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Three-dimensional joint transform correlator

Joseph Rosen

The three-dimensional ~3-D! joint transform correlator is demonstrated with realistic targets. Three-
dimensional objects observed by multiple cameras are correlated with a 3-D reference object. The
number of cameras and their directions of observation are particularly considered. © 1998 Optical
Society of America
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1. Introduction

Three-dimensional ~3-D! optical correlators open op-
portunities for processing 3-D images directly and
rapidly. Targets distributed in 3-D space can be rec-
ognized or tracked by optical correlators in the same
fast and parallel manner that the well-known two-
dimensional ~2-D! correlators1 have demonstrated for
he past three decades. A method for performing
-D optical correlation was proposed by Bamler and
ofer-Alfeis2 and revisited in Ref. 3. In these studies

the 3-D observed scene is first mapped, slice by slice,
onto a 2-D plane. Then a conventional 2-D optical
correlation, with an increased space–bandwidth
product, is performed. However, the 3-D distribu-
tion of the observed scene must be known a priori to
the digital computing system, prior to the mapping
stage on the 2-D plane. In other words, the scene
must be processed with intensive digital algorithms
to reconstruct the 3-D image inside the computer
memory before any correlation can be employed.
The advantages of the optical processing, namely, the
directness and the high processing speed, vanish in
such schemes.

Recently4,5 a process of direct 3-D electro-optical
correlations between two 3-D real-world functions
was developed, without the need for any preprocess-
ing stage. This 3-D correlation was demonstrated
by simulation of a 3-D extension of the well-known
2-D joint transform correlator ~JTC!.6 In the pro-
posed scheme, a reference object and tested objects
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are observed from a single distant transverse plane.
Several cameras distributed on this observation
plane record 2-D projections of the 3-D input scene
from various points of view. The correlation process
in the JTC configuration contains a series of optical
2-D Fourier transforms ~FT’s! applied jointly on the
reference object and the tested objects. Then the
accumulated intensity distributions of the 2-D FT’s
are mapped on a 3-D spectral space, and, finally, the
correlation output is obtained by use of an additional
3-D FT. The output result of this process is a 3-D
correlation between the reference object and the
tested objects. This algorithm is composed of a series
of automatic image-processing operations. Some of
these operations can be implemented optically, and
together they yield the 3-D correlation between any
two arbitrary functions. The key concept of the 3-D
correlation is first to implement electro-optically the
3-D FT of the observed scene. Then, with the con-
volution theorem, the desired 3-D correlation result is
obtained. The 3-D correlator enables one to identify
a target from its depth pattern as well as from its
regular 2-D information. Of no less importance is
that, instead of knowing the target’s location in only
the 2-D scene, we learn its position in 3-D space.

One main drawback of the system proposed in Ref.
5 is the need for cameras with wide fields of view in
the extreme points of view. All the directions of ob-
servation for all the points of view are parallel to the
same longitudinal axis. Therefore the field of view
must be much wider than the total width of the ob-
served objects @see Fig. 1~a!#. Otherwise, one cannot
hift the point of view far from the origin without
issing parts of the objects in the extreme frames.

n this paper the previously proposed system is mod-
fied to overcome this drawback. The first experi-

ent of the 3-D JTC with real-world objects is also
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described. Finally, the relation between the number
of observation points and the quality of the correla-
tion results is examined experimentally. In other
words, the question of how much one can reduce the
number of 2-D projections and still receive reason-
ably acceptable results is asked.

2. Analysis

The two options for observing the input scene by
multiple cameras from some distance are shown in
Fig. 1. In both configurations the plane zs 5 0, lo-
cated at a distance L from the imaging lens S1, is
imaged on the camera with a magnification factor M0.
For a distance d between the lens S1 and the camera,
M0 satisfies the relation M0 5 dyL. Therefore any
arbitrary point ~xs, ys, zs! of the observed scene is
imaged to the point ~xi, yi! on plane P2 with a mag-
nification factor of

M~zs! 5
d

L 2 zs
5

M0

1 2 zsyL
. (1)

Plane P2 is two-dimensionally Fourier transformed
onto plane P3. Thus the point ~xs, ys, zs! with bright-
ness o is transformed into a linear phase function of
the form @M~zs!#

2o exp@i~kyf !~xiu 1 yiv!#, where ~u, v!
are the transverse coordinates of plane P3, k 5 2pyl,
l is the wavelength, and f is the focal length of the
Fourier lens S2. Under the far-field approximation,
we assume that L .. Dzs, where Dzs is the existence

Fig. 1. Illustration of the imaging system in the case of ~a! par-
llel and ~b! converging observations.
1

interval of the input function along zs. Thus we can
assume that all the object points are imaged with the
same magnification factor @i.e., Eq. ~1! is approxi-
mated such that M~zs! ' M0, @zs [ Dzs#. The overall
distribution on plane P3 is given by integration over
the linear phases contributed by all the object points,
as follows:

O3~u, v! 5 M0
2 *** o~xs, ys, zs!exp@i~kyf !~xiu

1 yiv!#dxsdysdzs, (2)

where o~xs, ys, zs! is the 3-D input function in the
coordinate system ~xs, ys, zs!.

In the parallel observation shown in Fig. 1~a!, the
ependence of ~xi, yi! on M0, L, ~xs, ys, zs!, and the

lateral shift of the camera from its central position Dx
are given in Ref. 5. On the basis of this relation and
if we assume the far-field approximation, the 3-D
function accumulated on plane P3 from all the 2-D
projections is5

O3~u, v, Dx! 5 A exp~iM0 kDx uyf !

3 *** o~xs, ys, zs!exp@i~M0 kyf !~xs u

1 ys v 1 zs Dx uyL!#dxsdysdzs, (3)

where A is a complex constant. The distribution of
Eq. ~3! is used, after a proper coordinate transform,
as the 3-D spatial spectrum of the input scene in the
3-D JTC.5

According to Fig. 1~a!, for a maximum lateral shift
x,max and a maximum total object width Dxs, the

camera field angle of 2f must satisfy the condition
tan f $ ~Dx,max 1 Dxsy2!yL to prevent loss of object
information. For a given camera field angle, limita-
tions were set by the sizes of the objects that can be
processed or by the amount of the lateral shift that
can be employed. The lateral shift Dx,max deter-
mines the longitudinal resolution of the system,5 and
his resolution is a merit that we always wish to
ncrease.

To overcome this limitation, we examine the con-
erging observation as an alternative configuration.
n this architecture, shown in Fig. 1~b!, the detection
lane P2 of each camera is orthogonal to the line that

connects the origin points of the object space and the
detection plane. In this case the field angle is inde-
pendent of the lateral shift Dx, and therefore the field
of view can be as narrow as the total object width.
Formally, the condition that must be satisfied in this
case is only tan f $ Dxsy2L. However, Eq. ~3! is not
valid for the converging observation, and we should
recalculate the 3-D accumulated distribution on
plane P3, as described below.

To express the relation between the 3-D input func-
tion and the distribution of the Fourier space for the
new configuration, we first look again at a single
point ~xs, ys, zs! from the entire input object. The
observed point is imaged on plane P2 at point ~xi, yi!.
0 November 1998 y Vol. 37, No. 32 y APPLIED OPTICS 7539
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The location of the imaged point ~xi, yi! depends on
the coordinates ~xs, ys, zs! and on the angle u between
the longitudinal axis zs and the direction of observa-
tion @see Fig. 1~b!#. According to Fig. 1~b! and if we
assume that plane P1 is imaged with a magnification
factor M0, the location of the imaged point on plane P2
is

~xi, yi! 5 M0~xs cos u 1 zs sin u, ys!. (4)

Each imaged point ~xi, yi! is Fourier transformed to a
2-D linear phase function. The overall distribution
on the Fourier plane P3 from the entire 3-D object
o~xs, ys, zs! ~under the assumption that L .. Dzs! is
obtained by integration over the linear phases con-
tributed by all object points, as given by Eq. ~2!.
Substituting Eq. ~4! into Eq. ~2! yields

O3~u, v, u! 5 A *** o~xs, ys, zs!exp@i~kM0yf !~uxs cos u

1 vys 1 uzs sin u!#dxsdysdzs. (5)

Equation ~5! is similar to a 3-D FT, which transforms
an object function o~xs, ys, zs! into a 3-D spatial-
frequency function O3~ fx, fy, fz!, where fx 5 M0u cos
uylf, fy 5 M0vylf, and fz 5 M0u sin uylf. Note that
fx and fz are both dependent on the transverse vari-
able u and on the angle u. This dependence distin-
guishes Eq. ~5! from a pure 3-D FT, but apparently we
can obtain 3-D spectral functions of three indepen-
dent orthogonal spatial-frequency variables with a
proper coordinate transform, as discussed below.

Note that, in distant imaging, whereas L .. Dx, the
pproximations cos u ' 1 and sin u ' u ' DxyL are

valid. In this case Eq. ~5! is reduced to the form of
Eq. ~3! without the linear phase function given before
the integral. Therefore, in comparison with the par-
allel observation, the converging observation is less
restricted by the distance between the imaging sys-
tem and the objects. However, in the regime of close
imaging we have to map the function O3~u, v, u! from
coordinates ~u, v, u! to ~u cos u, v, u sin u!. This
mapping is more complicated than the mapping from
~u, v, DxyL! to ~u, v, uDxyL!, which is suitable for both
cases, i.e., the parallel and the converging observa-
tions in the regime of distant imaging. Mapping the
function O3~u, v, u! on the 3-D spatial spectral space
enables us, by an additional 3-D FT, to obtain the
desired 3-D correlation distribution.

A conventional linear 2-D JTC6 is basically com-
posed of three sequential mathematical operations:
a FT of the input scene, calculation of the square
magnitude of the FT, and finally another FT. In our
3-D JTC we add an additional operation of coordinate
transformation before the final 3-D FT in which every
plane in the space ~u, v, Dx! with a constant Dx 5 D̃x
is mapped to a tilted plane with the slope ~D̃x, 0! in
he space ~u, v, uDx!. It is suggested that such map-

ping be implemented electronically, either with soft-
ware, as was done in the present study, or with
electronic hardware.

The complete process of the 3-D JTC is shown sche-
540 APPLIED OPTICS y Vol. 37, No. 32 y 10 November 1998
matically in Fig. 2. The 3-D input space of the JTC
contains a reference object r~xs, ys, zs! at some point,
say, the origin, and a few tested objects, denoted to-
gether by the function g~xs, ys, zs! and located around
some other point, say, the point ~a, b, c!. Therefore
the JTC input function is given by

o~xs, ys, zs! 5 r~xs, ys, zs! 1 g~xs 1 a, ys 1 b, zs 1 c!. (6)

Following the above-mentioned analysis, we can con-
clude that, for converging observation from the far-
field, the obtained 3-D function from the set of 2-D
intensity images on plane P3 for various angles u is

I3~u, v, u! 5 uO3~u, v, u!u2

5 UA *** o~xs, ys, zs!exp@i~M0 kyf !~xs u

1 ys v 1 zs Dx uyL!#dxsdysdzsU2

. (7)

This intensity expression @Eq. ~7!# is obtained by sub-
stitution of the far-field approximation sin u ' u '
DxyL into the absolute squared value of the ampli-
tude of Eq. ~5!. Substituting Eq. ~6! into Eq. ~7!
yields

I3~u, v, u! 5 uR~u, v, u! 1 G~u, v, u!exp@i~M0 kyf !

3 ~au 1 bv 1 cDx uyL!#u2, (8)

Fig. 2. Schematic of the 3-D JTC.



where R and G are the 3-D FT’s of r and g, respec-
tively, and are defined by

SRGD~u, v, u! 5 *** Sr
gD~xs, ys, zs!exp@i~M0 kyf !

3 ~xs u 1 ys v 1 zs Dx uyL!#dxsdysdzs. (9)

The intensity distribution I3 is recorded by another
camera into the computer, in which the coordinate
transform from ~u, v, u ' DxyL! to ~u, v, uDxyL! is
performed with proper software. The obtained func-
tion in the new coordinate system is

Ĩ3~u, v, uDxyL! 5 uR̃~u, v, uDxyL!

1 G̃~u, v, uDxyL!exp@i~M0 kyf !

3 ~au 1 bv 1 cDx uyL!#u2

5 uR̃~u, v, uDxyL!u2 1 uG̃~u, v, uDxyL!u2

1 R̃~u, v, uDxyL!G̃*~u, v, uDxyL!

3 exp@2i~M0 kyf !~au 1 bv

1 cDx uyL!# 1 G̃~u, v, uDxyL!

3 R̃*~u, v, uDxyL!exp@i~M0 kyf !

3 ~au 1 bv 1 cDx uyL!#, (10)

Fig. 3. Twelve projections out of 25 of the input scene
1

where R̃ and G̃ are the transformed functions R and
G in the new spatial-frequency coordinates given by
fx 5 M0uylf, fy 5 M0vylf, and fz 5 M0uDxyLlf.
Without this mapping to the 3-D spatial-frequency
space, we cannot use the convolution theorem and get
the desired 3-D correlation. After another 3-D FT of
Ĩ3~ fx, fy, fz!, the output result is

c~xo, yo, zo! 5 *** Ĩ3~ fx, fy, fz!

3 exp@2i2p~xo fx 1 yo fy 1 zo fz!#dfxdfydfz

5 r ^ r 1 g ^ g 1 ~r ^ g!

p d~xo 2 a, yo 2 b, zo 2 c!

1 ~g ^ r! p d~xo 1 a, yo 1 b, zo 1 c!, (11)

where the symbol R and the asterisk stand for the
3-D correlation and the 3-D convolution, respectively,
and d~. . .! is the Dirac delta function. Similar to an
ordinary 2-D JTC,6 the last two terms of Eq. ~11! are
the cross correlations between the reference object
and the tested objects. The third and fourth corre-
lation terms are centered around the points ~a, b, c!

served from different points of view along the baseline.
as ob
0 November 1998 y Vol. 37, No. 32 y APPLIED OPTICS 7541
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and ~2a, 2b, 2c!, respectively. Each term can be
written explicitly as

~g ^ r!~xo, yo, zo! 5 *** g~x, y, z!

3 r~x 2 xo, y 2 yo, z 2 zo!dxdydz.
(12)

The first two terms of the autocorrelation in Eq. ~11!
are centered around the origin. Therefore, if one of

Fig. 4. Intensity of the correlation results of the 3-D joint tr
542 APPLIED OPTICS y Vol. 37, No. 32 y 10 November 1998
the distances ~a, b, c! is longer than the respective
size of the tested function g, the cross correlation is
spatially separated from the autocorrelation terms
and thus becomes detectable.

There are two new elements in the present process,
shown schematically in Fig. 2, in comparison with the
previous schemes.4,5 First, the camera observation
is modified to be converging instead of parallel as
discussed above. Second, to employ the full process-
ing power of optics, it is suggested that the final 3-D

orm correlator ~a! before and ~b! after a threshold operation.
ansf
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FT be split into an electronic one-dimensional FT
from fz to zo followed by multiple optical 2-D FT’s
from ~ fx, fy, zo! to ~xo, yo, zo!.

3. Experimental Results

In our example the input scene contains four vehicles,
as shown in Fig. 2. One of them, the reference, is
located on the right-hand side of the scene and is
identical to two cars from the left-hand group of three
vehicles used here as the observed objects. Note
that the two lower vehicles are located in front of the
reference, whereas the upper vehicle is in back of it.
The system should recognize the two cars that are
identical to the reference and ignore the other vehi-
cle. Three locations of the CCD cameras are also
shown in Fig. 2. In this experiment a single camera
was shifted along the x axis by 24 equal displace-
ments, 12 for each side. Each projection was re-
corded with the camera and Fourier transformed. A
temporary lack of a spatial light modulator ~SLM! in
the laboratory made it necessary to calculate all the
2-D FT’s in this project with a digital computer. The
intensity of all the 2-D FT’s on plane P3, designated
as I3~u, v, u!, was stored in the computer. Note that
the reference can first be recorded alone ~off line!

ithout the observed objects. Then, at the stage of
arget recognition, each reference projection is dis-
layed on the SLM beside the corresponding object
rojection. Alternatively, all the reference projec-
ions can be created synthetically by some computer
lgorithm7 before they are displayed on the SLM be-

side the object projections.
Figure 3 presents 12 out of 25 images taken with

the camera from every even position along the base-
line. In each image the group of three tested objects
is located on the left-hand side, while the reference is
separated on the right-hand side. From the set of 25
intensity patterns of 2-D FT’s, the 3-D spectrum Ĩ3~u,
v, uDxyL! is composed with the coordinate transform
from ~u, v, u! to ~u, v, uDxyL!, where u > DxyL. This
transformation is justified in this case of converging

Fig. 5. The peak-to-correlation energy ~PCE! versus the number
f cameras along the baseline.
1

observation because the value of u in this experiment
is no more than 15°. An additional 3-D FT of Ĩ3~u, v,
uDxyL! yields the required 3-D cross correlation be-
tween the reference object and the tested objects in
the first diffraction order. In the present experi-
ment the JTC yields a linear 3-D correlation, as de-
fined in Eq. ~11!. No additional processing ~such as
inarization, dc removal, etc.! was performed on the

joint spectrum Ĩ3~u, v, uDxyL!. However, these op-
erations can be applied in the future with the same
considerations as for the known 2-D JTC. Note that
this process is 3-D shift invariant but is not a
distortion-invariant recognition. Therefore a recog-
nition peak is obtained only when the reference object
and the observed object are identical in structure,
size, and orientation. In other words, there is no
need to train or to synthesize a special reference func-
tion. The reference is simply an exact copy of the
object to be recognized. The orientation of the left-
hand vehicles seems different from that of the right-
hand reference only because their locations in
relation to the camera are different. Also, it should
be emphasized that Fig. 3 does not show an input to
12 separated 2-D JTC’s. It does show the input to a
single 3-D JTC, in which the high peaks in the output
3-D space ~see Fig. 4! indicate the presence of recog-
nized objects in the 3-D input space.

Three-dimensional plots of the output space
around the region of the first diffraction order are
shown in Fig. 4~a!. The output correlation space is
given by the coordinates ~xo, yo, zo!, which are equiv-
alent to the input coordinates ~xs, ys, zs!. Each 3-D
plot of Fig. 4 presents the transverse intensity distri-
bution at some zo. The correlation distribution
above the threshold value of 0.8 is depicted in Fig.
4~b!. The two strong correlation peaks on planes zo
5 22, 1 indicate the locations of the two recognized
vehicles, which are identical with the reference.

One of the main considerations of this system is the
number of 2-D projections required for a proper op-
eration. To save resources and computation time, as
few projections as possible should be used. How-
ever, it is clear that some penalty in the sense of
performance reduction should come with reducing
the number of cameras. This issue is examined by
measurement of the peak-to-correlation energy8

~PCE! versus the camera number, as shown in Fig. 5.
educing the number of cameras means reducing, by

he same amount, the number of tilted planes @with
he slopes of ~D̃x, O!# in the 3-D spatial spectral space

without changing other dimensions in system. The
PCE is defined as the ratio between the correlation-
peak intensity and the average intensity over the
entire distribution on the correlation plane. For the
present experiment we find that correct recognition is
achieved within only two projections, i.e., by record-
ing of the scene with only two cameras from two
points of view. However, increasing the reliability of
the system demands increasing the number of pro-
jections. The reliability is expressed here by the
PCE, since higher values of the PCE mean a higher
0 November 1998 y Vol. 37, No. 32 y APPLIED OPTICS 7543
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probability for the system to identify the correct cor-
relation peaks from among their noisy vicinities.

4. Conclusions

An electro-optical 3-D spatial correlator has been
demonstrated experimentally. The previously pro-
posed system5 was modified to eliminate the need for
ameras with wide fields of view. The penalty that
omes with the method of converging observation is
he need for careful camera calibration to guarantee
hat all cameras are focused on the same point in the
bserved scene.
The effect of reducing the number of cameras has

lso been considered. Recording finite discrete
umbers of projections is equivalent to using partial
ata from the complete 3-D spectrum. Using partial
ata from the spectrum in conventional imaging sys-
ems usually results in degradation and blurring of
he output image. Since the single goal of the cor-
elator is to emit correlation peaks in the proper lo-
ations, the demand of transferring maximum
nformation about the spectral distribution can be
elaxed. This explains why two projections in this
xperiment are enough to yield a correct correlation
esult, although with a low signal-to-noise ratio. It
s expected that, for more targets in the input scene
nd therefore with a more complicated correlation
attern, the desired minimum number of points of
544 APPLIED OPTICS y Vol. 37, No. 32 y 10 November 1998
view should be increased to avoid a mistaken recog-
nition.

The author thanks Boaz Salik and Yevgeny
Karasik for fruitful discussions.
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