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Three-dimensional (3D) object tomography from a two-dimensional recorded hologram is a process of high-
dimensional data inference from undersampled data. As such, recently, techniques developed in the field of com-
pressive sensing and sparse representation have been applied for this task. While many applications of compressive
sensing for tomography from digital holograms have been demonstrated in the past few years, the fundamental
limits involved have not yet been addressed. We formulate the guarantees for compressive sensing-based recovery
of 3D objects and show their relation to the physical attributes of the recording setup. © 2013 Optical Society of

America
OCIS codes:

(090.1995) Digital holography; (070.0070) Fourier optics and signal processing; (100.3190) Inverse

problems; (100.6890) Three-dimensional image processing; (100.6950) Tomographic image processing; (100.1830)

Deconvolution.
http://dx.doi.org/10.1364/0L.38.002509

Numerical reconstruction obtained by digitally focusing
on different 3D object depth planes is one of the biggest
advantages of digital holography, enabling a single-shot
object acquisition rather than physically focusing on
each plane separately. The hologram records a 2D wave
field of the 3D object, making the reconstruction of the
3D object data from its 2D projection inherently ill posed.
Consequently, often the reconstructed in-focus plane
image is distorted. In recent years, compressive sensing
was successfully combined with digital holography (see
[1] and references therein). One of the applications is
reconstruction of a 3D object tomograph from its single
2D hologram, initially demonstrated in 2009 [2,3]. This
problem was approached by formulating the object
reconstruction as a compressive sensing [4,5] inverse
problem. The word “compressive” in this sense refers
to the fact that the holographic sensing process encodes
and compresses 3D object information into 2D holo-
graphic measurements.

Despite vast applicative efforts in recent years, in pub-
lications, such as [1-3,6-11], to name a few, there has
been little theoretical work investigating the fundamental
limits of 3D object reconstruction from its 2D hologram.
The important question is, how accurately may we infer
the 3D object points from our set of 2D measurements,
regardless of the specific recovery method being used?
In this Letter, reconstruction accuracy is formulated by
using resolution constraints. For the sake of complete-
ness, we first give a short background on compressive
sensing before deriving the main result. Generally, the
object sensing mechanism is expressed using a matrix-
vector multiplication:

g = Of, ey

where f € CV*! is the sparse object, ® € C¥*V is the
sensing operator, and g € C¥*! represents the measure-
ments, where the number of measurements, M, is smaller
than the number of object pixels, N. In order to guarantee
accurate reconstruction, compressive sensing theory
requires the object to have a sparse representation in
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some transform domain, i.e., the vector f € C¥*! needs
to have only S meaningful entries (S-sparse signal).
The second essential requirement applies to the sensing
mechanism, and it can be quantified by using the coher-
ence parameter, given by

U= H]}ill)d((bk»¢z)|/{||¢k||2||¢l||2}’ 2
where ¢, denotes the Ith column vector of ®@ and (-) is the
vectors’ inner product. The coherence parameter is
bounded by /(N - M)/[M(N - 1)] < u < 1. Compressive
sensing theory guarantees accurate object recovery by
evoking a convex optimization procedure, with the num-
ber of accurately reconstructed nonzero terms obeying [5]

S <051+ 1/u). 3

In order to evaluate the performance of the compres-
sive holography framework, we wish to quantify its co-
herence parameter, which is derived from the system’s
forward model. We assume this model obeys the Born
approximation [2]. A possible model of the acquisition
geometry is illustrated in Fig. 1. A monochromatic plane
wave, with wavelength 4, illuminates a 3D object volume.
The object volume is discretized into N gpjecy = N, x Ny, X
N, voxels, with voxel dimensions of Ax x Ay x Az, where
the object length is L, = N, x Az. The 3D object wave
field can be recorded by standard holography methods
on a CCD [12].

In the numerical near field Fresnel approximation [1],
Axccop = Ax, AYcep = Ay, and the number of pixels is
Npolo = N, xN,. Let us look at the following discrete
forward model, relating the 3D object, f, to its recorded
2D field, g:

NZ'
g(ulAx, vAy) = Z F 5 11) {e—jmerz[(Aul.m)2 +(Avyn)?] ej%”rAz
r=1

x Faplf (0Ax, qAy; rAz)]}, @
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Fig. 1. Schematic description of the framework. A plane wave
illuminating a volume (shaded gray). The wavefront scattered
from the different particles is holographically recorded on a
CCD.
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where Fop is the discrete 2D Fourier transform. For no-
tation convenience, we further assume that Ax = Ay = A

and N, =N, = VM; therefore the discrete indices are
0<m, m, p, qo u, v<~M-1, and Av, = Av, =
1/(VMA).

Equation (4) can be written as a matrix-vector multi-

plication by concatenation of N, matrices, H,x,
r € [1,N,], each one of size v/M x ~/M:
g = [Hys; --~'HN allfaz: --~§fNZAz] = @f,
rAz szQrAszD (5)

where the matrix Q,.,, is a diagonal matrix that accounts
for the quadratic phase terms of Eq. (4), and
[faz;...;fn, 2] is a lexicographical representation of the
3D object.

A standard way to obtain the coherence parameter
from Eq (2) is by calculating the Gram matrix
G = 0D, G € CWxMxNxM) (where D is the column
normalization of @, and ®* is the Hermitian conjugate
of ®); then y is the maximal off-diagonal absolute value
[5]. Because of the construction of @ by concatenation
[Eq. ()], the Gram matrix has a structured form as
demonstrated in Fig. 2. In Fig. 2, a Gram matrix is shown
for the case where the volume is divided into N, = 3
equally spaced planes. It can be seen that the Gram
matrix is built of N,xN, =9 subblocks, each one
representing the correlation between the point spread

functions of two depth planes. Since the normalized H, Az
are orthonormal, the corresponding diagonal subblocks

GF* = H}\,Hya, =1, i.e., all are zero except the diago-
nal. This means that, 1n order to find the coherence
parameter, we should look for it in any off-diagonal

block, G¥! = Hj,,H,,, which is equal to (for k # )
Hia Hix = Foh QinsFon Fop QuazFop = F > QuryazFop-
(©6)

Therefore the coherence parameter is given by [12,13]
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Fig. 2. Gram matrix for the 3D-2D forward Fresnel sensing
operator. The partition to nine submatrices, marked by dashed
lines, shows the coherence between the point spread function
of two different planes.

Substituting Eq. (7) into Eq. (3), we find that the
number of object features that can be accurately recon-
structed is bounded by

S < 0.5(1 + AAz/A2). ©)

While the coherence parameter used in Eq. (8) is
based on a worst-case analysis and is considered rather
pessimistic [14], it gives an evaluation and a trend for
actual performance results, regardless of the recon-
struction method or algorithm being used. Equation (8)
is useful to reveal the dependence of successful object
reconstruction on the system parameters. The result in
Eq. (8) predicts that, by increasing the wavelength or
using coarser axial resolution, the number of object fea-
tures that can be reconstructed accurately is increased.
Another way to interpret these results is noticing
that u ~ N,A%/(]L,). This expression concurs with the
mathematical intuition that, as the ratio of the number
of unknowns to the number of equations, which is N,
increases, the larger p becomes, and fewer features,
S, can be accurately reconstructed. From a physical
perspective, the coherence parameter measures the
maximum correlation between any two point spread
functions. This corresponds to the correlation between
two object points having the same lateral position,
but located in two adjacent planes. We also note that
the coherence parameter is lower bounded by
VN, -M)/[M(MN, - 1)] ~ 1/+/M, ie., by the square
root of the number of detector pixels.

By loosening the requirement on accurate
reconstruction and allowing some degree of error, we
obtain results that are more practical, while obeying the
trend predicted from Eq. (8). This is demonstrated in the
following numerical experiment: a volume of length
L, = 316 pm, randomly populated with .S identical point
particles (particle size A =5 pm) is illuminated by a
plane wave with a wavelength of 4 = 633 nm. The detec-
tor plane is positioned 1 mm from the volume and is




SIM

2 3 4 5 6 7 8 9 10

N,

Fig. 3. Simulation results showing the normalized number of
reconstructed 3D object’s particles (MSE < 10-%) as a function
of number of objects planes, for a constant volume length,
L., given a sensor with M pixels. The theoretical exact
reconstruction guarantee according to Eq. (8) is placed in the
inset.

composed of 64 x 64 pixels with pitch of A =5 pm.
The object’s volume 2D wave field is acquired, using
phase-shifting holography [12]. The 3D object is then re-
constructed by using the two-step iterative shrinkage/
thresholding (TwIST) solver [15], solving

f= argfminllg - @f|l + 7||f]l;. ®

The first term in Eq. (9) represents the data fidelity, || - ||,
is the £)-norm, and 7 is a regularization parameter. We
have limited the run of the TwIST solver to 1,000 itera-
tions. For each simulation instance the volume was
divided to N, € [2:10] planes. For each volume division
we increase the number of particles in the volume and
solve Eg. (9). The number of particles continues to in-
crease till the reconstruction accuracy, quantified by the
mean-square error (MSE), becomes larger than 108, The
simulation was repeated 10 times, and the result, shown
in Fig. 3, is the mean of the different simulation instances.
The shaded area denotes region of accurate (MES < 10-%)
3D object tomography reconstruction from its 2D holo-
gram. From Fig. 3, we notice that, as the axial resolution
becomes finer, fewer particles can be reconstructed,
which is expected from the analysis. The quantity S/M
in Fig. 3 represents the ratio between the number of
recovered particles to the number of detector pixels. In
the limit of N, = 1 the ratio S/M = 1, meaning that the
maximum recoverable particles equals the number of
CCD pixels, as expected when a 2D object reconstruction
is carried out from its 2D wave field. For 3D objects, the
number of recoverable particles is inversely proportional
to the number of depth slices, N.,.

The results from the numerical experiment can be
also interpreted as a superresolving capability of the
framework, meaning that if we have a small number of
features, S, we can reconstruct an object with a longi-
tudinal resolution Az, which is improved compared with
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the classical resolution limit Az ~ 4A%/) = 158 pm [2].
When working in the near-field Fresnel approximation,
i.e., when the entire diffraction pattern is essentially
captured by the detector, the longitudinal resolution
Az depends on the object’s feature size, A [2]. This longi-
tudinal resolution is the minimal detail that can be recov-
ered by any reconstruction algorithm that does not take
into account a priori knowledge, such as the object’s
sparsity. Hence, the simulation demonstrates that this
limitation can be relaxed in practice when applying
the compressive sensing framework. In fact, even the
pessimistic estimation of the coherence parameter [14]
predicts that when we need to resolve only two S = 2
identical particles, lying in two adjacent planes, we get
from Eq. (8) Az = 3A2/1, which is 33% superior to
the classical limit. Our simulation has shown that a 3D
object volume with about 50 identical particles can be
reconstructed with a longitudinal accuracy of L,/10 =
31.6 pm, which is 5 times finer the than the fundamental
limitations.

To conclude, we have formulated exact guarantees
for 3D object tomography recovery from its 2D captured
diffracted field when using the compressive sensing
framework. The result shows that a digital hologram can
indeed “compress” a 3D object with S degrees of free-
dom, where the number of degrees of freedom depends
on the sensor’s resolution, the axial resolution of the
object. and the illuminating wavelength.
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