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An iterative method for generating holograms on spatial light modulators is based on measuring the recon-
structed complex image and on-line correction of the hologram. Apart from recording complex amplitude dis-
tributions, the new procedure may become a useful tool for applications such as adaptive optics and

reconfigurable interconnection networks.

1. INTRODUCTION

Binary computer-generated holograms® (BCGH’s) are be-
coming essential components in optical signal processing
schemes. Apart from image reconstruction, these holo-
grams can serve as spatial filters, optical elements, and
the basic component in sophisticated interconnection net-
works.?2 The present paper deals with BCGH’s presented
on spatial light modulators (SLM’s), which provide real-
time variability. The enhanced flexibility of holograms
presented on SLM’s makes them suitable for applications
such as adaptive optical elements and reconfigurable
interconnects. ,

Many techniques for designing a BCGH are known.>*
These include the iterative computing of BCGH’s%® that
offers higher light efficiency and more accurate recon-
structed images.® The conventional procedure is to per-
form all the calculations on digital computers and use the
results for preparing the hologram.*® A recently pro-
posed method is to implement the iterative process directly
on a SLM, employing an electro-optic hybrid system.”
The advantage of this method is that it takes into account
the actual characteristics of the system. No physical ap-
proximations are needed during the calculations in a
computer, and the optical aberrations, the SLM phase dis-
tortions, and other system defects are automatically taken
into account. The electro-optic system also obviates
slow computer calculations, such as the Fourier transform
(FT), and hence the direct way becomes efficient when a
large number of pixels in the BCGH are considered.

This paper describes a new and sophisticated procedure
for the iterative generation of holograms on SLM’s.
Whereas in our previous study’ only the intensity distri-
bution was reconstructed, the present paper records and
reconstructs the complete complex amplitude distribution.
Although the basic principles were proposed in Ref. 7, the
actual implementation required some modifications and a
more advanced optimization algorithm. In the study re-
ported in Ref. 7 the BCGH was calculated by the direct
binary search (DBS) algorithm.> The DBS bypasses the
need for a FT every iteration, and thus it is efficient for
digital computer algorithms. However, the FT is not the
bottleneck of the electro-optic system, and thus the DBS
becomes unnecessary. In this paper we introduce an al-

0740-3232/92/071159-08$05.00

ternative algorithm that is faster and more efficient than
the DBS.

After a brief discussion of the background for this study
in Section 2, the theoretical analysis is given in Sec-
tions 3-5, and the optimization procedure is described in
Section 6. The experimental results are shown in
Section 7, and concluding remarks are given in Section 8.

2. GENERAL BACKGROUND

A generalized schematic of a hybrid system is shown as
Fig. 1. A BCGH is displayed on the SLM at the input
plane to a linear optical system. The SLM is illuminated
by a monochromatic plane wave, and the reconstructed
image is measured over the output plane by using a CCD
camera. Our goal is to find the BCGH that produces the
desired image in a given region of the output plane with a
minimal error. This BCGH has to be created directly, on
line, in the same optical system. Since this concept is ap-
plicable to any linear optical system the BCGH can be a
Fresnel hologram, a FT hologram, or any other kind of
hologram. To keep this paper within reasonable bounds
we consider mainly FT holograms.

The iterative process for generating the BCGH includes,
in general, the following steps. First, an initial BCGH is
displayed on the SLM, and the CCD camera detects the
intensity of the reconstructed wave front at the output
plane. The detected intensity distribution is compared
with a pattern stored in the computer memory with the
help of a cost function that quantifies the deviation from
the desired pattern. The value of the cost function is
computed and is used to make a decision and to change
the displayed BCGH for the next iteration. This process
proceeds, iteratively, until the cost function decreases
below some desired minimal value that indicates an ac-
ceptable error in the reconstruction.

If we look for a BCGH that yields only a desired inten-
sity distribution at the output, the above description is al-
most the entire story. There is only the need to define
the nature of the linear system, to pick the desired image,
and to find a reasonably efficient searching algorithm for
the iterative process. The process becomes much more
complicated, however, if the aim is to find a BCGH that
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Fig. 1. Experimental system. The pattern generated on the
SLM is transformed by the linear system and observed by
the CCD.

produces a desired complex amplitude distribution. Since
ordinary detectors are sensitive to the light intensity only,
we have to use some indirect method to measure the phase
distribution of the reconstructed image.

Suppose that the BCGH is designed to reconstruct the
complex amplitude f(x,y). We denote the SLM transmit-
tance by the binary function H(x,v) and the point-spread
function of the linear system by S(x,y, x, ), and the output
distribution of the system is given by

hx,y) = f f H(u,v)S(u,y x, y)dudo. @
The aim is to obtain, within a given region sl of the output
plane, an image f(x, y) as close as possible to f(x,y). For
this purpose, we may look for the minimum of the mean-
square error that serves as the cost function®:

e= f f |f(x, ) — vF(x, y)*dxdy, @)
A

where 7y is a real constant and
flx, ) = wix, yhix,y),
where

1 ifxed
0 otherwise

w(x,y) = { 3

Since the detector array can measure only the intensity
distribution that is proportional to |f(x, y)|%, the error of
Eq. (2) cannot be directly calculated from the measure-
ments. In Section 3 we review some modifications that
make the calculation of the complex amplitude distribu-
tion possible from the intensity measurements.

3. RECONSTRUCTION OF COMPLEX
AMPLITUDE DISTRIBUTIONS

A conventional procedure to obtain the complete informa-
tion of a complex amplitude from the intensity distribution
is to use interferometric techniques. In the present case
the distribution 2(x, y) may be superposed by a plane wave
such that the intensity distribution within the region o is
given by

Ta(x, 3 = A® + | f(x, »)|* + Alf(z, )|
X cos[xk sin 8 + &(x, y)], 4)
where % is the wave number of the illuminating light, 6 is

the angle between the k vector and the optic axis (it is as-
sumed, for simplicity, that the k vector has no component

Rosen et al.

in the y direction), A is the amplitude of the plane wave,
and @(x, y) is the phase distribution of f(x,y). [u(x,y) is
compared with a memory-stored function of the form

Li(x,y) = A% + [f(x, )|* + Alf(x, )|
X cos[x% sin 8 + o(x,y)]. (5)

The cost function, redefined for this case,

er= f f |La(x, ) — yla(x, )|?dxdy, (6)
&

can now be minimized. The complex amplitude distribu-
tion of the reconstructed image, f (x, ), is close to the de-
sired image, f(x, y), if all the parameters, 4, &, and 6, are
equal in both distributions I4(x, y) and I4(x, y).

Unfortunately, this interferometric procedure is quite
problematic. First, the angle 6 and the constant A have to
be known exactly and have to be stored in the computer
together with f(x,y). Second, the cost function of Eq. (6)
becomes sensitive to aberrations of the plane wave in addi-
tion to the difference between f(x,y) and f(x, y). Finally,
the notable drawback of the interferometric method is an
increased bandwidth of the measured signal I(x,y) as
compared with f(x, ), by a factor exceeding 2.

An alternative technique, based on two intensity mea-
surements (TIM), was proposed in Ref. 7. This method
does not suffer from the above-mentioned disadvantages.
In the TIM method, in addition to the measurement of the
intensity distribution, |f(x, y)|?, the intensity of the cross
correlation between the two functions f(x, y) and f(x, y) is
measured at the origin. This is the inner product between
the two functions. We will show that these two separate
intensity measurements are sufficient for calculating a
cost function that expresses the distance between a recon-
structed complex amplitude distribution and a desired
complex function.

The cost function of Eg. (2) can be rewritten in the form

e= fL|f(x,y)|2dxdy — 2y cos ¢ ij*(x, NF(x, y)dxdy

+y2 Llﬂx, »|dxdy, ™

where ¢ is the phase of the inner product between f(x, y)
and f(x,y). If we use the y proposed in Ref. 5 for mini-
mizing the error in Eq. (2),

cos ¢ jf fx, »fHx, y)dedy
o= - : ®
[ 1 preasay
A

we have

2
cos? ¢

”j (=, 9)f*(x, y)dxdy

e = fL |f(x, y)|?dxdy — ” |f(x, )| 2dxdy
o

©

The numerator of the second term contains the measured
inner product, while the denominator is an integration
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over the intensity distribution of f (x,5). Unfortunately
this cost function can be measured only for real functions
when it is known that ¢ is zero or m Nevertheless, the
two intensity measurements contain all the information
about the reconstructed image, and the only difficulty is
to find a proper cost function that can be measured.
Consider, for instance, the function
2

f L flx, ) F*(x, y)dxdy

e = fL|f(x, y|dxdy — (10)

f L |F(x, y)|*dxdy

From the Schwartz inequality we have that, for any pair of
complex functions, e, = 0 when and only when f(x, y) is
proportional to f(x, ¥); otherwise e, > 0. Moreover, e, be-
comes identical to e, of Eq. (9) when both f(x, y) and f(x, y)
are real. Thus this cost function is close to the mean-
square error for real functions and is reasonable for com-
plex functions too. Since the first term is always a
constant, the minimization of e, is identical to the minimi-
zation of
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f f |F(x, )|?dxdy
A

(1D

ey = . 5
|| fow e mazay
This is the cost function used for the present investigation.
Learning systems that implement the TIM method are
depicted in Figs. 2 and 3. To generate a FT hologram,
the two-channel linear system shown in Fig. 2 is suitable.
The hologram is to be generated on_the SLM, and one of
the channels is used to reconstruct f(x, ) in the region
on plane P;. The other channel constitutes a 4-f optical
correlator. If the function f*(—x,—y) is introduced in
plane P;, then in plane P; the correlation distribution be-
tween f (x,y) and f(x,y) is obtained. The value of their
inner product can be measured, while the other channel is
blocked, at the center of the subregion & where the peak
of the correlation function is usually obtained. The inte-
gral over the reconstructed image intensity at the sub-
region & is taken in plane P;, with the shutter (S) block-
ing the light coming from P, while leaving the plane-wave
illumination over the SLM. Note that there is no problem
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Fig. 2. Experimental system for calculating a Fourier hologram with a control on the complex distribution of the reconstructed image.

BS, beam splitter.
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Fig. 8. Schematic illustration of the system for calculating any kind of hologram. BS’s, beam splitters.
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of alignment between the input spatial spectrum and the
filter since the filter is adapted to the input spectrum dur-
ing the iterative process. If, for some reason, it is too
complicated to prepare f*(—x,—y) in the input plane, it
may be replaced by a simpler function, as is shown in
Section 4.

After the optimal BCGH is obtained, only one channel
needs to be retained. If the hologram is used for infor-
mation storage we need only the reconstruction channel
for information retrieval. On the other hand, if the aim
is the synthesis of a F'T hologram for spatial filtering, the
correlation channel should be kept for signal processing
operations.

When the desired hologram is not a FT hologram but,
e.g., a Fresnel hologram, we usually need a more compli-
cated system, with that of Fig. 3 being one possibility. In
this architecture too, the hologram is displayed on an elec-
trically addressed SLM (E-SLM) and illuminated by a
plane wave. The intensity distribution of the recon-
structed image is measured at plane P, after the wave
front passes from the hologram through the linear system.
The reconstructed image, f(x, y), is also projected onto
plane P, where it is joined by f(x, ) to be jointly Fourier
transformed in a joint transform correlator.® The joint
spectrum is projected onto the optically addressed SLM
(O-SLM). Illuminating the O-SLM from the readout side
by a plane wave yields the correlation distribution at plane
P; around a point that is displaced from the origin by a
distance equal to the gap between f(x,y) and f(x,y) in
plane P,. The value of the correlation peak and the total
energy distribution over region &« in plane P; are suffi-
cient for calculating the cost function e, of Eq. (11). To
keep the extent of this study reasonable, in what follows
we consider only the architecture of Fig. 2 for the genera-
tion of a FT hologram.

4. PROCEDURE GENERALIZATION

In some cases it may be inconvenient or even impossible to
place the function f*(—x, —y) into the input plane of the
correlation channel. For example, if f(x, y) represents a
positive gray-level image, it cannot easily be displayed lin-
early on a transparency or a SLM. To treat such a situ-
ation we may generalize the procedure by replacing f*(—x,
—y) with a more convenient function g*(-x,-y). If we
are to do so, g(x, y) must satisfy the following constraints:

arg{g(x, y)} = arg{f(x, )},
glx,y) #0, for all x,y where f(x,y) # 0, (12)

i.e., the phase distributions of g(x, y) and f(x, y) are equal.
When the inner product between g(x,y) and f(x, ) is
maximized and the differences between |f(x, »|* and
|f(x, »)|? are minimized, then f(x,y) converges to f(x, y).
This statement is acceptable since the maximum value of
the inner product between f(x, ¥) and g(x, y) is obtained if
and only if the phase distributions of these two functions
are equal and thus equal to that of f(x,y). The conver-
gence of the phase distribution is guaranteed from the
correlation channel, while the convergence of the magni-
tude distribution is considered directly by the comparison
of |f(x,y)|? with |f(x,y)|? Although the phase and the
magnitude are treated separately, taking both of them
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guarantees the converge of f(x, 9 to f(x,y). The cost
function that represents the above discussion can be writ-
ten in the form

2
fL ‘If(x,y)lz-vlf(x,y)lz dxdy

13)

€g P

jjdf(x» yg*(x, y)dxdy

The numerator is the mean-squared error between the re-
constructed intensity distribution and the desired image
intensity, while the denominator expresses the intensity of
the inner product. As above, this cost function contains
the two measurements, and its minimization leads to the
convergence of f(x,y) toward f(x,y). This constitutes a
generalization of the previous procedure since the special
case of g(x,y) = f(x, y) satisfies the conditions of expres-
sions (12), and therefore Eq. (13) is a suitable cost function
for the case treated in Section 3.

The advantage of using this generalized procedure can
be demonstrated with the example indicated above, a posi-
tive gray-level image. For this case choosing a simple
function such as g(x, y) = w(x, ) satisfies the conditions
of expressions (12). Thus minimization of the cost func-
tion of Eq. (13) by using just this simple window function
yields the desired BCGH.

5. SINGLE-CHANNEL OPERATION

In this section we address the interesting question of what
happens when only one of the two channels is operated.
The answer is obvious when the intensity distribution
channel alone is considered. If the distribution of
|F(x,y)|? is detected and compared with that of |f(x, y)|?
by using the cost function of Eq. (6), the reconstruction of
the final BCGH is similar to having the minimum mean-
square error to |f(x, y)|%

Less obvious is what is obtained if only the output of the
correlation channel is measured during the process. The
answer depends on which cost function is used. Let
f(x, ) be the reconstructed image from the BCGH, and let
g*(—x,—23) be the input function of the correlation chan-
nel. If we define a cost function by

-2

” Flx, g*tx, ydxdy| (14)
o

ép =

the minimum error is achieved when the inner product is
in its maximal value that is obtained for

Flu,v) = Gu,v)/|Gw,v)|» (15)

where F(x,v) and G(u,v) are the FT’s of Flx, and g(x, y),
respectively. The hologram converges such that the FT
of the reconstructed image is similar to the phase distri-
bution of the F'T of the input function g(x, ). This proce-
dure can thus be used to generate a phase-only filter® for
pattern recognition purposes.

A different cost function,

§

e; =

2
dx'dy’

ff f(x, yg*x — x,y — y)dxdy
Fl

» (16)

2

f f ﬂf‘ (x, y)g*(x, y)dxdy
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attains its minimum'® when
F(u,v) = [G(u,v)] ™ an

The hologram in this case represents the inverse filter of
G(u,v). Note that in this special case, in addition to the
measurement of the inner product, the denominator of e;,
the whole energy of the correlation distribution appears in
the numerator.

In conclusion, operation with the correlation channel
alone can be useful for calculating various kinds of spatial
filters for pattern recognition.'''? However, the above
analysis indicates that, when a discriminant filter for
classification is needed, we may have to present the pat-
terns of a training set one at a time to make the measure-
ment of the cost function possible. Otherwise the
generated filter may be matched to a specific spatial com-
bination of objects rather than to the objects themselves.

6. SEARCHING PROCEDURE

A searching algorithm to implement the procedures dis-
cussed above must include two major aspects. First, it
must have an acceptance criterion for each iteration. The
second aspect is the operation to be done on the BCGH for
the next iteration. In the early algorithm of the DBS,® a
single pixel was changed in every iteration. The policy
was to accept every result that decreased the error. If the
last trial reduced the error, another pixel of the BCGH was
changed for the next iteration. Otherwise, the changed
pixel was converted back, and only then was another pixel
inverted. This algorithm eliminates the need for per-
forming the FT for every iteration. However, it is a slow
searching algorithm, and it does not make any use of the
information buried in the trials that fail.

In the experiment of Ref. 7 the algorithm was the DBS
with a modified version of the acceptance policy. The
problems there were a high noise level and a low reliability
of the detected results. In the present algorithm we in-
tend to use all the available information from the mea-
surements, including those results that increase the cost
function.

The problem here can be defined as one of binary non-
linear unconstrained optimization, which means that the
minimum of the cost function e(x) [defined in Eq. (11), for
instance] has to be found with x being a binary vector.
We would like to adapt concepts from the continuous non-
linear unconstrained optimization problem but without
converting the binary vector to continuous variables at
every step. This would be quite inefficient for dealing
with a 128 X 128 binary array, as was the case in our ex-
periments. The adapted concept in our algorithm got its
inspiration from the Nelder—-Mead algorithm®® for continu-
ous variables. It can be summarized as follows: Pro-
gress along the course of reduction in the cost function
until the cost function increases, and then change course
to one with the highest probability of further reduction.

To implement this principle we have to know, at every
stage, how much and to where we proceed. That is, we
have to define a distance between two vectors and some-
thing that indicates a direction between vectors. The dis-
tance issue can be resolved by using the Hamming
distance, as it is well suited for binary variables. The
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problem of defining the directions among various vectors
is more difficult since we have not found a definition that
satisfies the Euclidean rules. Converting the binary vari-
ables to their decimal values is possible but complicated
and has no physical meaning.

The algorithm starts with a group G of M(M = 1) ran-
domly chosen holograms stored in the computer memory.
Every hologram from this group is situated at some Ham-
ming distance from the others, and each one is displayed
on the SLM in the initial steps of the procedure. As a
result of every measurement, each hologram receives a
mark according to the value of its cost function.

The searching procedure begins with a randomly chosen
hologram denoted by x,. Every pixel in xo may be changed
according to a probability distribution determined by the
different weights of the M holograms and another weight
W41 that indicates the preference of the pixels to be un-
changed. The error function is calculated for the actual
hologram x; by displaying it on the SLM, where the index i
indicates the number of the measurement during the pro-
cess. If the cost function is less than that of one of G, the
new hologram becomes a member of G, and we assign new
grades to all the holograms in G. The hologram with the
highest error becomes the x;,, tested hologram. The trial
is repeated while x;4; is modified according to the same
partition of probability weights. If the error increases,
group G is retained, but the partition of the weights is
altered such that the probability weights increase more
toward the holograms with the lowest error, and the
probability of the pixel to be unchanged decreases. The
fact that the x; hologram did not improve the cost function
was included in the determination of the next hologram to
be considered for the subsequent iteration.

Our algorithm contained three additional parameters.
If after K trials the cost function for x; was not improved,
then a new x;,; was determined randomly, and the parti-
tion of the probability weights was reset to their starting
point. If during the process the distance between two
holograms of G decreased below d pixels, then the best
graded hologram was retained while the rest were modi-
fied by a random perturbation imposed on p percent of
their pixels.

In our experiments group G contained two holograms.
The different parameters were tried many times with dif-
ferent values, and the best results were obtained with the
selections of K = 40, d = 5, and p = 2. The algorithm
was stopped after no significant improvement was ob-
served for a long time. On the average it was stopped
after a total of 10,000 measurements, which, for a matrix
of 128 X 128, is less than a single-scan DBS process.
Accordingly and compared with other results,’”’ this
algorithm is faster than the DBS by at least 1 order of
magnitude.

7. EXPERIMENTAL RESULTS

All the experiments reported here were performed with
the system of Fig. 1 or 2 to generate a FT hologram. The
linear system was a thin lens of focal length f located be-
tween two identical free spaces of length £ Thus the lin-
ear system constituted half the correlation channel, and
the spatial sharing of two channels’ was replaced by time
sharing, as shown in Fig. 2. This configuration is also
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mistakes because the process reduces the error in the ac-
tual subarea . The convergence of the process in a
sequence of reconstructed images within the region # is
shown in Fig. 6 for two different examples. The pictures
were taken every 500 iterations for the letter F and every
1000 iterations for the airplane. It appears that the main

Fig. 4. Final BCGH of the reconstructed intensity distribution
image shown in Fig. 5.

(b)
Fig. 6. Two examples of sequences of reconstructed images with
random phase distribution. The numbers of iterations between
every picture are (a) 500 and (b) 1000.

Fig. 5. Reconstructed image of the letter F, containing magni-
tude information only.

more economic in components. The SLM used here was a

magneto-optical SLM with 128 X 128 pixels controlled by o
a personal computer enhanced with a CUE-2" image- 0.16
processing package. 0.15
The first experiment used a single channel with only 0 141
image intensity measurements starting with a random 013
binary distribution. The iterative process was stopped o1
after 10,000 measurements for the letter F and 20,000 ’
measurements for the airplane after no significant im- en
provements were observed for e;, defined in Eq. (6). The 0.10
final hologram is shown in Fig. 4, with its diffraction pat- 0.091
tern over plane P, shown in Fig. 5. The rectangle drawn 0.08 1
around the letter F indicates the area si. Note that this 0 071
pattern is not perfectly symmetric as would be expected 0.06 1
from the F'T of a binary function. This may be caused by 0. 05

T L T T 1 L LI | T T

slight phase distortions over the SLM and a displacement o w0 20 30 40 50 60 70 80 90 100 110

of the reconstructed plane from the exact focal plane of Number of lterations (x100)
the FT lens. The end result, however, is not affected, Fig. 7. Error, defined in Eq. (6), versus the number of iterations.
since the hologram corrects any distortion or calibration The reconstructed images are shown in Fig. 6(a).
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Fig. 8. Final BCGH of the reconstructed complex amplitude dis-
tribution shown in Fig. 9.

8y
he 8,9 0

Fig. 9. Reconstructed image of the letter F containing all the
complex information.

il et ."'l;:)- 3 1.5 &

progress in the convergence was over in the first 4000 it-
erations. This conclusion is confirmed by the curve of
the cost function versus the number of iterations, shown
in Fig. 7, for the example of the letter F.

In the second experiment the complete system of two
channels (Fig. 2) was utilized for generating a FT holo-
gram of the letter F' with constant phase distribution.
The results are shown in Figs. 8-11. The final recon-
structed image is shown in Fig. 9, while the correlation
results are shown in Fig. 10. In the upper left-hand re-
gion it is the correlation distribution between f(x,y) and
f(x, y), while in the lower right-hand region it is the convo-
lution distribution between them. The convolution is in
fact the correlation between the input object and the twin
reconstructed image, shown at the lower right-hand side
of Fig. 9.

When the reconstructed images of Figs. 9 and 5 are
compared, we notice that the overall quality of the image
is reduced for the two-channel experiment. This is rea-
sonable since it is more difficult to satisfy two constraints
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than just one. Nevertheless, the strongly speckled char-
acter of the pattern (the image of F') produced in the single
channel (Fig. 5) is significantly reduced in the recon-
structed image of the double-channel case (Fig. 9). This
observation indicates that the phase distribution in the
double-channel process is much closer to the required uni-
form distribution than that obtained by a single channel.

The process was also repeated with only the correlation
channel. The cost function defined in Eq. (14) was used
in this experiment, and the results are shown in Figs. 12
and 13. Only the peak of the inner product, the correla-
tion shown in the upper part of Fig. 12, was measured and
maximized during the process. It is quite difficult to rec-
ognize the original letter F in the image shown in Fig. 13.
This reflects the fact that for a good cross correlation the
phase distribution of F(u,v) is more important than the
amplitude distribution.

8. DISCUSSION

The TIM method is a kind of compromise between con-
ventional photographic optical holography and classical

Fig. 10. Output distribution of the correlation channel.

Fig. 11. Sequence of reconstructed images from two-channel
process. The number of iterations between the pictures is 2000.
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Fig. 12. Final output distribution of the correlation channel
when it was measured alone, after 25,000 iterations.

Fig. 13. Reconstructed object from the hologram that was cre-
ated by maximization of the inner product value alone.

computer-generated holograms. The flexibility of digital
computers enables one to record a hologram that repre-
sents any complex function that does not necessarily cor-
respond to a real object. Optical photography, on the
other hand, relates only to physical objects and is fast and
direct without mathematical approximations. The TIM
method tries to combine these features. The recon-
structed image from the BCGH, generated by the TIM, is
more accurate than the ordinary BCGH, since all the pa-
rameters of the optical system are accounted for during
the fabrication. Part of the flexibility is lost since the
process is connected to an actual input object. However,
the generalization introduced in Section 4 and the single-
correlation-channel operation extend the possibilities be-
yond what an input object permits in optical photography.
Moreover, any object stored in the computer memory may
serve as the reference object to be reconstructed. A typi-
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cal and useful example of such a hypothetical object is an
interconnection scheme when the hologram is used for a
reconfigurable interconnection array.

The simple idea of measuring the phase distribution of
an object by noninterferometric methods may have sig-
nificant meaning in the field of holography beyond the
BCGH issue. This idea may lead, with improvements in
SLM technology, to a hologram recording process without
the need for coherent interfering waves. Our initial ex-
periments indicate that with a SLM capable of phase and
amplitude modulation and a fast computer we may record
a hologram on the SLM without carrier wave coding. On
the one hand, the intensity of an object is recorded di-
rectly, and on the other hand, the phase transparency of
the SLM is changed until the inner product between the
object and the SLM transparency obtains its maximum
value. The main advantage of such an arrangement is
that the bandwidths of the reconstructed distributions
from the hologram and the photographed object are equal.
The reconstructed image is carried on the zero-order dif-
fraction, and there are no higher diffraction orders. Al-
though we do not argue that such a scheme can replace
classic holography, it may be of significant value in vari-
ous applications.
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