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Fourier- and Hartley-related transforms are realized in a family of interferometers. The implementation of
these interferometers as image correlators is investigated theoretically and experimentally with both coherent
and spatially incoherent illumination. Several correlators that can be used for pattern recognition are studied
and demonstrated experimentally as special cases.

1. INTRODUCTION

Optical image processing can derive significant benefits
from the introduction of interferometric methods. The
use of a shearing interferometer to yield the cosine Fourier
transform of an object illuminated by spatially incoherent
light is well known.'2 Other applications of the same in-
terferometer include the sine transform'- and the Hartley
transform (HT) in coherent6'7 and incoherent8 illumina-
tion. In this paper we consider some additional proper-
ties of both coherent and incoherent interferometers for
signal processing. Since these processing architectures
usually contain Fourier transformations (FT's), we refer
to them as Fourier interferometers (FI's). A generalized
model of the FI is discussed in Section 2.

One important attribute of the HT is that it yields a real
transform for a real input function. However, this is not
necessarily the case for an arbitrary complex input func-
tion. We show in the analysis of Section 3 that system
modifications are possible for generating real transforms
also for complex functions.

The joint transform correlator9 (JTC) is a convenient
system for obtaining the cross correlation between two
functions without the need for holographic filters and
complicated alignment procedures. While the conven-
tional JTC required fully coherent illumination, we demon-
strate in Section 5 that a JTC implemented by the FI can
be operated under spatially incoherent illumination. In
the proposed JTC the FT of the input objects is performed
with incoherent illumination, but the processing of the
joint spectrogram to obtain the correlation uses coherent
light. The preliminary experimental results confirm the
theoretical predictions.

In Section 6 we propose and demonstrate a partially in-
coherent correlator characterized by Fourier transforming
an incoherently illuminated object, multiplying the trans-
form by a filter, and performing an additional FT with
coherent illumination. This configuration is useful in a
situation in whch it is preferable to illuminate coherently
the spatial frequency plane rather than to convert the
input image into a coherently illuminated image.

2. GENERALIZED MODEL OF A FOURIER
INTERFEROMETER

The schematic diagram of Fig. 1 represents a generalized
FI in which two channels are illuminated by a finite ex-
tended quasi-monochromatic light source (Is) located at
the far field relative to the input plane of the interferome-
ter. The light distributions in the two channels are ro-
tated with respect to each other by an angle . Masks
g1 (r) and g2 (r) are located in the two channels, and the
far-field diffraction distributions are superposed at the
output detector array. Throughout this paper we con-
sider the far-field approximation with the understanding
that this is always achievable by using lens transforma-
tions. The output signal from the detector array is time
averaged during an integration time T. The measured
intensity distribution can thus be written in the form

I(U) = 1 2 f| e(r,t)g1(r)c1(u)exp(k r )

+ e(r, t)g2(r)C2(u)exp( u r)dr dt, (1)

where ei(r, t) (i = 1, 2) are the complex amplitude field dis-
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Fig. 1. Schematic illustration of the generalized model of the FI.

tributions incident upon the transparencies and r and u
are the coordinate vectors of the interferometer input and
output planes, respectively. The function Ci(u) represents
the diffraction conditions of each channel. For example,
it can be a quadratic phase factor that depends on the lon-
gitudinal position of the input mask, or it may be a linear
phase factor that depends on the transversal position of
the input object. Alternatively Ci(u) may represent a fil-
ter mask located in the u plane. By performing the
squaring operation, we can write Eq. (1) in the form

(u) = IC,(u)I 2 f f [II(r)Il(r')] l/2g,(r)gl*(r')yll(r, r')

X exp[ku (r - r')]drdr'

+ ICs(u)I 2 'I ' [I2(r)I 2(r')] l/2g2(r)g2*(r')y22 (r, r')

X exp[iku. (r - r')]drdr'

+ C1(u)C2*(u) f f [Il(r)I 2 (r')] 82g,(r)g2*(r')yI2(r,r')

X exp[iku (r - r')]drdr'
L

+ Cl*(U)C2(U) I, f [I, r')I2(r)] '12g*(09)2(r)y2j~r, 0'

X exp[iku- (r - r')]drdr', (2)

where yij are the coherence functions defined by

Yu (r ei(r, t), ej*(r', )
yj ' ~[Mi~ (r')] 1/2

1 T/2

(ei (r, t), ej*(r' ))-- ei(r, t)ej*(r' t)dt,
T -T/2

T/2

fir- J ei(r,t ldt.
T2

(3)

The interferometer input plane is located in the far-
field region of the source; therefore, according to the
Van Cittert-Zernike theorem,'" y is given by the normal-
ized inverse FT of the intensity distribution of the light
source by the relation

y(r, r') =
exp(jqI)f I3(g)exp[-j(2,/AL4w (r -r')]dg

(5)

where g is the coordinate vector of the source plane, I,(g)
is the intensity distribution of the source, Ls is the dis-
tance between the source and the object plane, and fris
defined by

= L(r| 2 _ r2) .

=AL,
(6)

Since the quadratic phase factor exp( jqi) can be canceled
by properly positioned lenses, it is dropped in the analysis
that follows.

To simplify Eq. (2) we assume equal and constant illu-
mination for both channels [VI = \72j_) = constant]
and spatially stationary statistics within the apertures of
interest [as is also the case according to Eq. (5)]:

yll(r,r') = y(r -r',

y22(rr') = 'y[c(r -r')],

'Y2(r,r') = 'y(r - (Dr'),

'y21(r,r') = y((Dr-r'), (7)

where 4) is the rotation matrix representing the relative
rotation angle of the two channels, 4. Under these as-
sumptions, Eq. (2) becomes

Ux

Rosen et al.



1500 J. Opt. Soc. Am. A/Vol. 9, No. 9/September 1992

I(u) = ICi(u)l2f I g(r)g1*(r')y(r - r')

X exp Lu (r - r')] drdr'

+ IC2(u)12 f f g2(r)g*(r')y[((r - r')]

X exp[iku- (r - r') drdr'
L

+ W(u) f I g(r)g*(r)y(r - (r')

X exp[ ku- (r - r')] drdr'

+ W*(u) f gl*(r')g2(r)y((Dr - r')

X exp Lu (r - r') drdr',

If the illumination is completely incoherent, we have
'y(r - r') = (r - r'), which substituted into Eq. (8) yields

IH(fr) c 2f Ig(r)12dr + exp(ja)G(2f,)

+ exp(-ja)G(-2fr), (10)

where G(fr) is the FT of g(r) 2 . Once again a GHT is
obtained, except that this time it is the transform of the
intensity of the input transparency with an additional
bias term rather than the transform of the complex ampli-
tude. A different incoherent HT of a function g(r) can be
obtained if a constant distribution A is introduced in one
channel while g(r) is displayed in the other. The HT of
g(r) in this case is

IH(fr) f Ig(r)j2dr + f!A2 dr + A* exp(ja)G(2fr)
abg

(8)
+ A exp(-ja)G*(2fr).

where W(u) = C(u)C2*(u). In Section 3 we consider the
special case of coherent illumination, and in Section 4 we
consider this intensity distribution as a holographic re-
cording with a partially coherent illumination.

3. FOURIER INTERFEROMETRY AND THE
MODIFIED HARTLEY TRANSFORM

In this section we consider the implementation of the FI
for extending the HT. According to Refs. 6, 7, and 11, the
HT is defined such that it yields a real transform if the
input function is real. To obtain a real transform distri-
bution even when the input is an arbitrary complex func-
tion, we extend the definition and consider its optical
realization.

The HT of a real function g(r) can be obtained by the FI
under coherent6 or incoherent3 illumination. In both
cases we have to substitute into Eq. (8) the following func-
tions: C(u) = exp(ja/2), C2(u) = exp(-ja/2) (0 <
a < 7), and g,(r) = g2 (-r) = g(r), and for the incoherent
case it is required that 4 = 1800. When the system is co-
herently illuminated yi(r, r') = constant, and the complex
amplitude distribution in the spatial frequency domain
fr (fr = u/AL) becomes

EH(fr) oc exp(j )G(fr) + exp( -j )G(-f) (9)

where G(fr) is the FT of g(r) and we assumed that the
output plane coincides with the FT plane of both channels.

The constant phase factors exp(ja/2) may be obtained
from the optical-path difference between the two channels.
When a is equal to 0 or 7r, EH(fr) is proportional to the
cosine FT or the sine transform of g(r), respectively.
When a = 7r/2 it is proportional to the HT, and when
O < a < r it is considered the generalized HT1 (GHT).
Unlike the FT, all these transforms are real functions if
g(r) is real. However, only the GHT preserves all the
complex information of G(fr).

(11)

In real-world applications the input function is not al-
ways a real one. When a coherent plane wave is reflected
from a nonplanar object or when it passes through a phase-
modulating medium, the light may be characterized by a
nonplanar phase front. Hence the field distribution is ex-
pressed by a two-dimensional complex function. If the
goal is to find a transform that yields, for any input func-
tion, a real transformed function, the HT is not sufficient.
To obtain a real transform for a complex function also, we
define a modified HT and call it the real HT (RHT), since
it generates a real transformed function for any complex
input. The formal definition of the two-dimensional
RHT of a complex function g(r) = g(r)Jexp[j(D(r)] is
taken as

Ha(fr) = V2f Jg(r)Jcos[2rfr r + (D(r) + a/2]dr, (12)

where 0 < a < r. The RHT is identical to the GHT [that
is, Ha(fr) = EH(fr)] when (D(r) = 0 or i, i.e., when g(r)
is real.
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Fig. 2. Shearing interferometer, as assigned to perform the
RHT.
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Fig. 3. Experimental results for the modified HT obtained with
the interferometer of Fig. 2.

The optical implementation of the RHT with the system
of Fig. 2 becomes evident if Eq. (12) is rewritten in
the form

Ha(fr) = = exp(j ) g(r)exp(ij2iTf, * r)dr

+< exp(-j 2)J g*(r)exp(-j21rf, * r)dr

= X exp(j 2)c[G(f,) + exp(-ja)G*(f,)]. (13)

The optical system differs from that used to perform an
ordinary optical HT 6 by a phase-conjugate mirror (PCM)
that replaces a regular mirror in one of the channels.
This channel reflects the function g*(r), while the second
channel reflects the function g(-r) if the input function
is g(r). The FT of the two functions is performed by the
lens located at the common channel (before plane P2 in
Fig. 2). The result is given by Eq. (13) when the coordi-
nate axes P2 are inverted.

As mentioned above, the resulting function in the output
plane P2 is always real. However, it does not always pre-
serve all the information contained in the input function.
It is reasonable that an arbitrary complex function cannot
be compressed into a real one without information loss.
It works for a real input function because of its Hermitian
property, which is not possessed by an arbitrary complex
function. Nevertheless, if we also have the complemen-
tary distribution Ha+(fr) it is possible to reconstruct the
original input function by using the relation

g(r) = exp[j(a/2)] f [1a(fr) + Ha+7i(fr)]

(14)

The complementary distribution Ha+,(f,) can be obtained
by using a backpropagating reflection from a second beam
splitter located between the P1 plane and beam splitter BS
of Fig. 2. As is pointed out in Refs. 12 and 13, the use
of a PCM in an interferometric configuration has the
advantage of self-referencing and phase-sensitivity
enhancement.

Experimental Demonstration of the Modified Hartley
Transform. The results of an experimental demonstra-
tion of the modified HT are shown in Fig. 3. We chose to

transform a phase element of which the modified HT (the
RHT) significantly differs from the ordinary HT. In our
case the RHT yields a real function in the transform plane
instead of a complex one (in the HT case). In this experi-
ment the system shown in Fig. 2 is illuminated by a coher-
ent plane wave from an Ar laser. Our object was a lens,
followed by an off-axis aperture (this gives an off-axis
quadratic phase as an input object), both located at the Pi
plane of Fig. 2. The PCM was realized by a photorefrac-
tive oscillator (semilinear passive PCM"4 ) using a BaTiO3
crystal. The conjugated and the inverted images were ob-
tained at plane P located at a distance L from beam split-
ter BS (L is identical to the distance between P and BS),
and the RHT appeared at the output P2 plane. The RHT's
of the off-centered section of the quadratic phase front
(our input) are the off-axis circular interference fringes
shown in Fig. 3. The optical axis is located at the bright
spot in the middle of Fig. 3 and does not coincide with the
center of the concentric interference fringes. The gaps
and the noise in the rings are due to interference effects
occasionally obtained in coherent systems. In the ordi-
nary HT the circular interference fringes become straight
lines.6 Since the signs of the quadratic phases are the
same in both channels, taking the intensity of their inter-
ference distribution results in the loss of all the informa-
tion regarding the quadratic phase in the HT case. As
demonstrated in Fig. 3, our RHT manifests the quadratic
phase information in a real function.

4. GENERAL MODEL FOR THE HOLOGRAM
RECONSTRUCTION

In this section we assume that the intensity distribution
given by Eq. (8) is recorded as a transparency. This trans-
parency can be treated as a FT hologram to be recon-
structed with coherent illumination in a conventional
2 - f optical system. The output distribution c(r) at the
back focal plane of the reconstruction lens is the FT of
I(u) given by Eq. (8):

c(r) = 9;{Ci(u)J2} * 'y()f gi(r)gl*(r - f)dr

+ 9{IC 2 (u)12} * y((I) f g2(r)g2*(r - f)dr

+ fl{W(u)} * f g3 (r)g2*(r - f)ly(r - (Dr + (Dfr)dr

+ 9{W*(u)} * f g2(r)gl*(r - fly((Dr - r + fldr,

(15)

where * denotes the convolution operation. The first two
terms, located around the origin, cannot be separated
from each other and thus are of no interest here. We are
concerned mainly with the other two terms, which can be
spatially isolated by using the convolution with the FT of
W(u) and W*(u).

Equation (15) is a generalized expression of which some
special cases are well known. For example, if the source
is coherent and W(u) is a linear phase factor, then the
third and the fourth terms yield the cross correlation be-
tween g1(r) and g2(r). This is the conventional JTC.9
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Fig. 4. Incoherent-recordingJTC: L-L 3, lenses; P1-P4, planes;
M's, mirrors; S, light source; CCD, charge-coupled device; PC,
personal computer; BS, beam splitter.

An unconventional processor may be obtained by taking
4 = 180°. For this choice the third term of Eq. (15), for
example, is given by

s(r) = f gi(r)g2*(r - f)y(2r - r)dr. (16)

This unconventional expression may have various applica-
tions in image processing by the substitution of special
functions. Some of these are still under investigation,
while in the following sections we consider two special
kinds of correlator operated under incoherent illumination.

5. INCOHERENT JOINT TRANSFORM
CORRELATOR

To implement a JTC we use the well-known rotational
shearing interferometer 2

,
4 5 in the configuration proposed

in Ref. 7 to perform a HT. Lens L, in our system (Fig. 4)
has two purposes. It rotates the input function by 180°
and performs imaging. Thus, if the interferometer arms
have equal physical lengths, the effective diffraction paths
d, and d 2 (measured to the entrance pupil of lens L2) in
the two channels differ by 4fi, where fi is the focal length
of the lens. Hence the two diffraction patterns super-
posed upon plane P2 are multiplied by two different
quadratic phase factors. Defining the quadratic phase
factor as

9I[d] exp(A dluI2), (17)

we obtain the intensity at plane P2 by substituting C,(u) =
94[l/f2(1 - d/f 2)], = 1800, and g1(r) = g2 (-r) = g(r)
into Eq. (8). If the illumination is spatially incoherent we

also take '(r - r') = 8(r - r'), and Eq. (8) reduces to

Ia(fr) = 2Ia + 9{ fi]G(f,) + q[ - fJ]G(f,), (18)

where G(f,) is the FT of g(r)12, fi and f2 are the focal
lengths of lenses L, and L2, respectively, f, = 2u/Af2, and

Ia = Ig(r) 12dr. (19)

Ia(f,) is the intensity distribution as recorded by a camera
and is manipulated as follows: The first term of Ia(f,) (a
dc term) is subtracted from Ia(f,) to improve the efficiency.
The remaining two terms are squared (electronically) and
displayed on a spatial light modulator (SLM). The trans-
mittance of the SLM is thus given by

Ta(fr) = 9{fiA][G(f,)]2 + [*(f,)]2

+ 2G(f,)G*(f,)- (20)

The SLM is illuminated by a coherent plane wave as in the
case of the conventional JTC. The FT of the third term
of Eq. (20) is

c(r) = g(2- r) 2 * g(2i ) (21)

where * denotes the correlation operation that is obtained
at the back focal plane of lens L3. The other two terms
are focused at distances f3 ± 8fif32 /f22 from lens L3. With
proper parameter selection these terms contribute only a
low-level diffused illumination at the back focal plane.

Using the different quadratic phase factors provided a
means of separating the various terms along the z axis.
An alternative approach for separating the terms is the
multiplication by a linear phase factor,

9[r] = exp(j r u), (22)

which can be obtained simply by shifting g(r) at the input
plane away from the origin. When the input function is
shifted by a distance rd and there is no diffraction path
difference between the two channels, the intensity distri-
bution Iq(f,) of Eq. (18) is replaced by

I2(f,) = 2I. + -, [rj G(f,) + _ [ rJG*(fr). (23)

The displayed distribution on the SLM becomes

TsP(fr) S i8rd ][6(f,)]2 + S[8rd 1*(fr)]2

+ 2G(f,)G*(f,). (24)

In this case the separation of the desired correlation term
of Eq. (21) is done transversally, i.e., it is obtained on axis,
while the two unwanted terms appear in the 1st and -1st
diffraction orders and can be easily blocked.
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(b) (c)

(d) (e)

Fig. 5. (a) Input mask to the incoherent-recording JTC. The two upper letters are the tested objects, and the lower letter is the refer-

ence. (b) Intensity distribution as recorded in plane P2 of Fig. 4 when the input was the mask of (a). (c) Pattern of (b) after the bias term

was subtracted. (d) Transmissivity of the SLM in Fig. 4 [the distribution shown in (c), squared]. (e) Correlation results with a cross

section from right to left through the upper peak.

The proper choice between the two separation methods
depends on the nature of the processed objects. To avoid
overlapping between the different terms in the transverse
separation, the diameter of the optical system D should
satisfy D 2 3Wm, where Wm X Wm is the area of the input
image. In the longitudinal separation the limitation
stems from the bandwidth of the input object. To avoid
information loss, the system diameter should satisfy D 2

Wm + 2AAdBo, where Ad is the longitudinal separation be-
tween the two channels and Bo is the bandwidth of the
input mask. Therefore, when the bandwidth is greater
then Wm/AAd, the transverse separation is preferred.

In both configurations a correlation between an input
function f (r) and a reference function r(r) can be obtained
by introducing both of the functions on the input mask in
the form

Ig(r)12
= f(r - re) + r(r + re), (25)

where r(r) and f (r) are spatially bounded. The autocorre-
lation of Eq. (21) leads to the distribution

c(ir) = f(r) * f(r) + r(r) * r(-r)
+ f (r - 2re) * r(r) + r(r + 2re) * f (r), (26)

where r = (f2/2f3)i. The third term, obtained at r = 2re,
and the fourth term, obtained at i = - 2 re, are the re-
quired cross-correlation functions between f (r) and r(r).

A. Experimental Demonstration of the Incoherent Joint
Transform Correlator
For the preliminary demonstration experiments with the
incoherent JTC we used a system similar to that shown in
Fig. 4 with a rotating diffuser illuminated by a laser as
the light source.5 In the first experiment the input mask
contained the three letters shown in Fig. 5(a), where the
lower L is considered the reference function r(r) and the
two upper letters are the test objects f(r). This experi-
ment demonstrates a pattern recognition system, and thus
we expect a detectable correlation peak at a position cor-
responding to the letter L on the upper line. In this ex-
periment two identical diffraction paths were obtained by
imaging the input mask in both channels to the same plane
in front of lens L2 . The input mask is shifted away from
the origin of the input plane to generate a linear phase.
The spectrogram I-Y(u) recorded by the CCD camera at
plane P2 is shown in Fig. 5(b). The dc level is measured
by blocking one channel and is subtracted from Is(u).
The resulting grating is depicted in Fig. 5(c). This grat-

L T

L

(a)
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Fig. 6. Reconstruction of the grating shown in Fig. 5(b) (after
binarization) obtained by coherent optical FT.

ing is squared, and the result, Ts(u), is shown in Fig. 5(d).
Finally, TY(u) is displayed on the SLM and Fourier trans-
formed by an ordinary coherent system. The correlation
results with two detected peaks at the locations of the
autocorrelations of the letters L (at the ±1st diffraction
orders) are shown in Fig. 5(e).

L

The required transversal separation may be visualized
by displaying Is(u), the grating that is shown in Fig. 5(b),
on the SLM and performing a coherent FT by a single lens.
From the reconstructed image shown in Fig. 6, we note
that the distance between (r) and I(-r) fulfills the de-
sired condition, i.e., rd > Wm/2.

In the second experiment the reference function was
the letter T shown in Fig. 7(a), and we used a difference in
the diffraction path lengths between the two channels to
implement the required separation. The effect of the re-
sulting quadratic phase is evident from the reconstruction
of the spectrogram, I(u) [Fig. 7(b)] shown in Fig. 7(c).
At the plane where one image is focused, its rotated twin is
smeared. The correlation result is presented in Fig. 7(d),
where the peaks are located at the positions of the letter T.
The correlation plane is noisier than the previous one,
shown in Fig. 5(e), because the separation here is along
the z axis instead of the transversal plane. However, the
correlation peak is still detectable above the noise level.

B. Complex Reference in Incoherent Joint Transform
Correlator
The function Ig(r)12 represents the intensity of the light
originating from the input transparency; thus both func-
tions f(r) and r(r) are positive. For the realization of a

T

T

(a) (c)

(b) (d)

Fig. 7. (a) Input mask to the incoherent-recording JTC for the second experiment. (b) Intensity distribution as recorded in plane P2 of
Fig. 4 (without the dc term) with the input mask of (a). (c) Reconstruction of the grating shown in (b) (after binarization) obtained by
coherent optical FT. (d) Correlation results with a cross section from right to left through the lower peak.

Rosen et al.



Vol. 9, No. 9/September 1992/J. Opt. Soc. Am. A 1505

complex reference function, f(r) and r(r) must be coded on
a carrier frequency."" Let F(r) be the required complex
reference function with R(fr) its FT, assumed to be band
limited with dimensions WR X Wi. A possible way to ob-

tain the desired F(r) is by shifting R(fr) a distance fo(IfoI >
Wr/2) in the frequency domain and combining it with the
conjugate version, R*(-fr) positioned at a distance f0 .
This combination satisfies the Hermitian symmetric prop-
erty, and thus the overall inverse FT, i.e., r(r), is a real
function. To make it positive also, one may add-a zero-
order term at the origin of the (fr) domain, so that the FT
of r(r) is

R(fr) = A8(fr) + R(fr - fo) + R*(-fr - ), (27)

where 8(fr) is Kronecker's delta function and A is a con-
stant that ensures a positive bias to make r(r) real and
positive. The FT of r(r), given in Eq. (27), yields three
terms. One of them, spatially separated from the others,
is R(fr), which is the FT of some function f(r). This func-
tion is the desired bipolar or complex reference function.
A similar procedure can be applied to the function f(r) if
it is complex too. If it is a real positive function, it is
adequate to sample it at a spatial rate f0. This sampling
is equivalent to a multiplication by the grating 0.5[1 +
cos(kfo - r)], where f0 satisfies the condition Ifol 2
max(WF/2, WG). This sampling generates a first-order dif-
fraction pattern of the form G(fr) centered around point f0

in the fr domain. Centering the camera on the same
point and recording only the first diffraction order results
in the recorded distribution [see also Eq. (18)]

Ia'(fr) = rect( ) [2I0 + atff ]G(fr + fo)f2 + ]]
= 2I, + R{ff] U(fr) + - f]U*(fr), (28)

where

U(fr) = R(fr)exp(j27rfr * re) + F(fr)exp(-j2 rfr * r,).
(29)

Proceeding from Eq. (28) in steps similar to those taken
from Eq. (18) to Eqs. (21) and (26), we obtain the correla-
tion distribution r(r) * g(r) around the points ±re in the
JTC output plane (P4 in Fig. 4). Hence the correlation
between the object function and the complex reference
function is obtained.

6. INCOHERENT AND COHERENT SPATIAL
FILTERING
The general architecture of Fig. 4 is also suitable for a new
kind of spatial filtering scheme. This procedure is based
on the multiplication of the incoherent Fourier hologram
[relation (10)] by a filter and the performance of a coher-
ent reconstruction.

The output distribution of this system can be obtained
by substituting the proper parameters into Eq. (15). The

illumination of the input mask is completely incoherent;
therefore y(Ar) = 8(Ar). The angle between the planes
is 1800, and we have a single input mask, i.e., g, (r) =
g2 (-r) = g(r). In the spatial frequency plane the original
intensity distribution is multiplied by a filter H(fr), and it
is assumed that Ci(fr) = T[4d/f2]. Therefore Eq. (15)
becomes

c(r) = h(ir) * [28(r) + Ig(r 2 * 8(ir - dg)
+ Ig(-r)12 *8(i + dg)], (30)

where h(r) is the inverse FT of H(fr).
In principle, H(fr) could be any complex function, but,

as is the case in conventional coherent spatial filtering,
the implementation of such a function is quite difficult.
In this study we demonstrate the performance of the sys-
tem by using holographic encoding, as in Ref. 18 for coher-
ent illumination. A phase-only holographic filter' 9 to
recognize a positive object function, f(r) 2, in a pattern
recognition system is recorded in the FL as follows:
Centering the function f(-r) at a distance df from the
optical axis in the input plane of the FI (Fig. 4), we obtain
an intensity distribution in the spatial frequency domain
similar to I.(fr) of Eq. (23):

Ih(fr) = 2Ia + _Y f]F*( 2fr) + _Y ] (31)

where F(fr) is the FT of f(r)I 2. Ih(fr) is processed, elec-

tronically, according to the following threshold rule:

~fi = 1 if Ih(fr) Ž 2Ia
-1 otherwise

(32)

Thus H(fr) is a binary hologram that may be expanded in
a Fourier series as

n=3 2
H(fr) = > -(1)(n-1)/2 exp{ jn[2i7fr df + PF(fr)]},

n=-o,odd nir
(33)

where exp[jpOF(fr)] is the phase distribution of F(fr).
Placing this binary hologram at plane P2 of the system

in Fig. 4 results in the required correlation, as in Eq. (30).
However, this time h(i) is obtained by an inverse FT of
H(fr) from Eq. (33), which is a superposition of many spa-
tially separated terms. To avoid overlap among undesired
cross-correlation terms, we ensure that the displacement
df is perpendicular to dg, the displacement of the input
function Jg(r)12. The desired correlation distribution is
obtained from the (1,1) or the (-1, -1) diffraction order
around the point determined by the vector dh + df and
given by

s(r) = J{expjtF(fr)]} * Ig(r)l 2 . (34)

When the input g(r) contains objects of the form f (r), the
output distribution is characterized by narrow peaks lo-
cated at the corresponding positions. 9

In our experimental investigation we used the input dis-
tribution shown in Fig. 8(a). In the first experiment the
filter was prepared to identify the letter T. Therefore
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(a) (c)

(b) (d)
Fig. 8. (a) Input mask to the incoherent correlator. (b) Binary hologram used as the phase-only filter of the letter T. (c) Intensity dis-
tribution as recorded in plane P2 of Fig. 4 with the input mask of (a). (d) Correlation results of the incoherent correlator with a cross
section from right to left through the upper peak.

this letter was first situated at point (xf, 0) of the FI input
plane. The binary filter H(fr), which was obtained ac-
cording to the rule of Eq. (32), is presented in Fig. 8(b).
This filter is multiplied by the spectrogram of the four
letters that is shown in Fig. 8(c), and the product is trans-
formed by the coherent FT system. The output cross-
correlation results are presented in Fig. 8(d).

7. CONCLUSIONS

In this paper we introduced a class of electro-optical signal
processors that are capable of performing various opera-
tions by using coherent as well as spatially incoherent illu-
mination. In the most general case three independent
complex functions are involved in a degenerate case of
triple-correlation processing [Eq. (16)]. One of the func-
tions is always the normalized coherence function obtained
by a FT of the source intensity. Many of the existing
image processors can be shown to be special cases of this
general class, of which we demonstrated two new incoher-
ent correlators, for pattern recognition applications. Al-
though they are based on interferometric architectures,
these incoherent processors are not hindered by inter-
ferometric sensitivity to environmental noise and may
offer new directions in optical image processing.
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