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Three-dimensional optical correlator with general
complex filters

Youzhi Li and Joseph Rosen

A new type of electro-optical three-dimensional ~3-D! correlator is proposed and demonstrated. A 3-D
object scene, observed by multiple cameras from several points of view, is correlated with a 3-D complex
computer-generated function. This correlator is a hybridization of the joint transform and the
VanderLugt correlators, and, as such, it allows correlations to be made between 3-D real-world objects
and 3-D general complex functions. Experimental results are presented. © 2000 Optical Society of
America

OCIS codes: 070.4450, 070.2580, 070.5010, 070.6110, 100.5090.
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1. Introduction

Three-dimensional ~3-D! spatial correlations can be
made fast and in parallel by the use of optics. In
1997 Rosen extended the optical correlator’s opera-
tion from two dimensions to three.1 This correlation
involves fusing images of objects from a few different
points of view and allows objects to be identified and
located in 3-D space. This process has been demon-
strated in a 3-D joint transform correlator ~JTC!, in
which a reference and tested objects are observed
together from a distance.2,3 The reference object
and the tested objects are projected a few times from
different points of view onto a spatial light modulator
~SLM!, and the projected images are electro-optically
processed to yield the desired 3-D correlation. Re-
cently two other attempts at 3-D optical pattern rec-
ognition were reported.4,5 Although these creative

roposals contribute original ideas to the reservoir of
mage-processing techniques, none of them has per-

itted complete spatial correlation in all three di-
ensions. Therefore they have the property of shift

nvariance only in the transverse plane and not along
he longitudinal axis. When the observed object is
hifted along the longitudinal axis from the position
or which its filter has been designed, the correlation
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peak either disappears or remains at the same loca-
tion.5 Therefore these systems are not capable of
locating specific objects in a 3-D scene. In our 3-D
correlator, however, when the observed object is
shifted along the longitudinal axis the correlation
peak is proportionally shifted along the same axis
and thus permits the object to be located in all the
coordinates of the 3-D space. We have proposed a
distortion-invariant version of the 3-D correlator.6
Algorithms of distortion-invariant pattern recogni-
tion usually require the use of correlators with com-
plex or real bipolar reference functions. A new
design for 3-D correlators that operate with any com-
plex reference functions is the topic of this study.

Like most two-dimensional ~2-D! JTC’s, the 3-D
TC is limited by the use of positive real-valued ref-
rence functions. That is so because most spatial
ight modulators ~SLM’s!, used today as input trans-
arency masks in JTC’s, cannot simultaneously pro-
ide amplitude and phase modulation with
atisfactory quality. However, many schemes for
attern recognition and other image-processing tasks
equire complex or at least bipolar real reference
unctions. A possible solution to this problem can be
olographic coding at the JTC input plane. In that
ase, the tested object is sampled by a grating and
ppears side by side with a computer-generated ho-
ogram used as the reference function.7,8 These sys-

tems, however, suffer from low bandwidth, because
only at most one third of the available bandwidth
actually participates in the process. This drawback
causes the loss of the high-resolution information
from the observed scene.

Of course, the JTC is not the only available optical
correlator. The VanderLught correlator9 ~VLC! was
0 December 2000 y Vol. 39, No. 35 y APPLIED OPTICS 6561
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invented before the JTC and is still in common use
today.10 A VLC equipped with a Fourier hologram
can correlate the input image with a general complex
reference function. However, the main drawback of
the VLC for our purposes is its inability to process the
image’s spatial spectrum digitally. When one tries
to record the spectrum distribution into a digital pro-
cessor with any camera, the phase function, which
usually contains the object’s shape information, is
lost. As is shown in what follows, digital processing
is a crucial part of our 3-D correlation scheme.
Therefore a new correlator design is required in
which the benefits of both classic correlators, the VLC
and the JTC, are combined. Such a correlator is
described here.

We propose a technique that is similar, but not
identical, to one that was employed previously for 2-D
correlators11 in which a camera records electronic
Fourier holograms of the input scene and transfers
them into a computer. Thus, although the hologram
distributions are real and positive valued, the com-
plete complex information of the spatial spectrum is
recorded into the computer and can be digitally pro-
cessed. In addition to being digital processed, the
spectrum is multiplied by a filter function in the Fou-
rier plane, and an additional Fourier transform ~FT!
f this product yields the desired correlation results.
uch a correlator is actually a combination of a JTC

with a point as the reference function! and a VLC

Fig. 1. Schematic of the hybrid 3-D correlator. DFT, discrete
Fourier transform.
562 APPLIED OPTICS y Vol. 39, No. 35 y 10 December 2000
~with a spatial filter at the Fourier plane!. As a
ybrid configuration it combines the best features of
he two types of correlator. Explicitly, it permits an
ffective complex reference function to be imple-
ented, as is usually possible in a VLC. It also lets
s perform complicated digital manipulations ~in our
ase, it is a coordinate transformation, as explained
elow! of the spatial spectrum of the input function,
s is inherently possible with the JTC. To our best
nowledge this is the first time that such hybridiza-
ion has been suggested in the field of 3-D image
rocessing.

2. System Description and Analysis

The 3-D optical correlator is shown in Fig. 1. A 3-D
input function g1~x, y, z! that describes all tested
objects in the observed scene is located in coordinate
system ~x, y, z!, where P1 is the transverse plane z 5
0. The cameras ~or a single camera that moves from

Fig. 2. Three images of thirty-one of the scene as observed from
different points of view from plane P2 at angles ~a! u 5 215°, ~b! u 5
°, and ~c! u 5 15°.
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point to point! record the input scene from different
oints of view along an arc on the x–z plane, whose
enter is located at the origin point ~x, y, z! 5 ~0, 0, 0!.

From each point of view, the camera observes plane
P1 through an imaging lens located far from plane P1.
In each point of view the line OC between the center
f the camera’s plane and the origin point ~x, y, z! 5

~0, 0, 0! at the x–z plane is orthogonal to the camera’s
plane. The angle between the z axis and line OC is
denoted u. For each u, the projected function g3~xi,
yi; u! is displayed on SLM1, where ~xi, yi! are the

Fig. 3. Three electronic Fourier holograms of the three images in
Fig. 2, as recorded by the CCD at plane P4.
1

coordinates of plane P3. From the geometry of the
scene, the relation between ~xi, yi, u! and ~x, y, z! is
given by3

~xi, yi! 5 M~x cos u 1 z sin u, y!, (1)

here M is the magnification factor of the imaging
ens. It is assumed that the distance between plane
1 and the imaging lens is much longer than the

depth of the object function g1~x, y, z!, and therefore

Fig. 4. Three examples of thirty-one of POF’s computed from a
single race car observed by the CCD at plane P2 from angles ~a! u 5
215°, ~b! u 5 0°, and ~c! u 5 15°.
0 December 2000 y Vol. 39, No. 35 y APPLIED OPTICS 6563
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the magnification factor is approximately the same
constant M for all the object points.

Next we consider the intensity distribution on plane P4
for any angle u. The complex amplitude coming from
SLM1 through lens L1 interferes with a reference plane
wave, hitting the CCD plane at an angle c from the
ptical axis on plane v–z. With the 2-D FT relation
etween planes P3 and P4, the intensity on plane P4 is

I4~u, v, u! 5 UA expSi
2p

l
v sin cD 1 *

2`

`

*
2`

`

g3~xi, yi; u!

3 expFi
2p

lf
~uxi 1 vyi!GdxidyiU2

, (2)

where l is the optical wavelength, A is a constant,
and f is the focal distance of Fourier lens L1. Let us
ook now at the intensity distribution I4~u, v, u! as a
564 APPLIED OPTICS y Vol. 39, No. 35 y 10 December 2000
function of the input object g1~x, y, z!. For a single
element, from the entire 3-D object function of size
~Dx, Dy, Dz! and brightness g1~x, y, z!, the complex
amplitude on plane P4 is

u4~u, v, u! 5 A expSi
2p

l
v sin cD 1 g1~x, y, z!

3 expHi
2p

lf
@uxi~x, z, u! 1 vyi~y!#JDxDyDz. (3)

Equation ~3! is the degenerate version of Eq. ~2! when
there is only a single infinitesimal source point in the
scene. Note that g1~x, y, z! is not a function in this case
ut a constant, which expresses the brightness of the
ource point. This single source point in the observed
cene induces a point on plane P3, but for each angle u the

location of this point on plane P3 is different according to
Fig. 5. Nine of sixty-seven holograms displayed on SLM2 for several values of longitudinal axis z0.
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Eq. ~1!. Therefore xi is actually a function of x, z, and u,
hereas yi is a function of y, both according to Eq. ~1!.
ubstituting Eq. ~1! into Eq. ~3! yields

4~u, v, u! 5 A expSi
2p

l
v sin cD 1 g1~x, y, z!

3 expFi
2pM

lf
~ux cos u 1 vy 1 uz sin u!GDxDyDz.

(4)

Next we examine the influence of all points of the
object g1~x, y, z!. Because SLM1 is illuminated by a
coherent plane wave, the electromagnetic fields that
originate from the input image points are summed.
The overall complex amplitude at plane P4 is

u4~u, v, u! 5 A expSi
2p

l
v sin cD 1 G1~u, v; u!. (5)

Fig. 6. Nine of the output correlation planes obtain
1

Because the input object is 3-D, G1 is obtained by a
3-D integral over all the plane waves from all the
object points as follows:

G1~u, v; u! 5 *
2`

`

*
2`

`

*
2`

`

g1~x, y, z!expFi
2pM

lf
~ux cos u

1 vy 1 uz sin u!Gdxdydz. (6)

The overall intensity at plane P4 is

I4~u, v, u! 5 UA expSi
2p

l
v sin cD 1 G1~u, v; u!U2

(7)

pparently I4~u, v, u! contains four terms, but only
he third term contains the useful spectrum of g1~x, y,

z!. We wish to get rid of all unnecessary terms, but
at this stage we can easily get rid of the bias term by

y optical FT of the nine holograms shown in Fig. 5.
ed b
0 December 2000 y Vol. 39, No. 35 y APPLIED OPTICS 6565
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digital subtraction of the constant term uAu2 from the
function I4~u, v, u!.

Spatial filtering is the next stage in the correlation
process, and the nature of the filter should be deter-
mined. Most filters used for pattern recognition in
2-D correlators are complex valued, with nonzero
imaginary parts. This is true for hundreds of filters

Fig. 7. ~a! Intensity distributions about the first diffraction order
a result of the first experiment with the 3-D correlator. ~b! Top v
566 APPLIED OPTICS y Vol. 39, No. 35 y 10 December 2000
proposed in recent years12 designed to satisfy many
criteria and computed by numerous computational
methods. In many cases the complex filters are
coded on real positive computer-generated holograms
only to avoid the problem of using a complex-valued
optical transparency. However, in our case the spa-
tial spectrum is already recorded inside the com-

ine correlation planes for several values of longitudinal axis z0 as
of the observed scene in the first experiment.
s of n
iew
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puter, and therefore there is no such constraint on
the optical transparency at this stage of the system.
We choose for the present demonstration a 3-D ex-
tension of the 2-D phase-only filter ~POF!.13 This
choice of filter is made only to illustrate an example of
a general complex filter, and the same correlator can
w ˜ ˜
be equipped with different filters according to other
needs. In fact, the reference function, obtained by
the inverse FT of the POF, is just a real, bipolar
function. However, the process presented here is
valid for general complex reference functions, as well.

The 3-D phase-only filter of an object function f ~x,
y, z! is defined as

H~u, v; u! 5 F*~u, v; u!yuF~u, v; u!u, (8)

where

F~u, v; u! 5 *
2`

`

*
2`

`

*
2`

`

f ~x, y, z!expFi
2pM

lf
~ux cos u

1 vy 1 uz sin u!Gdxdydz. (9)

Multiplying the hologram distributions ~less the bias
term! by the complex POF function yields

T4~u, v, u! 5 H~u, v, u!@I4~u, v, u! 2 uAu2#. (10)

he product T4~u, v, u! is intended to be Fourier
transformed once again to yield the correlation func-
˜
tion. At this point we notice that a coordinate
transformation should be made before the final Fou-
rier transform is performed. That is so because
both functions G1~u, v, u! and F~u, v, u! have the
orm of a 3-D FT with Fourier coordinates ~u cos u,
, u sin u!, but the real coordinates of the physical
1

pace at plane P4 are ~u, v, u!. Therefore, to get the
esired 3-D FT, we must transform the function
4~u, v, u! from coordinate system ~u, v, u! to ~u cos
, v, u sin u!. Following the coordinate transfor-
ation, T4~u, v, u!, denoted now T̃4~u cos u, v, u sin

!, becomes
here G1 and H denote the functions of the image’s
spectrum and the filter at the new coordinate system,
respectively.

We keep in mind that T̃4 is going to be displayed on
SLM2, which is again a transparency medium that
can get only positive real values. Consequently,
only the real part of T̃4 can be displayed on SLM2.
Thus from the three terms of T̃4, Re$T̃4% becomes an
expression of six terms, the three of T̃4 plus their
complex-conjugate terms. Without additional pro-
cessing in T̃4 as given by Eq. ~11!, the important term
of the convolution between g1~x, y, z! and h~x, y, z!
will be obscured by the convolution between g1~2x,
2y, 2z! and h~x, y, z!. To avoid this overlap between
the correlation terms, we multiply T̃4 by a linear
phase function exp@i4pv ~sin c!yl#. Multiplying T̃4
by this linear phase function causes a shift of all the
correlation terms to one half of the correlation plane,
whereas taking the real part of T̃4 produces an addi-
tional set of correlation terms in the other half of the
correlation plane. Thus the distribution in this
stage becomes
Another 3-D inverse FT of T49 yields six diffraction
orders that are spatially separated from one another
along the y0 axis, because of the different linear phase
factors that multiply each term. In our setup, this
final 3-D FT is performed in two steps. First, a one-
dimensional digital FT from u sin u to z0 is performed
T̃4~u cos u, v, u sin u! 5 uG̃1~u cos u, v, u sin u!u2H̃~u cos u, v, u sin u!

1 A*G̃1~u cos u, v, u sin u!H̃~u cos u, v, u sin u!expS2i
2p

l
v sin cD

1 AG̃1*~u cos u, v, u sin u!H̃~u cos u, v, u sin u!expSi
2p

l
v sin cD , (11)
T̃49~u cos u, v, u sin u! 5 2 Re$T̃4~u cos u, v, u sin u!exp@i4pv~sin c!yl#%

5 uG̃1~u cos u, v, u sin u!u2H̃~u cos u, v, u sin u!exp@i4pv~sin c!yl#

1 uG̃1~u cos u, v, u sin u!u2H̃*~u cos u, v, u sin u!exp@2i4pv~sin c!yl#

1 A*G̃1~u cos u, v, u sin u!H̃~u cos u, v, u sin u!exp@i2pv~sin c!yl#

1 AG̃1*~u cos u, v, u sin u!H̃*~u cos u, v, u sin u!exp@2i2pv~sin c!yl#

1 AG̃1*~u cos u, v, u sin u!H̃~u cos u, v, u sin u!exp@i6pv~sin c!yl#

1 A*G̃1~u cos u, v, u sin u!H̃*~u cos u, v, u sin u!exp@2i6pv~sin c!yl#. (12)
0 December 2000 y Vol. 39, No. 35 y APPLIED OPTICS 6567



t
p
l

t
s

T
p v

A

6

as follows:

T̃5~u cos u, v, z0! 5 *
2`

`

T̃49~u cos u, v, u sin u!

3 expF2i
2pM

lf
~z0 u sin u!G

3 d~u sin u!. (13)

The remaining 2-D FT’s from ~u cos u, v! to ~x0, y0! are
done optically, where each 2-D FT is made for a dif-
ferent value of z0. For any value of z0, the 2-D func-
ion T̃5~u cos u, v, z0!, plus a proper bias C, to ensure
ositive values, is displayed on SLM2. Then, with
ens L2, a series of 2-D FT’s is obtained in the output.

The number of 2-D transforms in the sequence is
actually related to the measure of z0. When one has
only a single SLM, the series of 2-D optical FT’s is
considered sequentially, one at a time; otherwise the
FT’s can be treated in parallel.

For our purposes, the interesting term in Eq. ~12! is
he third one, inasmuch as that term yields the de-
ired convolution between g1~x, y, z! and h~x, y, z!.

Because of the spatial separations among all the out-
put terms, we let ourselves ignore all the terms other
than the third one. Some of the higher-order terms
may even be eliminated because of the low sampling
rate of SLM2. Therefore correlation results are ob-
tained from an inverse 3-D FT of the third term as
follows:

c~x0, y0, z0! } *
2`

`

*
2`

` H*
2`

`

G̃1~u cos u, v, u sin u!

3 H̃~u cos u, v, u sin u!exp@i2pv~sin c!yl#

3 expF2i
2pM

lf
~z0 u sin u!Gd~u sin u!J

3 expF2i
2pM

lf
~x0 u cos u 1 y0 v!Gd~u cos u!dv

5 F*
2`

`

*
2`

`

*
2`

`

g1~x, y, z!h~x0 2 x, y0 2 y, z0

2 z!dxdydzG p d@x0, y0 2 f ~sin c!yM, z0#.

(14)

he desired correlation result is obtained about the
oint

~x0, y0, z0! 5 @0, f ~sin c!yM, 0#.

3. Experimental Results

Three experiments in different experimental condi-
tions were carried out with the system shown in Fig.
1. We first describe the first experiment in detail
and then present the input images and the final re-
sults of the other two experiments.
568 APPLIED OPTICS y Vol. 39, No. 35 y 10 December 2000
In the first experiment the observed scene con-
tained four toy cars, I–IV, in various locations. The
two race cars, I and IV, were used here as the objects
to be recognized, whereas the two patrol cars, II and
III, were the false objects. Cars I, II, III, and IV
were located at distances 57.5, 60.5, 50, and 51.5 cm,
respectively, from the camera. The distance be-
tween the point of origin of the scene and the CCD on
plane P2 was 50 cm. Three examples of thirty-one
projections from the first experiment are shown in
Fig. 2. Figures 2~a!, 2~b!, and 2~c! show the scene as
iewed by the CCD positioned at u angles of 215°, 0°,

and 15°, respectively, from the optical axis. The an-
gular increment between successive projections was
1°, and the angles of 615° were the extreme angles of
this experiment.

All the 31 projections were sequentially displayed
on SLM1. From SLM1, each projection was opti-
cally Fourier transformed by lens L1 and interfered
with the reference plane wave on CCD plane P4.

s a result, 31 electronic Fourier holograms of the

Fig. 8. Three images of twenty-one of the input scene in the
second experiment, as observed from different points of view from
plane P2 at angles ~a! u 5 210°, ~b! u 5 0°, and ~c! u 5 10°.



a

various projections were recorded in the computer.
Three of the holograms, corresponding to the three
projections of Fig. 2, are shown in Fig. 3. From
each hologram, first the bias was subtracted and

Fig. 9. ~a! Intensity distribution of nine correlation planes, for di
3-D correlator. ~b! Top view of the observed scene in the second
1

then the functions were multiplied by POF’s. Ev-
ery filter was computed for each projection of the
same race car positioned at ~x, y, z! 5 ~0, 0, 0!,

ccording to Eq. ~8!. The phase distribution of the

t values of z0, that resulted from the second experiment with the
riment.
fferen
expe
0 December 2000 y Vol. 39, No. 35 y APPLIED OPTICS 6569



l
t
t
t
d
a
c
v
T
q
s
d
l
c
l
p
s
r
e

t
t
q
c

l
c
e
t
m
f
u
o
s
c
o
u

F
p

w
t
w
o
c

i

c
a

v
t
s
l
a
t
o
t
a
t

6

computed 256 3 256 pixel POF’s of the extreme
eft-hand, central, and extreme right-hand projec-
ions are shown in Figs. 4~a!, ~4b!, and ~4c!, respec-
ively. After multiplying all the 31 holograms by
he proper complex POF’s, we performed the coor-
inate transformation mentioned in Section 2. As
result of the coordinate transformation, all the

urrent data were organized into a 3-D complex-
alued matrix of the size 256 3 256 3 67 pixels.
he value 67 is the size of the longitudinal fre-
uency axis approximated by the number max~u! 3
in@max~u!# 5 256 3 sin~15°! according to the coor-
inate transformation. This value is actually the
ongitudinal bandwidth of the system, and it indi-
ates the resolving power of the system along the
ongitudinal axis. More precisely, if the size of a
ixel on plane P4 is d, then, according to Eq. ~6!, the
mallest size along the z axis that the system can
esolve is lfy67dM. The distance between two pix-
ls determines the maximum size of the input object

Fig. 10. Three images of twenty-one of the input scene in the
third experiment, as observed from different points of view from
plane P2 at angles ~a! u 5 250°, ~b! u 5 0°, and ~c! u 5 50°.
570 APPLIED OPTICS y Vol. 39, No. 35 y 10 December 2000
hat the system can process. If d is also the dis-
ance between the pixels along the longitudinal fre-
uency axis, then the maximum object’s depth that
an be handled is lfydM.
To get good separation among the various convo-

ution terms on the output plane, we multiplied the
urrent function by the linear phase function
xp@i4pv~sin c!yl#. Then to obtain the final correla-
ion results we needed to perform a 3-D FT on the last
atrix. As mentioned in Section 2, we first per-

ormed a digital one-dimensional FT from ~u cos u, v,
sin u! to ~u cos u, v, z0!. At this point, the real parts

f the obtained 2-D functions, plus some bias ~to en-
ure a positive-valued matrix!, were displayed suc-
essively on SLM2, each pattern for a different value
f z0. Nine patterns of the given sixty-seven z0 val-
es are shown in Fig. 5.
The correlation results are depicted in Fig. 6 and 7.

igure 6 shows the intensity distribution on output
lane P6, corresponding to the transverse planes with

the same z0 values as in Fig. 5. Only the three cen-
tral diffraction orders are shown here. From Eq.
~12! it is clear that each diffraction pattern at any z0
value should be symmetric about the origin. There-
fore we can use the area of the two first diffraction
orders as the region in which to look for the recogni-
tion peaks. The strongest peaks in the two first dif-
fraction orders are found at z0 5 21.5 and z0 5 27.5
cm. These are the summits of the two recognition
peaks of race cars IV and I, respectively. The area of
the lower first diffraction order was used as the data
for the series of 3-D plots shown in Fig. 7~a!. Each
3-D plot shows the intensity distribution on a trans-
verse plane along the z0 axis. Two recognizable
peaks appear in the locations of the two true class
objects I ~at z0 5 27.5 cm! and IV ~at z0 5 21.5 cm!,

hereas false cars II and III did not grow peaks above
he noise level. Every correlation peak has a finite
idth in all its three dimensions. In addition to the
rdinary dependence of this width on the size of the
orrelated functions, the width along z0 is inversely

dependent on the angular range of the observing
cameras, which was 30° in the first experiment. The
other clearly shown peaks in Fig. 7, at z0 5 26 cm
and z0 5 29 cm, are part of the same identification
peak whose summit appears at z0 5 27.5 cm. Sim-
larly, the peaks at z0 5 0 and z0 5 23 cm are part of

the same identification peak whose summit appears
at z0 5 21.5 cm. To facilitate observation of the 3-D
orrelation plots, a schematic of the input scene from
top view is included in Fig. 7~b!.
In the second experiment the observed scene was

iewed from a different direction from that of the first
est. This time the depth dimension of each car was
maller than the width. Therefore, within an angu-
ar interval of 20°, the cars seem almost the same
long the various points of view. The distance be-
ween the origin point of the scene and the CCD was
nly 46.5 cm this time. Three examples out of the
wenty-one projections from the second experiment
re shown in Fig. 8. Figures 8~a!, 8~b!, and 8~c! show
he scene seen by the CCD positioned at u angles of
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210°, 0°, and 10°, respectively, from the optical axis.
As in the first experiment, we succeeded in identify-
ing the two true objects and their locations, as shown
in Fig. 9. Nine 3-D plots of correlation transverse
planes along different z0 values are shown in Fig.
~a!. Two recognizable peaks appear in the loca-
ions of the two true class objects, I and II, at z0 5 29

cm and z0 5 0. False car III has a false peak at z0 5

Fig. 11. ~a! Intensity distribution of nine correlation planes, for se
orrelator. ~b! Top view of the observed scene in the third experi
1

24.5 cm, which is 2.36 times weaker than the mini-
mal between the two true peaks.

In the final experiment we considered the non-
paraxial case for which the angular range 6u is
ignificantly larger than the small-angle range
emonstrated in the first two experiments. Under
hese conditions the small-angle approximation is
ot valid. Therefore the coordinate transforma-

l values of z0 that resulted from the third experiment with the 3-D
t.
vera
men
0 December 2000 y Vol. 39, No. 35 y APPLIED OPTICS 6571
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tion must be performed from ~u, v, u! to ~u cos u, v,
sin u!. Because of limitations in our digital mem-

ry size we were forced to reduce the number of
imultaneous projections with increasing angular
ange. Also, we reduced the sizes of the images by
ecording the images from a longer distance. This
ime the distance between the origin point of the
cene and the CCD was 107 cm. In this experi-
ent 21 projections were recorded in 5° increment

etween successive projections and in a total angu-
ar range of 650°. Three examples of these projec-
ions are shown in Fig. 10. Figures 10~a!, 10~b!,
nd 10~c! show the scene seen by the CCD posi-
ioned at u angles of 250°, 0°, and 50°, respectively,
rom the optical axis. Note that it may happen as
n this example that parts of the objects will be
idden by other cars in several projections. How-
ver, the correlation process is based on all the
rojections, and therefore the recognition is accom-
lished as demonstrated in Fig. 11. The maximum
alues of true object peaks appear at z0 5 24 cm for

object II and at 212 cm for object I, whereas the
alse object peak is seen at z0 5 0. The discrimi-

nation ratio between the true and the false peaks is
1.67.

4. Conclusions

In conclusion, we have demonstrated a process of
3-D electro-optical correlation between a real-world
3-D function and a general 3-D complex reference
function. It should be noted that, unlike in previ-
ous experiments,1–3,6 here, for what we believe is
he first time, we present a complete electro-optical
orrelation process with all the necessary optical
-D FT’s. To achieve this goal with the available
LM technology, we propose a new electro-optical
orrelator design. This design is a combination of
JTC and a VLC. From an optics viewpoint, the

se of electronic holograms has been introduced
nto the first part of a 3-D correlator, and the digital
rocessing has been aimed to code computer-
enerated holograms for its second optical part.
rom the electronics viewpoint, it seems at first
lance that many digital operations have been
dded to this new design. However, most of the
572 APPLIED OPTICS y Vol. 39, No. 35 y 10 December 2000
computational task of the 3-D scene is still done
optically by the two parallel 2-D FT processors, and
part of the digital operations is aimed to permit use
of real positive optical transparencies.

The new correlator was tested in three indepen-
dent experiments under different conditions. The
third experiment has shown that the proposed corre-
lator can operate under nonparaxial conditions as
well.

This research was supported by the Israel Science
Foundation. The reviewers’ comments are highly
appreciated.

References
1. J. Rosen, “Three-dimensional optical Fourier transform and

correlation,” Opt. Lett. 22, 964–966 ~1997!.
2. J. Rosen, “Three-dimensional electro-optical correlation,” J.

Opt. Soc. Am. A 15, 430–436 ~1998!.
3. J. Rosen, “Three-dimensional joint transform correlator,” Appl.

Opt. 37, 7538–7544 ~1998!.
4. T. C. Poon and T. Kim, “Optical image recognition of three-

dimensional objects,” Appl. Opt. 38, 370–381 ~1999!.
5. J. J. Esteve-Taboada, D. Mas, and J. Garcia, “Three-

dimensional object recognition by Fourier transform profilom-
etry,” Appl. Opt. 38, 4760–4765 ~1999!.

6. Y. Li and J. Rosen, “Three-dimensional pattern recognition
with a single two-dimensional synthetic reference function,”
Appl. Opt. 39, 1251–1259 ~2000!.

7. D. Mendlovic, E. Marom, and N. Konforti, “Complex reference-
invariant joint-transform correlator,” Opt. Lett. 15, 1224–1226
~1990!.

8. U. Mahlab, J. Rosen, and J. Shamir, “Iterative generation of
complex reference functions in a joint-transform correlator,”
Opt. Lett. 16, 330–332 ~1991!.

9. A. B. VanderLugt, “Signal detection by complex spatial filter-
ing,” IEEE Trans. Inf. Theory IT-10, 139–145 ~1964!.

10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed.
~McGraw-Hill, New York, 1996!, Chap. 8, p. 237.

11. J. Rosen, T. Kotzer, and J. Shamir, “Optical implementation of
phase extraction pattern recognition,” Opt. Commun. 83,
10–14 ~1991!.

12. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter
designs for optical correlators,” Appl. Opt. 31, 4773–4801
~1992!.

13. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,”
Appl. Opt. 23, 812–816 ~1984!.


