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Introduction

fficient solutions to NP-complete combinatorial problems
ave been the goal of many researches.1 Nevertheless, none
f the researches has succeeded in finding an efficient
olynomial-time solution to these problems. Due to the dif-
culty of solving these problems, many approximation and
euristic methods have been proposed in the literature.1,2

owever, the approximation methods do not always find
he best solution within a reasonable computation time. On
he other hand, the heuristic methods are able to solve these
roblems quickly for certain cases only. In fact, the com-
utation time of the heuristic methods may be unexpected
nd even longer than that of an exhaustive search �checking
ll possibilities in an exhaustive manner�, due to unsuccess-
ul attempts at optimization.2 Therefore, when there is a
eed to ensure a predefined computation time, we may pre-
er to exhaustively check all possible solutions. However,
ecause of the vast number of possible solutions �and there-
ore the intricacy of the calculation and the large amount of
equired memory�, conventional computers may find it hard
o carry out this exhaustive search.
091-3286/2007/$25.00 © 2007 SPIE

ptical Engineering 108201-
Recently,3 we have proposed a new optical system de-
sign that is capable of solving bounded instances of NP-
complete problems, such as the traveling salesman problem
�TSP� and the Hamiltonian path problem �HPP�, by check-
ing all feasible solutions more efficiently than conventional
computers. This design is based on a fast optical matrix-
Fig. 1 Example of a five-node TSP.
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ector multiplication between a binary matrix, representing
ll feasible solutions, and a weight vector, representing the
roblem weights. The multiplication product is a vector
epresenting the solutions of the problem. In the TSP, the
equired solution is the best �shortest� tour connecting a
ertain set of given node coordinates, where each node co-
rdinate is visited exactly once. An example of a fully con-
ected TSP graph, containing five nodes, is shown in Fig. 1.
n this kind of problem, the matrix-vector multiplication is
erformed between a binary matrix, representing all fea-
ible TSP tours, and a grayscale weight vector, representing
he finite weights between the TSP nodes. The multiplica-
ion product is a length vector representing the TSP tour
engths by peaks of light with different intensities. The
hortest tour can be found by using an optical polynomial-
ime binary search, which utilizes an optical threshold
late. On the other hand, in the HPP, a decision whether
here is a path connecting two nodes on the HPP graph is
equired �which implies that some of the graph edges may
e blocked�. In the HPP, the binary matrix still represents
ll feasible paths �tours�, but the elements of the weight
ector in this problem are binary as well. After the matrix-
ector multiplication, any peak of light �with a certain in-
ensity� obtained in the output of the optical system means
hat a Hamiltonian path exists.

The advantage of the proposed method is that once the
inary matrix is synthesized, the TSP, HPP, and other re-
ated problems of the same order �with the same number of
odes� can be solved optically by only changing the weight
ector and performing the matrix-vector multiplication in
n optical way. This optical matrix-vector multiplication
an be performed by several methods, such as the Stanford
ultiplier and various correlation methods.4,5

In Ref. 3, we have also provided a new efficient algo-
ithm for synthesizing the binary matrix so that it contains
ll the feasible tours and only them. One advantage of this
lgorithm is that it synthesizes a binary matrix of N nodes
hat also contains the binary matrices of fewer than N
odes. This means that this matrix has to be synthesized
nly once for all problems with N or fewer nodes. Another
dvantage of this algorithm is that it uses a relatively small
umber of iterations in order to produce big vectors by
uplications of existing vectors.

The synthesized binary matrix contains a large number,
N−1�!, of rows, each row representing a different feasible
our, and a relatively small number, N�N−1�, of columns,
ach column representing an edge related to one of the
roblem weights. Taking into account the large number of
ows and the fact that conventional electronic computers
ay find it hard to duplicate such huge vectors �if the num-

er of nodes, N, is large�, the optical system proposed in
his paper may be a useful method for synthesizing the
inary matrix. According to this optical system design, the
inary matrix’s long columns are duplicated one after the
ther by performing a correlation operation with shifted
oint functions for which the shifts are given by the binary
atrix algorithm. We show that the number of duplications

eeded in order to synthesize a binary matrix of any size
an be less than N3. The proposed method is tested by both
imulations and lab experiments.

The rest of the paper is organized as follows. Section 2

ntroduces the methodology of the proposed method. Sec-

ptical Engineering 108201-
tion 3 explains the optical implementation of the method.
Sections 4 and 5 present simulation and experimental re-
sults, respectively. Section 6 makes some concluding
remarks.

2 Methodology
For simplicity of explanation, let us refer to the more gen-
eral case of the TSP �although, as explained earlier, similar
problems, such as the HPP, can be solved by the same
method�. Our solution to the TSP is based on a multiplica-
tion of a binary matrix, representing all feasible tours, by a
weight vector, representing the weights of the problem.
In Sec. 2.1 we present an efficient algorithm for synthesiz-
ing the binary matrix, and in Sec. 2.2 we explain how to
obtain the TSP solution by performing a matrix-vector
multiplication.

2.1 Synthesis of the Binary Matrix
The binary-matrix algorithm is able to synthesize the binary
matrix of an N-node TSP by using the binary matrix of an
�N−1�-node TSP. The main advantage of this algorithm is
that it uses duplications of large vectors �in numbers on the
order of the number of the feasible tours� by employing a
relatively small number of repetitions �on the order of the
weight-vector length�. As we show later on, this algorithm
can be implemented in a pure optical system.

The binary matrix of an N-node TSP contains �N−1�!
rows, each of which represents a different tour, and
N�N−1� columns, each of which represents a different edge
connecting one node to another. A 1 in the k’th row and in
the l’th column of the binary matrix means that the k’th
tour contains the l’th edge.

The iterative algorithm for synthesizing the binary ma-
trix starts with a binary matrix representing the case of a
three-node TSP and extends this matrix iteratively to a bi-
nary matrix of the TSP with the required number of nodes.
This algorithm is composed of two stages: the initialization
stage and the induction stage. In the initialization stage, the
weights �and hence the binary-matrix’s columns� are ar-
ranged in a certain order so that the resulting binary matrix
has some degree of symmetry. According to this order, the
weights with their second index as 1 �which are underlined
in the following equation� replace the orderly weights wk,k:

w = �w1,2,w1,3,w1,4,w1,5,…,w1,i, . . . ,w1,N,

w2,1,w2,3,w2,4,w2,5,…,w2,i, . . . ,w2,N,

w3,2,w3,1,w3,4,w3,5,…,w3,i, . . . ,w3,N,

w4,2,w4,3,w4,1,w4,5,…,w4,i, . . . ,w4,N, . . . ,

wN,2,wN,3,wN,4,wN,5,…,wN,i . . . ,wN,N−1,wN,1�T. �1�

Next, a binary matrix containing the two feasible tours
passing through three nodes is generated as follows:

bN=3 =
T1

T2
�1 1 0 0 1 0 1

1 0 1 1 0 1 0
�

ref w1,2 w1,3 w2,1 w2,3 w3,2 w3,1

, �2�

where Tk indicates the binary matrix row that represents the
k’th tour, and wi,j represents the weight of the edge con-

necting node i and node j. Note that the left column in this

October 2007/Vol. 46�10�2
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atrix, marked “ref,” is a reference column �which is uti-
ized later in this subsection� and should not be considered
hen analyzing the tours represented in the matrix. As can
e seen from the binary matrix in Eq. �2�, the first tour T1 is
ode 1→node 2→node 3→node 1, whereas the second
our T2 is node 1→node 3→node 2→node 1.

In the induction stage of the transition from an
N−1�-node TSP to an N-node TSP, we start by defining a
ew binary matrix of size ��N−1�!�� �N�N−1�+1�, and
hile the first column is reserved for the reference column,

he rest of the N�N−1� columns are reserved for the col-
mns that are related to the weights. The new matrix is then
ivided into N−1 horizontal sections, each of which con-
ains �N−2�! rows. Each of the columns �except the refer-
nce column� is duplicated once from the source matrix
the binary matrix of an �N−1�-node TSP� into each of the
ections of the target matrix �the binary matrix of an
-node TSP�, whereas the reference column is duplicated

wice into each of the sections. The duplication of the col-
mns from the source matrix into the target matrix, as dem-
nstrated in Fig. 2, is always performed by the same set of
ules described below:

1. Duplicate the first �reference� column of the source
matrix:

a. Duplicate the first �reference� column of the
source matrix into the left column of each of the
N−1 sections of the target matrix. This generates
the new reference column in the target matrix.
This rule is demonstrated by the dashed arrows in
Fig. 2.

b. Duplicate the first �reference� column of the
source matrix into the columns of the target ma-
trix related to the weights w1,k+1, where k is the
section number. This means to duplicate this
source-matrix column into the column related to

ig. 2 Example of the transition from the binary matrix of a three-
ode TSP to the binary matrix of a four-node TSP according to the
inary-matrix algorithm.
the weight w1,2 in the first section of the target

ptical Engineering 108201-
matrix, into the column related to the weight w1,3
in the second section of the target matrix, and so
on, until it is duplicated into the column related to
the weight w1,N in the last section of the target
matrix. This rule is demonstrated by the dash-
dotted arrows in Fig. 2.

2. Duplication of each of the remaining �N−1��N−2�
columns of the source matrix:

a. Fill the first section of the target matrix: Each
time take a different column related to the weight
wi,j in the source matrix and duplicate it into the
column related to the weight wm,n in the first sec-
tion of the target matrix, following these rules: if
j=1, then m= i+1 and n=1. �This rule is demon-
strated by the thick solid arrow in Fig. 2�. Other-
wise, if j�1, then m= i+1 and n= j+1. �This rule
is demonstrated by the thick dotted arrow in
Fig. 2�.

b. Fill the remaining sections of the target-matrix:
Each time take a different column related to the
weight wi,j in the source matrix and duplicate it
into the column related to the weight wm,n in the
k’th section of the target-matrix �k�2� following
these two-step rules: First, if j=1, then m�= i+1
and n�=1. �This rule is demonstrated by the thin
solid arrows in Fig. 2�. Otherwise, if j�1, then
m�= i+1 and n�= j+1. �This rule is demonstrated
by the thin dotted arrows in Fig. 2�. Second, if
m�=2, then m=k+1; if m�=k+1, then m=2. Oth-
erwise, if m��2 and m��k+1, then m=m�. The
same goes for n� and n: If n�=2, then n=k+1; if
n�=k+1, then n=2. Otherwise, if n��2 and n�
�k+1, then n=n�.

3. Fill the unfilled positions in the target matrix with
zeros.

The preceding rules should be implemented for the tran-
sition from the N=3 binary matrix to the N=4 binary ma-
trix, for the transition from the N=4 binary matrix to the
N=5 binary matrix, and so on, until reaching the binary
matrix with the required number of nodes.

Let us compute the complexity of the induction stage,
which determines the complexity of the problem. Accord-
ing to rules 1a and 1b of the induction stage of the algo-
rithm, the number of duplications required for the reference
column is 2�N−1�, since we have N−1 sections in the tar-
get matrix. The number of columns needed to be duplicated
in rules 2a and 2b is �N−2��N−1� �the number of the rest
of the columns in the source matrix�, and they are dupli-
cated into all of the sections, which means N−1 times.
Therefore, the number of single duplications required for
the transition from a binary matrix of an �N−1�-node TSP
to the binary matrix of an N-node TSP is

#Dup�N−1�→N
�1� = 2�N − 1� + �N − 1�2�N − 2�

= N3 − 4N2 + 7N − 4 � O�N3� . �3�

Since this process is recursive, and since we start with the

binary matrix of a three-node TSP, the total number of

October 2007/Vol. 46�10�3
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ingle duplications required for the induction stage �which
efines its complexity� is

Dup3→N
�1� = �

k=4

N

�2�k − 1� + �k − 1�2�k − 2�� � O�N4� . �4�

If we assume that the duplication of each of the source-
atrix columns into the different sections of the target ma-

rix can be done simultaneously, then according to rules 1a
nd 1b of the induction stage of the algorithm, the number
f duplications required for the reference column is 1 �since
t is duplicated into the target-matrix 2�N−1� times simul-
aneously�. The number of columns needed to be duplicated
n rules 2a and 2b is �N−2��N−1� �the number of the rest
f the columns in the source matrix�, and they are dupli-
ated into all of the N−1 sections of the target matrix si-
ultaneously. Therefore, the number of multiple duplica-

ions required for the transition from a binary matrix of an
N−1�-node TSP to the binary matrix of an N-node TSP is

Dup�N−1�→N
�2� = 1 + �N − 1��N − 2� = N2 − 3N + 3 � O�N2� ,

�5�

nd the number of multiple duplications required for the
ransition from a three-node TSP into an N-node TSP
which defines the complexity of the induction stage� is
iven by

Dup3→N
�2� = �

k=4

N

�1 + �k − 1��k − 2�� � O�N3� . �6�

.2 Matrix-Vector Multiplication for Obtaining the
Problem Solution

s explained before, once the N-node binary matrix is syn-
hesized, it can be used to solve TSPs with N or fewer
odes. In order to obtain the TSP solution, we multiply the
ynthesized binary matrix by a weight vector, representing
he TSP weights. The resulting product is a vector contain-
ng the lengths of the TSP tours. This can be expressed

Fig. 3 4f optical system for the optical
athematically by the following formula:

ptical Engineering 108201-
�1 0 0 1 0 1

0 1 1 0 1 0
�

� �w1,2 w1,3 w2,1 w2,3 w3,2 w3,1�T

= �w1,2 + w2,3 + w3,1

w1,3 + w3,2 + w2,1
� . �7�

As can be seen from this equation, in this case the resulting
length vector contains two elements. Each element is the
total length of the corresponding tour. Note that although
this example is quite simple, the same method can be car-
ried out for any N-node TSP. After obtaining the length
vector, its minimal element coincides with the best tour. As
explained before, for other NP-complete problems such as
the HPP, there is no need to find the best tour, since any
value in the tour-length vector that is equal to N indicates
that a Hamiltonian path exists.

3 Optical Implementation
In Sec. 2, we describe a method for solving the TSP using
a multiplication of a binary matrix by a weight vector. In
this section, we show how this method can be implemented
optically. Our design uses the benefits of optics in order to
perform the multiplication of the quite large binary matrix
by the weight vector. This is, of course, hard to do with
conventional computers, due to the vast amount of memory
storage and the complexity of the calculation. Section 3.1
presents the optical implementation of the binary-matrix
synthesis according to the binary-matrix algorithm pro-
posed in Sec. 2.1, whereas Section 3.2 presents the optical
implementation of the matrix-vector multiplication for ob-
taining the length vector of the TSP, as explained in
Sec. 2.2.

3.1 Optical Synthesis of the Binary Matrix
The algorithm proposed in Sec. 2.1 can be used in order to
optically synthesize the binary matrix representing all fea-
sible tours of an N-node TSP. In fact, the transition to the
binary matrix of an N-node TSP requires the existence of
the binary matrix of an �N−1�-node TSP. This transition is
based on duplications of large vectors. The size of the du-

entation of the binary-matrix algorithm.
plicated vectors is �N−2�!, and the complexity of the

October 2007/Vol. 46�10�4
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uplication is given by Eq. �4� or �6�. The fact that large
ectors can be duplicated by optical means leads us to
hoose optics for implementing the binary-matrix
lgorithm.

The 4f optical system6 shown in Fig. 3 is capable of
erforming a convolution between two images. This system
s utilized to carry out a vector duplication by performing a
onvolution between the vector and shifted spatial delta
point� functions. The result of this convolution is the vec-
or shifted to the locations of the delta functions. We use
airs of symmetric delta functions in order to get a real-
alued spectral transform that can be represented on a regu-
ar slide or on a spatial light modulator �SLM�.

The binary matrix is also represented on a slide �or an
LM�. A white rectangle on this slide represents a 1 in the
inary matrix, and a black rectangle on the slide represents
0 in this matrix. Figure 3 demonstrates the transition from

he four-node TSP binary matrix to the five-node TSP bi-
ary matrix. As shown in this figure, the source matrix �the
inary matrix of N−1=4 nodes� is represented on the slide
laced in plane P1, whereas the target matrix �the binary
atrix of N=5 nodes� is accumulated during the correlation

terations on a film �or CCD camera�, which is placed on
lane P3. As shown in Fig. 3, the column that we would
ike to duplicate �according to the binary-matrix algorithm�
s extracted from the source matrix by a vertical slit.

The synthesized transformed mask of the shifted delta
unctions is placed on a slide �or an SLM� in plane P2.
ach delta function is shifted in both the vertical and hori-
ontal directions. The vertical shift is proportional to the
uitable target-matrix section �according to the binary-
atrix algorithm�. On the other hand, the horizontal shift is

omposed of both the shift of the column in the desired
orizontal direction according to the binary-matrix algo-
ithm and an additional shift that assures that the target
atrix will not overlap with the other spatial components

ppearing on plane P3. This undesired overlap may occur
ecause the convolution with the delta functions yields two
uplications: one in the positive direction from the center
f plane P3, and the other in the negative direction. After
uplicating each of the source-matrix columns by this pro-
ess, plane P3 contains the binary matrix of an N-node TSP.

Fig. 4 4f optical system for performing the mu
hen, we can utilize this matrix to synthesize the binary

ptical Engineering 108201-
matrix of an �N+1�-node TSP by using the same method.
This continues till reaching the binary matrix of the TSP
with the desired number of nodes.

The algorithm described in Sec. 2.1 provides the desti-
nation of the duplications for each of the source-matrix
columns. This can be accomplished by either the first or the
second method, the complexities of which are given by
Eqs. �4� and �6�, respectively. In the first method, we per-
form a duplication of each of the source-matrix columns
into a single destination in the target matrix. In order to
perform that optically, we convolve a pair of shifted sym-
metric delta functions with the column that should be du-
plicated. The transformed representation of these two sym-
metric delta functions can be expressed in the spectral
domain as follows:

H�1��fx, fy� = 1 + cos�2�fx�X + A� + 2�fyY� , �8�

where fx and fy are the horizontal and vertical spatial fre-
quencies, respectively; X and Y are the horizontal and ver-
tical shifts, respectively, given by the binary matrix algo-
rithm; and A is the horizontal shift that assures the
separation of the two matrices that appear on plane P3.

In the second method, we simultaneously perform a du-
plication of each of the source-matrix columns into mul-
tiple destinations in the target matrix. In order to perform
that optically, we convolve a set of shifted symmetric delta-
function pairs with the column that is to be duplicated. The
transformed representation of this set of shifted symmetric
delta-function pairs can be given by the Burch method7 as

H�2��fx, fy� = bias + I	�
i

���x − �Xi + A�,y − Yi�

+ ��x + �Xi + A�,y + Yi��
 , �9�

where x and y are the horizontal and vertical axes in the
spatial domain, respectively; Xi and Yi are the horizontal
and vertical shifts, respectively, given by the binary matrix
algorithm for the i’th delta-function pair; and I is the Fou-

tion of the binary matrix by the weight vector.
rier transformation operator.

October 2007/Vol. 46�10�5
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.2 Optical Matrix-Vector Multiplication for Obtaining
the Problem Solution

n order to perform the matrix-vector multiplication, the
ame 4f optical system used in Sec. 3.1 can be put into
ction again. This time, as shown in Fig. 4, the weight
ector is represented on a slide �or an SLM�, placed in the
nput plane P1, by a set of normalized grayscale rectangles.
he grayscale normalization is performed so that high
eights are represented by low grayscale levels.3 As also

hown in Fig. 4, the transformed binary-matrix mask is
epresented on a slide �or an SLM�, placed in the filter
lane P2. In order to synthesize the transformed binary-
atrix mask, we can use several methods, such as the
urch method,7 the VanderLugt method,6,8 etc. The output
lane P3 is the correlation plane of the system, and it con-
ains a correlation matrix in which the middle column rep-
esents the desired product of the binary matrix with the
eight vector. This product is the length vector of the TSP.

n Ref. 3, we use the joint transform correlator �JTC�6,9 in
rder to carry out the multiplication, by using both simula-
ions and lab experiments. In the current paper, we use the

ig. 5 Simulation results �contrast-inverted pictures�: �a� the binary
atrix of a four-node TSP �the source matrix�; �b� the binary matrix
f a five-node TSP �the target matrix�.

ig. 6 The first eight out of 56 filters used for the transition from the
inary matrix of a four-node TSP to the binary matrix of a five-node
SP in the first method �duplicating into a single location each time�.
he source-matrix column tag and the target-matrix section number

re written below each filter.

ptical Engineering 108201-
4f optical system to carry out the multiplication. The binary
matrix is transformed to the spectral domain by using the
Burch method. The implementation of the optical matrix-
vector multiplier by the 4f optical system is demonstrated
in the current paper by simulations. Simulations and experi-
mental results demonstrating the optical synthesis of the
binary matrix, which is explained in Sec. 3.1, are also given
in the current paper.

4 Simulation Results
This section presents the simulations performed in order to
check the proposed optical method. In the first simulation
�presented in Sec. 4.1�, we demonstrate the synthesis of the
binary matrix for the transition from the binary matrix of a
four-node TSP to the binary matrix of a five-node TSP,
whereas in the second simulation �presented in Sec. 4.2�,
we demonstrate how the synthesized binary matrix can be

Fig. 7 Four out of 56 contrast-inverted cumulative correlation
planes depicting the transition from the binary matrix of a four-node
TSP to the binary matrix of a five-node TSP in the first method
�duplicating into a single location each time�: �a� first duplication; �b�
second duplication; �c� third duplication; �d� last �56th� duplication.
used to solve the five-node TSP shown in Fig. 1.

October 2007/Vol. 46�10�6
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.1 Simulation of the Optical Synthesis of the
Binary Matrix

n order to synthesize the binary matrix of a five-node TSP,
e assume the existence of a binary matrix of a four-node
SP �which can be synthesized beforehand from the binary
atrix of a three-node TSP by using the same set of rules,

efined in Sec. 2.1�. To do that, we simulate the 4f optical
ystem illustrated in Fig. 3. On the input plane P1, we place
he binary matrix of a four-node TSP �the source matrix�
hown in Fig. 5�a�, whereas the cumulative output plane P3
ill eventually contain the binary matrix of a five-node
SP �the target matrix� shown in Fig. 5�b�. As demon-
trated in Fig. 3, in each iteration only a single column
rom the source matrix enters the system. This column is
ourier-transformed and then multiplied by the required fil-

er, which determines the locations into which this column
s duplicated on the output plane P3. On the filter plane P2,
e place the filter mask of the transformed delta functions.
Simulations of both methods discussed in Sec. 3.1 are

resented. In the first simulation, we use the first method, in
hich each of the columns is duplicated into a single loca-

ion each time. According to Eq. �3�, the number of itera-
ions needed for the transition from the source matrix to the
arget matrix is 56. Thus, 56 different filters �each of which
s defined by Eq. �8�� are required in order to perform this
ransition. Figure 6 shows the first eight out of the 56 filters
equired for the transition. Figure 7�a�–7�d� show the cu-
ulative output plane P3 after completing the first, second,

hird, and last �56th� iteration of the transition, respectively.
n Fig. 7�a�, the reference column from the source matrix is
uplicated into the first section of the target matrix that
ppears in the right diffraction order of the output plane P3.
imilarly, in Fig. 7�b� and 7�c�, the reference column from

he source matrix is duplicated into the second and third

ig. 8 The 13 filters used for the transition from the binary matrix of
four-node TSP to the binary matrix of a five-node TSP in the sec-

nd method �duplicating into multiple locations each time�. The
ource-matrix column tag is written below each filter.
ections of the target matrix, respectively. Eventually, as

ptical Engineering 108201-
shown in Fig. 7�d�, the right diffraction order of the output
plane P3 contains the complete target matrix.

In the second simulation, we use the second method, in
which each of the columns is duplicated into multiple loca-
tions each time. According to Eq. �5�, the number of itera-
tions needed for this transition is 13. Thus, only 13 differ-
ent filters �each of which is defined by Eq. �9�� are required
in order to perform the transition. Figure 8 shows these
filters. Figure 9�a�–9�d� show the cumulative output plane
P3 after completing the first, second, third, and last �13th�
iteration of the transition, respectively. In Fig. 9�a�, the ref-
erence column from the source matrix is duplicated into the
first, second, third, and fourth sections of the target matrix
simultaneously �twice into each section�. In Fig. 9�b� and
9�c�, the second and third columns, respectively, are simul-
taneously duplicated from the source matrix into each of
the sections of the target matrix �once into each section�.

Fig. 9 Four out of 13 contrast-inverted cumulative correlation
planes depicting the transition from the binary matrix of a four-node
TSP to the binary matrix of a five-node TSP in the second method
�duplicating into multiple locations each time�: �a� first duplication;
�b� second duplication; �c� third duplication; �d� last �13th�
duplication.
Eventually, as shown in Fig. 9�d�, the right diffraction order

October 2007/Vol. 46�10�7
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f the output plane P3 contains the final target matrix �the
ame result achieved in the first method, as shown in
ig. 7�d��.

For both methods, the required binary matrix of a five-
ode TSP �the target matrix� can be easily cut out from the
ight diffraction order of the output plane P3 that appears in
ig. 7�d� or 9�d�. The left-diffraction-order matrix is an
bnormal binary matrix caused by the inverse duplication
f the delta function, due to the Burch method and to the
act that not all of the columns are symmetric.

Once the binary matrix of a five-node TSP is obtained,
e can use it either to solve any TSP of five or fewer nodes,
r to synthesize the binary matrix of a six-node TSP by
tilizing the same set of rules �defined in Sec. 2.1�.

.2 Simulation of the Optical Matrix-Vector
Multiplication for Obtaining the Problem Solution

n this subsection, we demonstrate the solution of the TSP
hown in Fig. 1. This is performed �according to the tech-
ique explained in Sec. 3.2� by correlating the suitable
rayscale weight vector with the binary matrix of a five-
ode TSP �Fig. 5�b�� that is synthesized in Sec. 3.1. This
rayscale weight vector, placed on the input plane P1 in the
f optical system illustrated in Fig. 4, is shown in Fig.
0�a�. The Burch mask of the synthesized binary matrix,
sed as the filter �plane P2� of the 4f optical system illus-
rated in Fig. 4, is shown in Fig. 10�b�. The result of the

Fig. 10 Simulation results of multiplying the bin
TSP solution: �a� the contrast-inverted weight ve
the Burch mask of the synthesized binary matrix
containing two diffraction orders, the right order
the peaks across the middle column of the corr
orrelation operation appears on the output plane P3 of the

ptical Engineering 108201-
4f optical system illustrated in Fig. 4. This output plane is
shown in Fig. 10�c�, and it contains two correlation matri-
ces, the right matrix of which can be used for the determi-
nation of the best tour. This tour is indicated by the stron-
gest spot �or the highest peak� in the middle column of this
correlation matrix. The peak heights across this middle col-
umn are displayed by bars in Fig. 10�d�. As seen in this
figure, the highest bar appears in the place representing the

trix by the weight vector in order to obtain the
orresponding to the five-node TSP in Fig. 1; �b�
5�b�; �c� the contrast-inverted correlation plane

h is the correlation matrix; �d� bars representing
matrix.
ary ma
ctor c
in Fig.

of whic
elation
Fig. 11 The optical experiment setup.

October 2007/Vol. 46�10�8
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eventh tour. This is the shortest tour and thus the solution
o the TSP. Going back to the binary matrix �shown in Fig.
�b�� reveals that this tour contains the following weights:
1,3 ,w2,4 ,w3,2 ,w4,5 ,w5,1, which means that the shortest
SP tour is node 1→node 3→node 2→node 4→node 5
node 1. As can be concluded from Fig. 1, this is indeed

he shortest tour.

Experimental Results
n this section, we demonstrate by an experiment the syn-
hesis of the binary matrix of a five-node TSP �the target

atrix� by using the binary matrix of a four-node TSP �the
ource matrix�. This is performed by implementing the first
ethod �demonstrated by a simulation in Sec. 4.1�, in
hich each column from the source matrix is duplicated

nto a single location in the target matrix each time. Figure
1 shows a photograph of the experiment setup. As can be
een in this figure, a laser �Uniphase 1144/P, 17 mW,
32.8 nm, HeNe polarized laser� beam is expanded using a
eam expander and illuminates the input plane �P1 in Fig.
�, which is accomplished in the experiment by a regular
lide. A lens with a focal length of 25 cm Fourier-
ransforms the source-matrix column appearing on the in-
ut plane, and the Fourier transform is multiplied by the

ig. 12 The accumulated binary matrix of a five-node TSP obtained
xperimentally: �a� without the equalization and the thresholding; �b�
ith the equalization and the thresholding.
lter plane �P2 in Fig. 3�, which is accomplished in the

ptical Engineering 108201-
experiment by a computer-controlled SLM �CRL Opto
XGA2, 1024�768 pixels�. Fifty-six filters are projected on
the SLM �the first several ones of which are shown in Fig.
6�. Then, another lens with a focal length of 30 cm Fourier-
transforms the multiplication result, and the output plane
�P3 in Fig. 3� contains the duplication of the source-matrix
column into the suitable location in the target matrix. A
CCD camera �Sony XC75-CE� is placed in the output plane
and records the intensity distribution there. The cumulative
output plane, composed of the summation of the 56 result-
ing correlation planes, is shown in Fig. 12�a�. As seen in
this figure, this plane indeed contains the target matrix �the
binary matrix of a five-node TSP�, and it can be compared
with the cumulative correlation plane shown in Fig. 7�d�,
obtained by simulation. Note that since the CCD camera
aperture is not large enough to contain the binary matrix of
a five-node TSP, we have performed the task by concatenat-
ing two CCD camera planes.

The precision of the binary matrix is extremely impor-
tant, since after the synthesis of this matrix, every row in
the matrix is multiplied, element by element, by the weight
vector and summed into a single value representing a tour
length. Therefore, an improvement of the experimental bi-
nary matrix shown in Fig. 12�a� is required. This matrix has
two unwanted artifacts, which are mainly caused by the
medium quality of the SLM used in the filter plane of the 4f
optical system synthesizing the binary matrix. These arti-
facts are the following: �a� background noise and low-
intensity unwanted duplications appear on the cumulative
output plane of the optical system; �b� the light intensity on
the output plane is not equally distributed along the binary-
matrix columns. In order to eliminate artifact �b�, one has to
equalize the light intensity along the columns. This can be
done during the synthesis of the binary matrix by multiply-
ing each duplicated column by a predefined mask placed
just in front of the output plane. The transparency values in
this mask should turn brighter from its left side to its right
side for each concatenated CCD plane in order to compen-
sate for the unequal light intensity values along the binary
matrix columns. Artifact �a� �the background noise and the
low intensity unwanted duplications� can be eliminated by
applying a constant threshold with the CCD camera �or
with any other detector used in the output plane, such as an
optical film� for each duplicated column during the synthe-
sis of the binary matrix �right after the equalization mask
has been applied to this duplicated column�.

Figure 12�b� shows the experimental binary matrix after
the multiplication by the equalization mask and after apply-
ing a constant threshold eliminating the lowest 15% of the
values in the output plane during the binary-matrix synthe-
sis. The experimental binary matrix shown in Fig. 12�b�
gives only 1.4% erroneous bits, compared to a resized ver-
sion of the simulated binary matrix shown in Fig. 5�b�.
Further suppression of the erroneous bits of the experimen-
tal binary matrix might be obtained by using more precise
optomechanical devices, which are not available in our
laboratory at present.

6 Discussion
The experimental results given in the previous section dem-
onstrate a simple proof-of-principle case. However, note

that in order to enable a single run �without repetitions� of

October 2007/Vol. 46�10�9
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he proposed method for solving bigger problems with
ore nodes by using the currently available technologies,

he authors think that high-resolution optical films should
e employed in the input and output planes of the optical
ystem used for synthesizing the binary matrix. The input
lm will contain the �N−1�-node TSP binary matrix, and
n correlating each of this matrix’s columns with suitable
hifted delta functions, the N-node TSP binary matrix will
e accumulated on the output film. After developing the
utput film, it can be used as the input film of the optical
ystem synthesizing the �N+1�-node TSP binary matrix, or
lternatively can be used for solving any TSP or HPP con-
aining N or fewer nodes. In spite of the N−3 relatively
ong development processes of the films, needed for obtain-
ng the N-node TSP binary matrix, the required film has to
e produced only once for solving any TSP or HPP con-
aining N or fewer nodes, no matter what the problem
eights are. Thus, the process of producing such a film can
e considered as preprocessing, or as a preproduction of
pecial optical hardware.

The use of a film to represent the binary matrix has
nother important advantage: the nonlinearities of the film
an be exploited during the binary matrix synthesis in order
o perform an automatic thresholding process10,11 on the
uplicated columns. As explained in Sec. 5, this threshold-
ng process is important for obtaining a binary matrix with
igh accuracy.

The authors are aware that currently the proposed opti-
al system cannot compete with electronic computers for
SPs or HPPs of high rank, due to technological limita-

ions. In the future, decreasing the wavelength �which
eans being able to represent bigger binary matrices� or

erforming optical iterations with faster SLMs may help if
nd when the relevant technologies are improved. There-
ore, we believe that the proposed optical system is impor-
ant in its own right.

In addition, even with the currently available technolo-
ies, the proposed method has two important features that
ight make it very useful for many practical applications.
hese features are the following: �a� the calculation time

or obtaining the final solution is defined in advance �since
ll the feasible solutions are checked and no heuristic or
pproximation methods are used�; �b� after the initial prepa-
ation of the binary matrix, the proposed optical system has
eal-time performance for TSPs and HPPs of low rank �up
o 15 nodes�. These two features of the optical system can
e exploited for cryptography, real-time satellite route de-
isions, and in general for real-time decision making.

Let us demonstrate the real-time performance of the op-
ical system and compare it with the performance of an
lectronic computer for a 13-node HPP. In this problem, the
umber of weights in the �binary� weight vector is 12
13=156, whereas the number of feasible tours is 12!

4.79�108. Therefore, the number of elements in the bi-
ary matrix is �156+1��4.79�108=7.52�1010. Let us
ssume the use of a Stanford vector-matrix incoherent
ultiplier.12 The matrix in this multiplier can be repre-

ented on an optical film �slide�, whereas the input vector
an be represented by vertical-cavity surface-emitting la-
ers �VCSELs� that can be controlled by a 125-MHz, 9-bit

river. As a result, the dynamic range of the weight vector

ptical Engineering 108201-1
is 9 bits, which directly affects the accuracy of the optical
system so that it cannot solve problems in which the inter-
connecting weights are represented by more than 9 bits.
Under the assumption that the resolution of the binary ma-
trix film is 1 �m per binary matrix element, a 27.4
�27.4-cm film can contain the binary matrix of the 13-
node problem. After the preproduction of this film, the mul-
tiplication of the weight vector, representing the problem
weights, by the synthesized binary matrix, representing all
feasible tours of the problem, can be performed in the time
frame it takes the light to pass through the optical system
plus the time it takes to represent the weight vector con-
taining 156 elements by the VCSEL array, which makes up
a total of a few nanoseconds. This can be considered as
real-time performance. On the other hand, a conventional
computer, working in a frequency of a few gigahertz, can-
not check 4.79�108 tours �without using heuristic or ap-
proximation methods� in less than a few tenths of a second,
which means that it is 8 orders of magnitude slower than
what can be achieved by the proposed optical system, and
this cannot be considered as real-time performance.

7 Conclusion

We have proposed an optical method for solving �bounded-
length input instances of� NP-complete problems, such as
the TSP and the HPP. The method exhaustively checks all
feasible solutions of the problem. There is a need to solve
this kind of problems by an exhaustive search in order to
ensure a predefined solution time. According to the pro-
posed method, we multiply a binary matrix, representing all
feasible tours, by a weight vector, representing the weights
of the problem. We have also provided an efficient algo-
rithm for the synthesis of the binary matrix. Once this ma-
trix is synthesized, it can be used to solve all TSPs and
HPPs with the same number of nodes or fewer. The syn-
thesis of the binary matrix is demonstrated by both com-
puter simulations and an optical experiment. There is good
agreement between the simulation and the experimental re-
sults. Currently, it is feasible to exhaustively solve TSPs
and HPPs which contain 15 or fewer nodes by a single
iteration of the proposed optical method within nanosec-
onds �can be considered as real-time performance�, whereas
a conventional electronic computer can perform this ex-
haustive search only within tens of seconds �cannot be con-
sidered as real-time performance�. There is still a problem
in solving, within a single optical iteration, TSPs and HPPs
with more than 15 nodes, due to the large size of their
binary matrices. Decreasing the wavelength might help re-
duce the size of the binary matrix and thus enable the so-
lutions of larger TSPs and HPPs. Decrease of the wave-
length, however, is currently quite limited by the currently
available light sources and SLMs. Anyway, in our opinion
the real-time performance of the system, which can be ob-
tained for small TSPs and HPPs �up to 15 nodes� by using
the currently available technologies, testifies to the advan-
tages of the optical system. A possible direction of a future
research in this field is to extend the proposed method to
solving other NP-complete problems or other difficult

problems.
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