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Projection-onto-constraint sets is an efficient algorithm for constructing synthetic discriminant functions to be
employed in pattern-recognition systems. The algorithm is implemented by a digital procedure based on a
simulated joint-transform correlator.

Projection-onto-constraint sets (POCS) has been used
for many years in several areas of signal processing.
Recently the use of the POCS was extended to new
fields, such as computer-generaid hclegramn- and
neural networks.2 In this Letter we show that it is also
possible to employ the POCS for th" generation of
synthetic discriminant functions3 (SDF's) for pattern
recognition. Many algorithms3 used in computing a
SDF consider only the value at one point, usually the
origin of the correlation plane. Other algorithms4'5

are made more global by using a cost function that
contains information about the whole correlation
plane, but they still do not control the complete corre-
lation distribution. The POCS is a process that cre-
ates, in every iteration, the total correlation distribu-
tion and that may form any desired shape of correla-
tion function. It has other advantages as well, as it is a
relatively rapid iterative process, but it usually
achieves suboptimal solutions.

The POCS is an iterative process that transfers a
function or a vector from one domain to another and
vice versa. In every domain it is projected onto one or
several constraint sets. The convergence of the pro-
cess, if it exists, is achieved when the function satisfies
all the constraints in every domain simultaneously.
The exact conditions on the constraint sets that are
sufficient to guarantee weak convergence of the POCS
process are described in Ref. 6. If all the sets are
closed and convex, and they have at least one common
term, then the process weakly converges.

In a typical pattern classification task we assume
two object classes to be classified. In class A there are
N patterns, and in class B there are M patterns. Our
goal is to find a SDF that produces a sharp peak in the
correlation plane when an object from class A is in the
input of the system and a diffused distribution when
an object from class B is present. Since the correlator
is space invariant, we can handle the problem with all
the M + N objects presented at the input plane simul-
taneously. It is convenient to split this plane into two
regions, where one contains the N objects of class A
and the other contains the M objects of class B. As a
result the correlation plane is also split into two re-
gions that contain the respective correlation functions
of the objects from class A and class B. The con-

straint set in this plane requires the appearance of
only N bright correlation peaks corresponding to the
centers of the correlations with the objects of class A.
Hence, the central points of the crrrelation functions
related to the objects of class A, designated region R1,
will be equal to or above a predetermined threshold
level denoted by T1. The distribution in a ring around
these central peaks, designated region R2, will remain
unconstrained. All other points of the correlation
function, designated region R3, which are above a sec-
ond threshold level T2 (T2 < T1), will have the value
T2. A schematic representation that describes the
various regions of the correlation plane is given in Fig.
1. Formally, a constraint set C1 may be defined by the
relation

C1 = {c(x'): c(x') 2 T1 if x' e R1;
c(x') ' T2 if x' E R3}, (1)

where c(x') is the correlation function. The ratio be-
tween T1 and T2 determines the discrimination ratio

Fig. 1. Various regions in the correlation plane to be oper-
ated on by the operator P1.
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and can be adjusted by the user during the synthesis
process. The projection operator of the correlation
domain P1 is defined as

T1

Pl [c(x')] = T2

c(x')

if x' E R1 and c(x') < T1

if x' E R3 and c(x') > T2.

otherwise

(2)

A convenient architecture to implement the POCS
is the joint-transform correlator 7 (JTC), since a single
plane includes the input as well as a reference func-
tion. A pattern to be recognized is represented by a
function f(x) at a distance b from the center of the
input plane. A reference pattern h(x) of width Wh is
introduced at a distance -b from the center. Thus
the overall distribution at the input plane is s(x) = f(x
- b) + h(x + b). The squared magnitude of the
Fourier transform of sW(x), S(u)12, is Fourier trans-
formed again to yield the complex amplitude distribu-
tion over the output plane,

c(x') = f(x') * f(x') + h(x') * h(x')

+ f(x') * h(x'-2b) + h(x') * f(x' + 2b), (3)

where * denotes correlation. This distribution con-
tains three terms that are spatially separated, with two
of them representing the desired correlation between
f(x) and h(x). In our POCS procedure we perform the
operation P1 [Eq. (2)] on the two correlation regions
simultaneously.

The second domain of the POCS is the JTC input
plane. In the first example the constraint set over the
input plane contains all the patterns of the training set
arranged around a point at a distance b from the origin
and a space-limited real reference function around the
point -b. This can be written as

C2 {s(x) :s(x) = g(x-b) + h(x + b);

h(x) e ?; h(x) = 0 if lxi > - (4)

g(x), having a width wg, represents all the training set:
g(x) E=l fiA(x - diA) + EjyJ 1 fiB(X - diB), where diA4B

is the distance of fiAB from the origin. The operation
of the projection operator P2 on s(x) is given by

2233

s'x . ~ s" Jmin{C(u)}|-

XJ ~S (X) eas C 00

P 'S(u) ISu) ctu

Fig. 2. Block diagram of the POCS process (see the text for
details). FT, Fourier transform; FT-', inverse Fourier
transform; PE, phase extractor; MF, minimum finder.
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Fig. 3. Input training set. (a)
patterns to be rejected.

Patterns to be detected, (b)

[s(x)

P2 [s(x)] = 1g(x - b)

0

The complete POCS process as implemented on a
JTC-like configuration is described in Fig. 2. We
start the process with an input plane containing all the
patterns of the training set clustered in two subregions
(for the two classes, A and B) and a random real space-
limited reference function. In the kth iteration, Sk(X)

is Fourier transformed to Sk(u). The phase distribu-
tion of Sk(U) is kept in the memory, while the magni-
tude is squared and inverse Fourier transformed to
Ck(X'). In this stage the operator P1 [Eq. (2)] operates.

The distribution at the central region, of width (Wh +
wg), remains unchanged. The result of the projection,
Ck'(X), is Fourier transformed back to the spatial fre-
quency domain. Since we started from this domain
with lSk(u)l2, the new function CWM(u) must be positive,
which is achievable by subtracting the minimum value
of Ck'(u). The next step is to take the square root of
Ck'(u) to obtain ISk'(u)I, which is then multiplied by
the phase function stored in memory. The product is
inverse Fourier transformed back to the input plane to

if (-b - 2h) <

if x >0
otherwise

x< -b+ Wh
2 .(5)
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Fig. 4. Output correlation planes (in arbitrary units). (a)
After the first iteration, (b) after 60 iterations.

be operated on by the operator P2. The (k + 1)th
reference function is obtained by reducing to zero all
the function sk'(x) except for the limited region of
width Wh, centered at a distance -b from the origin.
The input plane for the next iteration contains this
reference function and the original training set. The
process proceeds in the same way until we obtain a
space-limited reference function that produces the de-

sired correlation distribution, determined by T1 and
T2. Both C1 [Eq. (1)] and C2 [Eq. (4)] are convex.
However, the problem is that a solution does not al-
ways exist for every training set.

In our initial experiment we chose two versions of
the digit 2 for class A and two versions of the digit 3 for
class B, as shown in Fig. 3. In Fig. 4(a) we see the
correlation plane after the first iteration. The same

- 63 region is shown in Fig. 4(b), which after 60 iterations
reveals the two strong correlation peaks related to the
digits 2.

As a second example we tried to achieve, directly by
the POCS algorithm, a binary reference function. For
the case of binary (0, 1) function, C2 can be rewritten
as

C2'={s(x):s(x) =g(x-b)+h(x+b);

h(x) e {0, 1}; h(x) = O if lXI > )- (

It is easy to see that the modified constraint set is no
longer a convex set, and, in fact, the algorithm did not
converge under this constraint set in any trial that we
made. Our conclusion is that it is better to calculate a
gray-level reference function by the POCS algorithm
and then to code it, if needed, into a binary form by
one of the noniterative methods, rather than to obtain
a binary reference function directly.
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