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We describe generalized projection procedures for the design of arbitrary filter functions for correlators.
More specifically, serial and parallel implementations of projection-based algorithms are employed. The
novelty of this procedure lies in its generality and its ability to handle wide varieties of constraints by the
same procedure. The procedure is demonstrated by the design of filters for the 4-f linear correlator, the
phase-extraction correlator, and variants thereof. The filters are subject to a variety of constraints,
including rotation-invariant pattern recognition and class discrimination. Examples are given to show
the versatility, flexibility, and applicability of the design process to a variety of pattern-recognition
tasks. Satisfactory results are also obtained because of the combination with the special nonlinear
correlators proposed for pattern recognition.
1. Introduction

Pattern-recognition 1PR2 systems are usually de-
signedwith specific requirements. Examples of these
requirements are rotation invariance, scale invari-
ance, and tilt invariance. Various dedicated proce-
dures were proposed in the past, such as circular
harmonic component1 1CHC2 filters and CHC phase-
only filters2 1CHC POF’s2 for rotation-invariant PR,
the Fourier–Mellin transform3 for scale-invariant PR,
position determination,4 etc. The underlying charac-
teristic of the above approaches is that they assume, a
priori, a predefined structure for the filter. From a
systems point of view, a generalized procedure for the
design of arbitrary reference functions for correlators
is desirable, without an a priori limiting structure.
In this paper we show how such requirements can

be handled by general-purpose procedures. The
power of the algorithms lie in 1a2 their simplicity, and
1b2 the fact that the solutions are not confined to a
predetermined structure, which leaves more flexibil-
ity to arrive at not only better solutions, but also at
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solutions that were not previously considered possible
because of a, perhaps mistaken, a priori confinement
of the solution. The purpose of the paper is thus
twofold: 1a2 introduce, review, and enhance some
new concepts in the design of optical PR systems 1for
linear and nonlinear systems2, and 1b2 demonstrate
the applicability of projection-based methods for the
achievement of superior performance in the above PR
systems under a wide and quite stringent range of
requirements.
The algorithms we employ are parallel and serial

versions of the projection-onto-constraint sets 1POCS’s2
method: when the serial-projection method5,6 is ap-
plicable we employ it; otherwise we employ the re-
cently introduced parallel-projectionmethod,7–9 based
on Ref. 10, which may be employed for both linear-
correlator 1LC2 systems as well as non-LC systems,
such as the phase-extraction correlator11 1PEC2 and its
variants. In Section 2, after some preliminary defini-
tions, we describe the parallel- and the serial-
projectionmethods and their characteristics. In Sec-
tion 3 we design filters by a parallel version of POCS,
for both the PEC and the 4-f LC. In Section 4 we
investigate rotation-invariant filtering, based on the
CHC1 filter and introduce some energy measures
according to which we can establish a fair criterion for
comparison between PEC-based correlators and simi-
lar LC’s. In Section 5, based on CHC decomposition
theory and its application in Section 4, we design, by
the serial-POCS method, special rotation-invariant
filters to detect a class of objects that maintain the
narrow, high-intensity, correlation peaks typical of
the PEC. Conclusions are given in Section 6.
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3883



2. Background

A. Serial Projections

Given a Hilbert space H , a distance function d on H ,
and a closed convex set 1CCS2 C in H , projection from
H onto Cwith respect to the distance function d is an
operation P that associates to every element h [ H

the 1unique2 element h8 in C closest to h, where ‘‘close’’
is measured by d:

P1h2 5 h8

if and only if h8 [ C and inf
y[C

d1 y, h2 5 d1h8, h2;

112

1projected vectors are henceforth marked by a prime2.
Usually d is derived from the prevailing Hilbert-space
structure,

d1h, h82 5 6h 2 h86H [ e 0h1x2 2 h81x2 02dx. 122

If the sets Ci are closed with respect to d and are
convex, the projection element exists and is unique.
If the sets are not convex, procedures exist for deter-
mining the 1unique2 projection.12
Sometimes the projection operation is modified to

admit relaxation. For instance, P may be replaced
by the relaxed operator Pl defined by

Pl1h2 5 P1h2 1 l3P1h2 2 h4, 132

where l is a real relaxation parameter with 0l 0 , 1.
Given N CCS’s, Ci, i 5 1, . . . , N, Ci , H , with a

nonempty intersectionC0 5 >i51
N Ci, we can associate a

separate relaxed projection Pi,li with each set Ci and
corresponding projection Pi. To obtain an element in
C0 we iterate the composed operator T, defined by,

T 5 PN,lN
PN21,lN21

· · · P1,l1
, 142

by using the following algorithm:

Algorithm 1: Given an arbitrary initial function
h01x2,

hk11 5 T1hk2, k $0. 152

For any arbitrary initial function h0 we ensure that
the infinite sequence 5h0, h1, h2, . . .6 generated by
algorithm 1 converges weakly13 to an element in C0,
provided all projections are performed with respect to
the same distance function14 and that all the N sets
are CCS’s 1in finite dimension, e.g., H 5 Cn, weak and
strong convergence are the same2. If some of the N
sets are not convex, we are assured of a monotonic
nonincrease of some error function along the iterates,
provided N # 2. If N . 2 this is not guaranteed,
even if only one set is not convex.
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B. Parallel Projection

We start by defining generalized weighted, L2, norm-
squared distance functions, with weightWi:

di1h1, h22[ 6H1 2 H26Wi

2

[ e
2`

`

0H11u2 2 H21u2 02Wi1u2du h1, h2 [ H ,

162

where Wi1u2 is an essentially positive and essentially
bounded weighting function, and uppercase letters
denote the Fourier transform 1FT2 of the lowercase
functions, e.g., Hi1u2 [ F 5hi1x26. We also define a cost
functional:

Ĵ1h22 [ o
i51

N

bidi3PCi
di 1h2, h4

5 o
i51

N

bi6 F 5PCi
di 1h26 2 F 5h66Wi

2 , 172

where bi . 0 attributes an importance to the projec-
tion, PCi

di 1h2 denotes the projection of h onto the set Ci

with respect to the distance function di, i.e.,

PCi
di 1h2 5 h8 if and only if inf

h1[Ci
di1h1, h2 5 di1h8, h2,

h8 [ Ci. 182

We also denote by Pi,li the relaxed projections, as
above 3where we omit the superscript 1?2di for brevity4.
If the sets Ci are closed with respect to di and convex,
the projection element exists and is unique. If the
sets are not convex, procedures exist for determining
the 1unique2 projection.12 With these definitions we
can state the parallel-projection algorithm in its space
1time2 representation, generating the sequence of suc-
cessive estimates 5h0, h1, . . . ,6. Although the algo-
rithm operates in an infinite-dimensional Hilbert
space as well,7,15 we assume finite dimension 1as it is
implemented on a digital computer2.

Algorithm 2, space domain: Given an arbitrary ini-
tial function h01x2, calculate,

vi
k111x2 [ Pi,l3hk1x24, for all i 5 1, 2, . . . , N, 19a2

hk111x2 5 F
215oi51

N

biWi1u2 F 5vi
k1161u2

o
i51

N

biWi1u2 6 , 19b2

where F and F 21 denote the FT and its inverse,
respectively. For an equivalent frequency represen-
tation, see Ref. 16.
A detailed mathematical justification of this algo-

rithm is provided in Refs. 15 and 16, which is briefly



reviewed in appendix A. Here we note only that
iterates generated by this parallel algorithm converge
weakly to C0, provided that all sets are CCS’s and l [
121, 12, and that the individual projections may be
defined with respect to different distance functions, in
contrast to the serial algorithm. Also, even if some,
or all, of the sets are nonconvex, the cost function Ĵ is
nonincreasing along the iterates, provided that l [
10, 12, assuring us of improved estimates along the
iterates. This holds for an arbitrary number of sets,
as opposed to the serial algorithm in Subsection 2.A.

C. Correlator and Related Definitions

Using one-dimensional notation for brevity, we define
the correlation between an input function f 1x2 and a
reference 1filter2 function h1x2 by

F1x2 5 F
215NlE F 5 f 1x26FNlE F 5h1x26F6 1102

where Nl is a, possibly nonlinear, operator defined by

Nl5R1u26 5 0R1u2 0lexp3iw1u24,

R1u2 5 0R1u2 0exp3iw1u24, 0 # l # 1. 1112

We further define fp1x2 and hp1x2 by fp1x2 [ F 215Nl50

E F 5 f 1x26F6, hp1x2 [ F 215Nl50E F 5h1x26F6, which corre-
spond to the phase parts of the functions f 1x2 and h1x2,
respectively.
With these definitions, we are in a position to state

the following three correlators that are considered in
this work:

LC:

F1x2 5 h1x2 f 1x2. 1122

PEC:

F1x2 5 hp1x2 fp1x2. 1132

Generalized PEC 1GPEC2:

F1x2 5 h1x2 fp1x2, 1142

Other degrees of nonlinearity, 1monitored by l2 can be
tried as well, leading to nonlinear correlators similar
to the nonlinear joint transform correlator,17–19 as
indicated in Ref. 20. Also, note that both the PEC
and the GPEC are nonlinear correlation systems.
In the rest of the paper we employ the serial- and

the parallel-projection methods for the design of
filters for the LC, the PEC, and the GPEC. This is
performed subject to a variety of demands 1con-
straints2 including class discrimination and class rec-
ognition with rotation invariance. We note that the
serial POCS has already been applied successfully to
the design of filters that are both rotation and shift
invariant, as well as having a predetermined, limited
scale range for which the response is constant too.21
This was possible because of the flexibility of the
method. The optical implementations of the various
PEC’s and other non-LC’s11,18–20,22 and LC’s21 were
given elsewhere and are not repeated here, for brev-
ity.

3. Applications

Throughout the following sections, we use various
projection algorithms to design filters for optical LC
and non-LC systems. In the design process the
constraints are basically composed of discrimination
and peak energy 1amplitude2 constraints. Noise con-
straints, e.g., noise robustness, can be easily incorpo-
rated into the design process as well, at least for the
parallel algorithm, as shown in Ref. 7 1in Ref. 7 the
noise is taken into account for image-restoration
purposes and the idea is similar for PR purposes2.
Our interest here is concerned mainly with non-LC

systems like the PEC and the GPEC that provide
better discrimination than the LC and are barely
affected by noise up to a certain level. Moreover, it
was shown in Ref. 20 that the presence of noise
actually assisted in the case of multiple-object inputs.
Thus, for brevity, noise problems are not considered
further, nor is shift invariance, which was demon-
strated in Refs. 11 and 20.

A. Class Discrimination by a Linear Correlator

For a class-discrimination problem we define a train-
ing set consisting of two classes. The class to be
detected is placed in a region of spaceR1, and the class
to be rejected is situated in the regionR2. The task is
to design a filter, h, such that

112 Its correlation with a given input function, f,
will satisfy some correlation constraint C1. Namely,
in the detection region, R1, the correlation peaks will
be larger than some predetermined value T1, whereas
in the rejection region, R2, the correlation will be
lower than some predetermined value T2. If the
complete training set is presented simultaneously
over the input plane, then R1 corresponds to regions
in the correlation plane that correspond to the posi-
tions of objects to be detected, whereas the regions R2
represent the location of objects to be rejected and
empty regions surrounding the correlation peaks in
R1. During the learning stage the correlation peak is
assumed to be contained in a single pixel. Because
this is physically not possible, some of the peak
energy will leak out into neighboring pixels, constitut-
ing the background that should be below T2. Also, T1
and T2 are appropriately chosen threshold values to
provide sufficient discrimination 1at least T1@T22 as
well as sufficient energy in the peak 1high absolute
value of T12. The appropriate values will depend on
the specific application and the level of similarity
between both classes.

122 Its FT, F 5h6, corresponds to a passive element
1C22.

132 It should have finite support, say 32a, a41C32.

Any filter h that satisfies all three constraints above is
considered a solution. More specifically, the con-
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3885



straints are given by the following definitions:

C1 [ 5h 0 1h f 21 j2 [ Ĉ1, ;j6, 115a2

Ĉ1 [ 5F1 j2 0 0F1 j2 0 # T2, for j [ R2;

Fre1 j2 $ T1 and Fim1 j2 5 0, for j [ R16,

115b2

C2 [ 5h 0 0 F 5h1 j26 0 # 16, 115c2

C3 [ 5h 0h1 j2 5 0, for j 32a, a4; a . 06, 115d2

where

F1 j2 [ 1h f 21 j2, F1 j2 [ Fre1 j2 1 iFim1 j2;

Fre1 j2 5 Re5F1 j26, Fim1 j2 5 Im5F1 j26.

Actually, the measured quantity is 0F 02 and not its
imaginary or real values. However, the constraint,
0F1 j2 02 $ const. is not a convex constraint set and
convergence is then not guaranteed. This is not the
case for C2, where the constraint is 0I1 j2 0 # const.
Thus with our choice, C1, Ĉ1, C2, and C3 are CCS’s.
Projections onto C2, C3 with respect to the distance

function given by Eq. 162 with unity weighting
3Wi1u2 5 1, i 5 2, 32, i.e., the Euclidean norm, are
simple and are given by

PC2
d2 5h1x26 5 F

215H81u26,

where

H81u2 5 5H1u2 if 0H1u2 0 # 1

exp3iwH1u24 otherwise
,

PC3
d3 5h1x26 5 5h1x2 if x [ 12a, a2

0 otherwise
, 1162
where H1u2 5 F 5h1x26 5 0H1u2 0exp3iwH1u24. Unfor-
tunately, projection ontoC1 with respect to the Euclid-
ean norm is complicated and is a typical constrained
deconvolution problem in itself.14,16
To perform the projection onto C1 easily we follow

the idea proposed in Ref. 14. We perform the projec-
tion onto C1, with respect to the distance function
induced by a weighted norm squared, with the appro-
priate weighting given by W11m2 [ 0 F 3 f 1 j24 02 5

0F1m2 02:

d11H1,H22 5 o
m
W11m2 0H11m2 2 H21m2 02

5 o
j
0 F 2153W11m241@261 j2 3h11 j2 2 h21 j24 02.

1172
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This careful choice of the weighting function results
in a simple projection, viz.,

E F 215V16 5F

v1 [ PC1
d1 1h2, where V11m2 5

F 5F81 j261m2

F1m2
,

F81 j2

5 5
T2 exp3iwF1 j24, if j [ R2 and 0F1x2 0 . T2

F1 j2, if j [ R2 and 0F1 j2 0 # T2

T1, if j [ R1 and Fre1 j2 , T1

Fre1 j2, if j [ R1 and Cre1 j2 $ T1

F1 j2, otherwise

,

where

F1 j2 5 0F1 j2 0exp31iwF1 j24

5 F
215H1m2F1m26 5 h1 j2 f 1 j2. 1182

For details see Ref. 16.
Algorithm 2 allows projections with respect to

several different distance functions, and, therefore,
projecting different quantities in domains where both
the constraint set and the distance function are
simple is possible 1see Ref. 14, Section VI2; hence it
is employed for this filter synthesis task. The se-
quence 5hk6k50

` generated by algorithm 2 converges
to a function in C0, satisfying all constraints,
and is given by 3see Eqs. 19a2 and 19b24 hk111 j2 5 F 215H
k111m26, where
Hk111m2 5
F 5PC1

d1E F 215Hk6F61m2W11m2 1 F 5PC2
d2E F 215Hk6F61m2 1 F 5PC3

d3E F 215Hk6F61m2

W11m2 1 1 1 1
, 1192
and where d1 is given by Eq. 1172, a zero-relaxation
parameter 1l 5 02 is employed, and d21h1, h22 5
d31h1, h22 5 6h1 2 h26 1the Euclidean norm2.
In one of our simulation experiments we started

from a filter h such that h C1, h [ C2, h
C3. Figure 1 shows the input distribution.
The task is to detect the letter F and reject all

others. Figure 21a2 shows the correlation distribu-
tion with a LC, where the filter is a POF23 matched to
the letter F. Fig. 21b2 shows the correlation distribu-
tion with the filter generated by algorithm 2. The
improvement in both recognition and discrimination
is obvious.
In the case of the GPEC, for which the correlation is

given by F1x2 [ h1x2 fp1x2, we may employ the
serial-projection algorithm 1POCS2 with equal ease.
This was already treated in Ref. 14 and is not
discussed here.



B. Class Discrimination by the Phase-Extraction Correlator

For the PEC, for which the correlation is given by F1x2
[ fp1x2 hp1x2, the convex constraint set C2 in Eq. 115a2
must be replaced by the nonconvex constraint set
C22nc:

C22nc [ Eh 0 0 F 5h1 j26 0 5 1F. 1202

In this case h is a solution if h[C1 >C22nc >C3, i.e., h
5 hp. Thus, to design a suitable POF hp, it is
necessary to iterate the operator T [ PC1PC22nc

PC3.
However, because one of the sets is nonconvex and we
have more than two sets to project onto, we are not
assured of any monotonic behavior of the iterates of
algorithm 1.12 However, the parallel algorithm, algo-
rithm 2, may be employed, with assured monotonic
reduction of the cost function Ĵ of Eq. 172.
Figure 31a2 shows the result of the PEC, according

to Eq. 1132, where the input is given by Fig. 1 and the
filter is the POF, matched to the letter F. Figure
31b2 shows the result of the PEC with the same input,
with the POF generated by algorithm 2. The im-
provement is again quite evident. Also, note that the
correlation peaks are sharper in the PEC com-

Fig. 1. Input distribution.

Fig. 2. Correlation results with a LC. The input is Fig. 1, where
the filter is 1a2 a POFmatched to letter F, 1b2 generated by algorithm
2 for the LC.
pared with those of the LC. This is due to the
intrinsic high-frequency amplification of the PEC.
However, as noted above, there may be some shift
variance. To minimize this, we confined the impulse
response of the filter to be narrow in the space
domain 1constraint C32. The impulse response of the
filter is shown in Fig. 41a2. Indeed, when taking the
input shown in Fig. 1 and interchanging the positions
of the letters F and E, we obtain the correlation
function shown in Fig. 41b2, which is similar to that of
Fig. 31b2 1when noting the interchange of letters2,
demonstrating approximate shift invariance. We also
note that another approach for the design of filters
for the PEC may be to do a phase-only operation on
the filter generated for the GPEC 1thus avoiding
the problematic nonconvex constraint2. However,
clearly, it is better to incorporate the phase-only
requirement in the design procedure, ensuring that
all parameters involved are being optimized and
designed according to them. Also, naturally, the
parallel-projection algorithm is stopped after a finite
number of iterations 3basically when Ĵ1h2 is consid-
ered to be small enough4 and thus not all constraints
are 1yet2 strictly satisfied. Nevertheless, in our simu-

Fig. 3. Correlation results with the PEC. The input is Fig. 1,
where the filter is 1a2 a POF matched to letter F, 1b2 generated by
algorithm 2 for the PEC.

Fig. 4. 1a2 Impulse response of the filter. 1b2 As Fig. 3b, but with
the letters of the input 1from Fig. 12 F and E interchanged.
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3887



lation, almost all constraints were satisfied, i.e., the
filter passed over 99% of the incident energy.

4. Distortion-Invariant Filter Design

Distorted views of an object are of major concern in
optical correlators and were widely treated in the
literature. The procedures described in this paper
are particularly suitable to treat distortion problems.
As an example we demonstrate the efficiency of a new
concept in rotation-invariant signal processing by
combining the PEC11,22 and its generalization, the
GPEC, with the rotation invariance of the CHC POF.2
A schematic diagram of the rotationally invariant

PEC is shown in Fig. 5. For simplicity, in the analy-
sis below we assume a single object in the input plane
to which the filter is matched. The complications
arising frommultiple objects are seldom observable.20
We denote the complex amplitude distribution of a
given object 1in polar coordinates2 by a1r, u2, and its
version rotated by an angle a is given by a1r, u 1 a2.
The respective FT’s are denoted by A1r, w2 ; F 5a1r, u26
and A1r, w 1 a2 5

F 5a1r, u 1 a26. Putting this single object as an input,
we have f 1r, u2 5 a1r, u2, and write its FT in the form

F1r, w2 ; 0A1r, w2 0exp3ig1r, w24.

Taking a filter function matched to our present
input, we may write h1r, u2 5 a1r, u 1 p2 and obtain
H1r, w2 5 0A1r, w2 0exp32ig1r, w24, which, after the
phase-extraction operation 1which corresponds to the
operator Nl502, turns into H81r, w2 5 exp32ig1r, w24.
Expanding exp3ig1r, w24 into its CHC1 yields

exp3ig1r, w24 5 o
N52`

`

AN1r2exp1iNw2, 121a2

Fig. 5. Block diagram of the phase-extraction rotation-invariant
correlator: IFT, inverse FT; f 1x, y2, h1x, y2 the input and the filter
functions, respectively; CHCF, CHC filter.
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where

AN1r2 5 0AN1r2 0exp5i arg3AN1r246

5
1

2p e
0

2p

exp3ig1r, w24exp12iNw2dw. 121b2

First we analyze the output signal quality of the
rotation-invariant PEC and compare it with its linear
counterpart by using the measure of peak sharp-
ness,24 i.e., the peak-to-correlation energy 1PCE2, which
is defined by the relation

PCE 5
0F10, 02 02

ee
S0

0F 1x, y2 02dxdy

, 1222

where F1x, y2 is the output correlation function as
above, at position 1x, y2, and S0 is the aperture size.
Choosing the Nth-order CHC for the filter calculator
in Fig. 5, we get H8N1r, w2. After performing the
phase-extraction operation, we obtain the final filter
function:

H9N1r, w2 5 exp5i arg3H8N1r, w246

5 expA2i5Nw 1arg3AN1r246B. 1232

Note that this is the phase distribution in the Nth
component of the CHC decomposition of the phase
part of the FT of the filter function. With the input
a1r, u 1 a2 constrained by a circular aperture of radius
R0 and using the orthogonality of CHC’s, we obtain

F10, 02 5 1 12p2
2 e

0

2p e
0

R0

F81r, a 1 w2H9N1r, w2rdrdw

5
exp1iNa2

2p e
0

R0

0AN1r2 0rdr, 1242

the intensity of which is independent of the rotation
angle.
The denominator in Eq. 1222 is the energy over the

whole correlation plane. Thus, because the filter is a
POF, we may use Parseval’s theorem to write

ee
S0

0F1x, y2 02dxdy 5
1

2p o
M52`

` e
0

r0

0AM1r2 0
2rdr. 1252

Substituting Eqs. 1242 and 1252 into the sharpness
criterion 3Eq. 12224we obtain

PCEN
P 5

1

2p

3e
0

R0

0AN1r2 0rdr42

o
M52`

` e
0

r0

0AM1r2 0
2rdr

, 1262

where the subscript denotes the order of the filter and



Fig. 6. Three input distributions.
the superscript P denotes that we are dealing with a
PEC system.
To compare this result with the conventional LC,

we take the phase-only CHC filter.2 Defining

BN1r2 5 0BN1r2 0exp5i arg3B1r246

5
1

2p e
0

2p

0A1r, u2 0exp3ig1r, u24exp12iNu2du,

1272

we obtain the linear phase-only CHC filter distribu-
tion as

H9N1r, w2 5 expA2i5Nw 1 arg3BN1r246B, 1282

which is, in general, different from the filters for the
PEC.
The peak sharpness measure for this linear filter is

given by

PCEN
L 5

1

2p

3e
0

r0

0BN1r2 0rdr42

o
m52`

` e
0

r0

0Bm1r2 0
2rdr

. 1292

Figure 6 shows some input distributions. In one
of the simulation experiments performed, the input
distributions of Figs. 71a2 and 71b2 were used with
CHC filters of various orders 1N 5 0, 1, 22 prepared for
the letter P. For illustrative purposes, the correla-
tion-plane distribution for the different filters, of the
order ofN 5 1, with the corresponding input patterns
are shown in Fig. 7 for the LC and in Fig. 8 for the
PEC.
A comparison of the two figures clearly demon-

strates that both the rejection, where rejection 5

Fig. 7. Output correlation distributions for the LC corresponding
to the input patterns of Figs. 61a2 and 61b2, with the appropriate
CHC POFmatched to the letter P of the order ofN 5 1.
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3889



1peak corresponding to P2@1largest other peak2, and the
sharpness of the peak are substantially superior for
the PEC compared with those of the conventional LC.
The numerical comparison of the two results for N 5
0, 1, 2 is summarized in Table 1.
It is also interesting to compare the two correlators

with respect to the energy distribution among the
various harmonic components. For the sake of com-
parison we normalize the function at the Fourier
plane, 0A1r, u2 0 # 1, and obtain, by Parseval’s theorem,

e
0

2p e
0

R0

0A1r, w2exp3ig1r, w24 02rdrdw

5 2p o
N 52`

` e
0

R0

0BN1r2 0
2rdr

, e
0

2p e
0

R0

0exp3ig1r, w24 02rdrdw

5 2p o
N52`

` e
0

R0

0AN1r2 0
2rdr. 1302

This relation shows that under our present normaliza-
tion the energy in the correlation plane generated by
the PEC is larger than that of the LC. Thus, effec-
tively, the phase-extraction operation amplified the
energy contained in the sum of all the harmonics.
This is not necessarily true for each individual har-
monic, and it may very well be that some of the

Fig. 8. As Fig. 7, but for the PEC.

Table 1. PCE and Rejection Measurements for the LC and the PEC for
Various Orders of CHC’s a

N

PCE Rejection

LC PEC LC PEC

0 0.117 0.148 1.33 3.36
1 0.05 0.14 1.17 2.09
2 0.012 0.069 1.06 3.14

aRejection 5 1peak corresponding to P2@1largest other peak2.
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harmonics have higher energy in the LC than in the
PEC. Thus, in order to compare on a fair basis the
performances of the PEC and LC, we look for harmon-
ics with similar fractional energy, which is defined by
the energy measure EM:

EM 5
the energy in the Nth order

the total energy
. 1312

For the LC this measure is given by

EMN
L 5

e
0

r0

0BN1r2 0
2rdr

o
M52`

` e
0

r0

0BM1r2 0
2rdr

, 1322

whereas, for the PEC, we have

EMN
P 5

e
0

r0

0AN1r2 0
2rdr

o
M52`

` e
0

r0

0AM1r2 0
2rdr

. 1332

Because for both correlators we used POF’s matched
to a certain CHC, it cancels the phase of that CHC.
The result is that most of the energy contained in that
component is concentrated into the correlation peak,
and thus the EM establishes a fair measure for
comparison between the PEC and the LC.
Table 2 shows that for N 5 1 the EM of the LC is

similar to the EM of the PEC for N 5 2. Neverthe-
less, the sharpness, as defined by the PCE criterion, is
40% better in the PEC. The rejection of the PEC is
2.6 times as much as that offered by the LC.
Another interesting example illustrating the superior-
ity of the PEC over the LC is for N 5 0. Despite the
fact that the EM of the LC is almost 3 times larger
than the EM of the PEC, both the PCE and the
rejection are better for the PEC. As expected, it is
also evident from the tables that the lower the EM,
the lower the corresponding PCE in the given correla-
tor. Another interesting point is that the energy in
the PEC is far less concentrated in the lower orders
than in the LC. Thus in the PEC we may use
higher-order CHC’s, which leads to better discrimina-
tion 1as the differences between objects are usually in
the higher spatial frequencies2 without severe degra-
dation in the peak intensity. It should also be noted

Table 2. EM for the LC and the PEC for Various Orders of the CHC’s

N

EM

LC PEC

0 0.61 0.22
1 0.11 0.16
2 0.0029 0.12



that in our simulations the problem of proper center1
was much less severe than in the LC. Whereas in
the LC, displacements of the expansion center by
,20% of the pattern size caused up to 300% variation
in the correlation-peak intensity, the variation for a
similar change observed in the PEC was only 30%.
Thus in the PEC it is not so important to search for a
proper center.

5. Rotation-Invariant Class Discrimination

Section 4 described a rotation-invariant non-LC based
on circular harmonic decomposition, with extremely
high discrimination. However, if this method is ap-
plied to the problem of class discrimination, in which
different objects should generate similar correlation
peaks, performance is substantially reduced. In this
section we demonstrate that this and other difficult
problems can be handled by our procedures demon-
strated in Section 3. As an example, we design a
rotation-invariant filter to discriminate between a
class containing the letters P, F, and X from the class
containing the letter E by using the GPEC. Note
that the members of the first class have much less
features in common among them thanwith the second
class 1X is completely distinct from P and F, whereas E
is quite similar to the latter two and is difficult to
discriminate by conventional spatial filtering2.
Looking at Fig. 81b2, we find that the task is not
simple. It may be easily shown that using a filter of
the form H1r, w2 5 H1r2exp1iNw2, where H1r2 is not
necessarily any of the Nth CHC’s of the Fourier
phases of the letters, still leads to an invariant
correlation response. What is desired is that the
filter will, basically, detect the Nth harmonic of P
1constraint Cp2det2 and be orthogonal to the differences
in the Nth harmonic between P and F 1constraint
Cpf2rej2 and P and X 1constraint Cpx2rej2, where differ-
ences and orthogonality are defined by integrals.
This leads us to the following set of constraints:

Cp2det[ 5H1r20 eH1r2ap1r2rdr 5 const, const[ IR6 ,
134a2

Cpf2rej[ 5H1r20 eH1r2apf 1r2rdr 5 06 , 134b2

Cpx2rej[ 5H1r20 eH1r2apx1r2rdr 5 06 , 134c2

where ap1r2 5 AN
p 1r2, apf 1r2 5 AN

p 1r2 2 AN
f 1r2, apx1r2 5 AN

p 1r2
2 AN

x 1r2, and the superscript over AN indicates what
letter the expansion of the phase corresponds to,
where AN is as given in Eq. 121b2. The other con-
straint required in the design process is that the filter
correspond to a passive element Cpas 3this constraint
was described above in Eq. 115c2 and is not repeated4.
We note that the set of constraints in Eqs. 134a2–134c2
is equivalent to

Cp2det [ 5H1r20 e H1r2ap1r2rdr 5 const6 , 135a2

Cf2det [ 5H1r20 e H1r2af 1r2rdr 5 const6 , 135b2

Cx2det [ 5H1r20 e H1r2ax1r2rdr 5 const6 , 135c2

and af 1r2 5 AN
f 1r2, ax1r2 5 AN

x 1r2.
As all constraints are convex 1and the projections

are simple to perform with the Euclidean norm as a
metric2 one may employ the serial-projection algo-
rithm described in Subsection 2.A. Hence, iterating
the composition operator,

T5H1r26 [ PCpas
PCp2det

PCpf2rej
PCpx2rej

5H1r26, 1362

generates iterates converging to a solution. The
projections onto the sets described by Eqs. 134a2–134c2
are readily solvable by the use of Lagrange optimiza-
tion techniques. These projections are derived and
given in appendix B 3see Eqs. 1B102 and 1B132 for PCp2det
and Eqs. 1B102 and 1B142 for PC pf2rej

and PCpx2rej
4.

We generated a filter by iterating the composition
operator T defined by Eq. 1362. When placing it as
the filter in the GPEC with the input shown in Fig.
61a2, we obtained the correlation output distribution
shown in Fig. 91a2, demonstrating the full rotation
invariance required. When changing the input to
that of Fig. 61b2, we see that the letters P, F, and X are
detected, with a strong rejection of the letter E, i.e.,
the ratio of the lowest peak from the detection class to
the largest peak from the rejected class is 1peak of
letter F2@1peak of letter E2 5 2.22, as shown in Fig.
91b2. Clearly, the more dissimilar the objects from
the rejection class 1from those of the recognition class2,
the greater the rejection, as is demonstrated in Fig.
91c2.
We note that in the design process, as given by the

constraint sets in Eqs. 134a2–134c2, it was implicitly
assumed that each letter would be presented in the
input alone. However, the actual inputs, e.g., Fig.
61b2, which is composed of multiple inputs presented
simultaneously, do not adhere to this implicit assump-
tion. Therefore, because of the lack of strict shift
invariance of the GPEC, the output correlation distri-
bution is not the superposition of each of the correla-
tion distributions generated by each input alone.
Hence, despite the synthesis algorithm that arrives at
a solution that satisfies Eqs. 134a2–134c2, the actual
correlation result from the designed filter and the
input of Fig. 61b2 does not generate identical correla-
tion peaks in the center of positions of the letters P, F,
and X; they are only approximately the same 3see Fig.
91b24, as expected.20
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Fig. 9. 1a2–1c2 Output correlation distributions for the GPEC that
correspond to the input patterns of Figs. 61a2–61c2, respectively, but
with the filter generated by the serial POCS algorithm, for the
GPEC.
This last synthesis example demonstrates that,
despite the wide class of letters to be recognized,
adequate discrimination against other letters, al-
though similar, is still maintained. Clearly, discrimi-
nation constraints could have been employed in the
design process as well, enhancing the rejection capa-
bilities. Also note that, although the appropriate
CHC POF, matched to AN

P , discriminated quite
strongly against the letter F 1and of course against
letters which are more dissimilar, like X2 3see Fig. 81b24,
we were able to design a filter that recognizes all
letters from the recognition class similarly 3Fig. 91b24.

6. Conclusions

The powerful procedure of some new enhanced projec-
tion algorithms was shown to be suitable for the
design of a wide variety of spatial filters, either for
linear or nonlinear PR processes. The described
procedures can, in principle, be used to design filters
with arbitrary requirements, as long as they do not
violate physical principles. Moreover, if the require-
ments are not consistent among themselves or with
the physical principles, the designed filter will ap-
proach the requirements, i.e., be at the smallest
average distance from the requirements.15 The aver-
age distance is defined in terms of the proper distance
functions used in the algorithm, i.e., the solution
generated by algorithm 2 is a global minimizer of Ĵ,
defined by Eq. 172.15
The procedures were demonstrated by several PR

cases, some of which were not achieved earlier.

Appendix A. Multidistance Product-Space Formalism

1. Introduction and Basic Definitions

The product-space formalism, originally due to
Pierra,25 was subsequently generalized by Censor and
Elfving 3104, although in a finite dimensional Hilbert
space. For definity we assume H 5 L21IR2 consist-
ing of square integrable functions, N convex con-
straint sets Ci, Ci # H , and N, possibly different,
weighted norm-squared generalized distance func-
tions di, where each set Ci is closed with respect to the
corresponding generalized distance function di.
Throughout, for the analogous construction for prac-
tical purposes, i.e., l2 for the discrete case and IRN for
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the finite-dimensional case, integration should be
replaced by summation.

2. Construction of the Product Space

Denoting quantities that correspond to the product
space by boldface type, we define the product space:

H [ p
i51

N

H i, 1A12

which consists of compound functions of the form
h 5 1h1, h2, . . . , hN2, hi [ H i. We also define the
convex set C [ pi51

N Ci; C [ H, where the N constitu-
ent constraint sets are usually different. A natural
way to embed a vector h [ H in the product space is
by associating with h an element in the product space
that consists ofN copies of h, namely t1h2, where

t1h2 Z 1h, h, . . . , h2. 1A226

N times

This provides a convenient means for studying the
properties of h. However, in general, the N compo-
nents of functions in the product space, which are not
necessarily of the form h 5 t1h2, will be different.
It is useful to define the subspace D, which consists of
functions that have N identical components, i.e., D 5

5h 0h 5 t1h2; h [ >i51
N
H i6.

Define the weighted generalized distance function
in the product space:

D1h1, h22 5 o
i51

N

bidi1h1i, h2i2;

h1i,h2i [ H i; hj[ 1hj1,hj2, . . . , hjN2, j5 1, 2,

1A32

where 5bi6i51
N are as in algorithm 2. Then ŒD is the

norm in the product space, and H is a closed inner
product space with respect to D, i.e., a Hilbert space
1Ref. 15, Section 42. C is a closed convex subset of H
with respect toD that is due to the closedness and the
convexity of Ci with respect to di, respectively. By a
general Hilbert-space theory, D is a closed convex



subset of H with respect to D as well, in fact, a closed
linear subspace 1Ref. 15, Section 42.
Using this formalism, one may define a projection

in the product space onto an arbitrary set S, closed
with respect toD, as follows. h8 [ S is the projection
of h onto S, denoted by

PS
D1h2 5 h8 if and only if

inf
h1[S

D1h1, h2 5 D1h8, h2. 1A42

If S is C 1or D2 then the projection onto C 1or D2 exists
and is unique because of the closedness and convexity
of the sets.26
It follows from Eq. 1A32 that, for any h [ H ,

inf
h1[C

D3h1, t1h24 5 o
i51

N

bi3 inf
h1i[Ci

di1h1i, h24. 1A52

Using Eqs. 1A52 and 182 it is not difficult to derive an
explicit expression for a projection in the product
space onto C 1see Lemma 4.1 in Ref. 102. This is
obtained when parallel projections are performed on
the individual sets Ci, i.e.,

PC
D3t1h24 5 3PC1

d1 1h2, PC2
d2 1h2, . . . , PCN

dN 1h24. 1A62

The projectionPD
D can be expressed in a similar way

with the relation 1see Lemma 4.2 in Ref. 10 and the
derivation in Sections 3 and 4 in Ref. 152

h8 5 PD
D1h2 if and only if h8 5 t1h82

where =h1
D 3t1h12, h4 0h15h8 5 0. 1A72

This leads to

h8 5 t1h82, where h8 [ F
215oi51

N

biWi1u2Vi1u2

o
i51

N

biWi1u2 6 .
Here =h1 denotes the gradient.

3. Projections onto Nonconvex Sets

Define the relaxed projection operators by

PC,l1h2 [ PC1h2 1 l3h 2 PC1h24. 1A82

We have the following theorem, which is from Levi
and Stark, Ref. 12, p. 934:

Theorem 1: Given a Hilbert space H with an inner
product 7h1, h28, h1, h2 [ H . Let C1, C2 be two closed
subsets of H , not necessarily convex, with relaxed
projection operators given by T1 [ TC1,l11h2, T2 [
TC2,l21h2, respectively. Then a recursion of the form

hk11 [ T13T21hk24; k $ 0, 1A92

has the property that the summed-distance error
functional, J, given by

J1h2 [ o
i51

2

6h 2 PCi
1h26, 1A102

where 6·6 is the appropriate norm in the Hilbert
space H , is nonincreasing for any l1, l2 in the
interval 30, 14.
Now consider the following algorithm:

Algorithm 3: Initialization: Let h0 [ t1h02, h0 [ H

arbitrary.
Iterative step: given the function hk [ t1hk 2, calcu-
late

vk11 5 PC,l
D 1hk2,

and then, set

hk11 5 PD
D1vk2, 1A112

where PC,l
D 1h2[ PC

D1h2 1 l3h 2 PC
D1h24.

This algorithm performs two alternating opera-
tions in the product space: a relaxed projection onto
C and a projection onto D. Even if all sets Ci are not
convex 1implying thatC is not convex2, in any event, in
the product space we have only two sets: C and D.
Thus we may apply the theorem of Levi and Stark,12
cited above, in the product space, where the Hilbert
space is H, the distance function is the norm in the
product space ŒD, and the appropriate summed-
distance error functional in the product space is

J1h2 [ 5D3PC
D1h2, h461@2 1 5D3PD

D1h2, h461@2. 1A122

Because it can easily be shown that algorithms 2 and
3 are equivalent and that hk generated by algorithm 3
is equal to t1hk2, where hk is the sequence generated by
algorithm 2, we have the following corollary.

Corollary 2: The functional Ĵ1hk2 given by Eq. 172,
which is equal to J1hk2 given by Eq. 1A122, is 1monotoni-
cally nonincreasing2 convergent along the iterates of
the respective algorithm 2, i.e., 5Ĵ1hk26k$0 is a conver-
gent sequence, for any sequence 5hk6k$0 generated by
algorithm 2, irrespective of the sets Ci being convex or
not. Moreover, if all sets Ci are convex, then C is
convex, and if >i51

N Ci is nonempty then C > D is
nonempty, and hence hk converges to C0.

Appendix B. Some Specific Projections

Below we develop the projections onto the sets given
by Eqs. 134a2–134c2. Define the distance function by

d23H1r2, H81r24

5 e
0

`

53Hr1r2 2 H8r1r24
2 1 3Hi1r2 2 H8i1r24

26rdr, 1B12

which is just the Euclidean norm.
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Let

A 5 e
0

`

3Hr1r2 fr1r2 2 Hi1r2 fi1r24rdr, 1B22

B 5 e
0

`

3Hr1r2 fi1r2 1 Hi1r2 fr1r24rdr, 1B32

where the subscripts r and i denote the real and
imaginary parts, respectively:

H1r2 5 Hr1r2 1 iHi1r2; H81r2 5 H8r1r2 1 iH8i1r2,

f 1r2 5 fr1r2 1 ifi1r2. 1B42

Writing the constraints of Eqs. 1342 in full yields
requirements of the following form:

e
0

`

3H8r1r2 fr1r2 2 H8i1r2 fi1r24rdr 5 0,

e
0

`

3H8r1r2 fi1r2 1 H8i1r2 fr1r24rdr 5 0 1B52

for Cpf2rej and Cpx2rej;

e
0

`

3H8r1r2 fr1r2 2 H8i1r2 fi1r24rdr $T1,

e
0

`

3H8r1r2 fi1r2 1 H8i1r2 fr1r24rdr 5 0 1B62

for Cp2det.
We note that the functional form of the require-

ments in Eqs. 1B52 and 1B62 are similar. Therefore we
develop the projection onto Cp2det first and then arrive
by inspection at the projection onto Cpf2rej and Cpx2rej.
Rewriting the requirement of Eqs. 1B62 yields

g1r2 5 e
0

`

3H8r1r2 fr1r2 2 H8i1r2 fi1r24rdr 2 1T1 1 j2 5 0,

1B72

q1r2 5 e
0

`

3H8i1r2 fr1r2 1 H8r1r2 fi1r24rdr 5 0, 1B82

where we introduce the surplus variable j, which is
confined by j $ 0.
To determine the projection we must minimize Eq.

1B12. By defining =T 1≠@≠H8r, ≠@≠H8i2, then, with
the above notation, the Lagrange requirement be-
comes 3remembering that our task is to minimize Eq.
1B12 subject to the requirements given by Eqs. 1B72
and 1B824,

=d21H, H82 5 l=g 1 µ=q. 1B92

Performing the necessary derivatives given by the
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= operator in Eq. 1B92 and applying Eqs. 1B72 and 1B82
yield

H8r 1r2 5 Hr1r2 1
lfr1r2 1 µfi1r2

2
, 1B10a2

H8i1r2 5 Hi1r21
2lfi1r2 1 µfr1r2

2
. 1B10b2

To determine l, µ, we substitute Eqs. 1B10a2 and
1B10b2 into Eqs. 1B72 and 1B82 to find the l, µ values
that satisfy the necessary constraints. After some
algebra we finally arrive at

l 5
221A 2 T1 2 j2

E
, 1B11a2

µ 5
22B

E
,

E 5 e
0

`

0 f 1r2 02rdr. 1B11b2

Substituting the values of l, µ from Eqs. 1B112 into
Eqs. 1B102 and minimizing Eq. 1B12 yield

d1H, H82 5 min
l2 1 µ2

4
E. 1B122

Thus l is the value that will minimize l2 subject to the
constraint that j $ 0. µ is given by Eq. 1B11b2. To
determine l, we examine two cases:

1a2 A # T1.
In this case, l2, as given by Eq. 1B11a2, is a monotonic
increasing function of j for j $ 0, l2 attaining its
minimum with j 5 0, l 5 221A 2 T12@E.

1b2 A . T1.
In this case we may choose j 5 A 2 T1 and l 5 0.
Hence we have

l 5 0, if A . T1

l 5
121T1 2 A2

E
if A #T1

, 1B13a2

µ 5
22B

E
. 1B13b2

Thus, finally, PCp2det
3H1r24 5 H81r2 is given by Eqs. 1B102,

with l, µ given by Eqs. 1B132, where the values of A
and B are determined by Eqs. 1B22 and 1B32 and f 1r2 5
ap1r2.
By analogy we identify that PCpf2rej

, PCpx2rej
follows

the same analysis with T1 5 0 and j 5 0; hence we get

l 5
22A

E
, 1B14a2

µ 5
22B

E
. 1B14b2



Thus finally Ppf2rej3H1r24 5 H81r2 and Ppx2rej3H1r24 5 H81r2
are given by Eqs. 1B102 with l, µ given by Eqs. 1B142,
where the values of A and B are determined by Eqs.
1B22 or 1B32 and f 1r2 5 apf 1r2 or f 1r2 5 apx1r2 for Ppf2rej and
Ppx2rej, respectively.

This work was performed within the Technion
Advanced Opto-Electronics Center established by the
American Technion Society, NewYork.
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