-
quently the gray-tone image is quantized with 10
levels of magnitude and 19 levels of phase. An en-
larged region of one of the halftone figures is shown in
Fig.6(a). For comparison, the same region but with-
out modulation of the dot position are shown in Fig.
6(b). All five halftone pictures with both DAM and
DPM coding are depicted in Fig. 5(c). The correla-
tion results with the same A*(—x, —y) are shown in
Fig. 5(d). All five hidden images are recognizable.
In principle, we are not limited to choosing gray-tone
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(d) Correlation results between the set in (c¢) and

hidden images rather than binary images as is done
in this example. However, as can be seen, the hid-
den images in Fig. 5(d) are accompanied by a certain
level of noise, which naturally becomes more mean-
ingful and destructive for gray-tone images.

The robustness of the method was also examined.
As mentioned above, this robustness is achieved be-
cause each pixel in the output is obtained as a
weighted sum of many input pixels. The exact num-
ber of pixels that participate in this summation is
equal to the size of 2(x, y). In the present study we
did not take any action to narrow A(x, y), as was done
in the research reported in Ref. 16, for instance.
Thus we expect from our system a maximum degree
of robustness to noise and distortions. In the first
example of distortions illustrated in Fig. 7(a) the five
images were covered in the vicinity of their centers
with zero-valued squares of an area that varied from
11% to 55% of the original images. The hidden im-
ages revealed from these covered halftone figures are
shown in Fig. 7(b). The hidden image can still be
recognized, even when 55% of the area of the halftone
picture is missing. In another example, illustrated



in Fig. 7(c), 8% to 40% of the pixel values of the
halftone pictures of Fig. 5(c) were flipped randomly
from their original values. The same robust behav-
ior was maintained for this type of noise, as is shown
by the correlation results in Fig. 7(d).

4. Conclusions

We have proposed and demonstrated a method of
concealing an arbitrary image in a different arbitrary
halftone picture. A digital or optical correlator with
a unique key filter can recover the hidden image.
Every part of the hidden image is concealed globally
in all the points of the halftone picture. This feature
increases the robustness of the process to noise and
distortions.

For future research we believe that different opti-
mization and coding algorithms can significantly re-
duce the noise and error of both pictures. Also, a
clever design of the filter function may extend the
distortion-invariance properties of this correlator.
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