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g ~—d Geometry for analysis of a thick hologram. np = ny, :

: = vacuum wave number, k, = 27/A,. _
The analysis possible to expand and simplify k2 for use in the wave equation as fol-

The analysis begins with the scalar wave equation,

(fﬁ_.r:q} VU + KU = 0 K2 = [ko(no + cos K - 7+ jlao + i cos K - F)]2 (9-59)
5 g J

' | ~ B% + 2jBag + 4xBcosK - T,

valid in a source free region for monochromatic light. Th : ,
general case is complex-valued, k = (27n/A,) + jo, where 'S¢ of the approximations (9-538) has been m_ade, B = kyng, and k is the
and A, is the vacuum wavelength. The refractive index n ant, given by S
« within the grating are assumed to vary in sinusoidal fash e = il : (9-60)
b ep is to substitute the assumed solution (9-56) and the expression for 2
vave equation (9-54). During the substitution, R(z) and S(z) are assumed
rying functions of z so that their second derivatives can be ciroppecl,
- 7 is expanded into its two complex-exponential components, and &
yrding to (9-57). Terms with wave vectors & — K = p—2K and p +
-e dropped, since they correspond to propagation directions that are _far
the Bragg condition. Finally, equating the sum of all terms multiplying
>ro and similarly for the sum of all terms multiplying exp[j& - 7], we
d S(z) must individually satisfy the following equations in order for the
) be satisfied:

(9-55)

where 7 ~ (x, ¥, z) and K is the grating vector. The hologra:
faces parallel to the (x, y) plane and to be of thickness d in
‘A number of assumptions are needed for simplification
the wave equation. First it is assumed that the hologram is t
waves need be considered within the grating. One is the ¢
wave U, (F), which is gradually depleted by diffraction and &
the first-order Bragg-matched grating order U;(F). We assum
the grating is composed of a sum of these two waves, and °
field as :

a¢ = ag+a;coskK -7,

Il

cRLE +apR = jk§
dz (9-61)
5_ g’é’) uer) = UP(F} + Ui(7) : s ;
( R(z) SIBT L BN gI6 T '_ cs~d—2 + (Cl’o - j§)S = jkR,
where the symbols p and & are conventionally used in place.  the “detuning parameter”, given by
k;, respectively, in our previous notation. We assume that t; 5
that of the playback wave in the absence of coupling, and tha ;= B” - 10_‘ (9-62)

diffracted wave is given by 2B’
@.--.g;e) G=p—-K. . . ;cpand cg are given by
In addition, it is assumed that absorption in a distance of ont cr = % = cosf
that the variation of the refractive index is small compared t¢ . _ _ (9-63)
) : cs = == = cos(9 — 2¢),
IS(d)l B _
ROE &% ¥ 2
R@?208} \ . 'iz = S 1% é
e A
[R(0)]
o8l
0.4 :
FIGURE 9.30
0.2 Normalized intensities of the
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Orientation of interference fringes within a recordin g medium. (a) Two
plane waves forming slant fringes, (b) a plane wave and a spherical
wave, (c) two plane waves impinging from opposite sides of the
emulsion, and (d) a plane wave and a spherical wave impinging from
opposite sides of the recording medium. '
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A volume holographic storage system. The case of angle multiplexing is illustrated.
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Figure 18-2 The photorefractive mechanism. Two coherent light beams intersect in
an electrooptic crystal, forming an interference pattern. Electrons are excited
where the intensity is large and migrate to regions of low intensity. The electric
field associated with the resultant space charge operates through the electrooptic
effect to produce a refractive index grating. & is the phase shift (in radians)
between the light interference pattern and the index grating.
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Acousto-optic cells operating in the (a) Raman-Nath regime
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