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Abstract: Multiple view projection holography is a method to obtain a 
digital hologram by recording different views of a 3D scene with a 
conventional digital camera. Those views are digitally manipulated in order 
to create the digital hologram. The method requires a simple setup and 
operates under white light illuminating conditions. The multiple views are 
often generated by a camera translation, which usually involves a scanning 
effort. In this work we apply a compressive sensing approach to the 
multiple view projection holography acquisition process and demonstrate 
that the 3D scene can be accurately reconstructed from the highly 
subsampled generated Fourier hologram. It is also shown that the 
compressive sensing approach, combined with an appropriate system 
model, yields improved sectioning of the planes of different depths. 
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1. Introduction 

Holography is a classical method [ 1] for recording a three dimensional information of a 
scene. Most of the times a hologram is acquired by using high coherence and high powered 
sources, such as lasers, in order to create the necessary waves interference. When 
implementing coherent light holography, we require both thermal and mechanical stability of 
the optical setup. All of these factors often confine holography recording to the laboratory. 
Thus, an ongoing effort is being made for developing incoherent illumination holography 
recording process [ 2]. We may name a few implementation techniques, such as multiple view 
projections created either from a translating camera [ 3- 7] or a lenslet array [ 8, 9], optical 
scanning holography [ 10], and the Fresnel incoherent correlation holography (FINCH) [ 11]. 

In the present work, we concentrate on the multiple view projection (MVP) holography 
technique. The acquisition process uses spatially and temporally incoherent “white” light, 
thus avoiding many of the drawbacks of traditional holographic recording applications. Any 
ordinary digital camera may be used as a recording device. The camera is usually translated, 
and during its movement it captures many views of the same scene, from different angles. 
Each one of these intensity images is a projection of the scene on the CCD plane [2]. Then, 
the different projections are used to synthesize a digital hologram. One of the drawbacks of 
this MVP method is that it requires a significant scanning effort. For instance, in order to 
produce a 256×256 pixels hologram, 256×256=65,536 projections should be acquired. A 
lenslet array can be employed [ 8, 9] to remedy the scanning effort. However, this solution 
suffers from low resolving power of the optical system, which limits the quality of the 
reconstruction of the holograms. In [ 6] the scanning effort has been reduced by recording 
only a small number of the projections and synthesizing the rest using a view synthesis stereo 
vision algorithm. This technique encounters some difficulties in handling several scenes and 
needs some changes in the hologram generation process. 

In this undertaking we adopt the compressive sensing (CS) approach in order to reduce 
dramatically the scanning effort of the acquisition step of the MVP holography. It is 
demonstrated that the three dimensional (3D) scene can be reconstructed accurately by using 
a mere fraction of the projections. Conventionally, the 3D scene is reconstructed plane by 
plane, i.e., a forward 2D-2D model relating each object 2D depth plane to the 2D hologram. 
However, we show that by utilizing a 3D-2D forward propagation model relating the entire 
object cube to the hologram plane, we can further use the sparsity of the information in order 
to obtain improved sectioning of the scene. As a result, a white light tomography from the 
reduced number of perspective projections of the scene is demonstrated. Therefore, a highly 
compact sensing process and representation of the scene is achieved. 
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We also note that one of the advantages of using multiple view approach is a higher axial 
resolution, compared with a single aperture holographic / imaging system. So, by applying CS 
to MVP holography the inherent axial resolution gain of MVP holography is accomplished by 
reduced number of projections, compared with regular multi-aperture imaging systems. It also 
should be mentioned that the proposed approaches do not require any hardware change at the 
sensing system level. The entire complexity is transferred to the decoder. 

The current paper is organized as follows: section 2 deals briefly with the MVP technique; 
section 3 provides a short background on CS and applies it to a 2D-2D reconstruction 
problem. By doing so, we show how CS can help us to reduce significantly the scanning 
effort, storage and bandwidth requirements of the MVP hologram. To prove our method, 
simulation and experimental results are shown. In section 4, we apply a slightly different 
approach, employing a 3D-2D forward propagation model in order to demonstrate a highly 
efficient tomographic sectioning of the white light illuminated 3D scene, while keeping a 
highly compact representation of the scene. Conclusion is presented in section 5. 

2. Multiple view projection holography 

The process of obtaining a digital hologram using the MVP method can be divided into 
optical and digital stages. In the optical stage, we translate a conventional digital camera 
across a scene, and during its movement we record different perspectives of the 3D scene. 
Each perspective of the scene can be characterized by a pair of angles ( , )m n  . Let us denote 

the mn-th projection by ( , )mn p pp x y , where xp,yp are the coordinates in the projection domain. 

In the digital stage each acquired projection is multiplied by a complex phase function, 

  exp 2 sin sin  mn p m p nf j b x y   , where b is some real constant. The function of b is to 

allow the accurate reconstruction of a scene [ 3,4]. By integrating (digital summation) the 

product of mnp  and mnf , as the following: ( , ) ( , )  mn p p mn p ph m n p x y f dx dy , we obtain a 

complex scalar for every projection ( , )m n  . It can be shown [4] that h(m,n) represents a 

Fourier hologram. Using similar techniques, other types of holograms also can be obtained 
[ 2, 7]. 

If we perform a Fourier transform on h(m,n), we will get a reconstruction which 
corresponds only to z=0 plane of the scene. Details of the other planes will be out of focus. In 
order to reconstruct other planes, we should multiply the hologram by a quadratic phase 
function, which corresponds to zi plane. This is formulated by the following equation: 

     1 2 2( , ) , exp ,      i x y i x yu x y h j z      (1) 

where ui is the reconstructed plane, υx,υy indicate spatial frequencies, λ denotes the central 
wavelength and  repesents the Fourier transform. Since the hologram synthesis and 
reconstruction is performed digitally, in the following expressions we denote all the 
reconstruction operators in discrete form. Therefore, Eq. (1) should be rewritten as the 
following expression: 

     22
( , ) ( , ) exp exp 2 ,i i x y

m n x y

mp nq
u p q h m n j z m n j

N N
   

                   
  (2a) 

 2

1

-
,u F Q h

i
i z

 (2b) 

where Nx and Ny are the number of pixels in the x and y directions, respectively. From now 
on, we will assume that Nx = Ny = N. Equation (2b) is simply a matrix-vector representation 
of (2a), where ui is a lexicographically arranged 2 1N   1D vector representation of the 
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corresponding object plane. Let F be N N , 1D discrete Fourier transform matrix, whose 

entries are 2 /
,

 j mp N
m pF e  , consequently  F F F  is the 2 2N N , 2D discrete Fourier 

transform matrix, where   is the Kronecker product [ 12]. F1 symbolizes inverse (also the 

complex conjugate) of F. The matrix 2-
Q

iz
 is an 2 2N N  diagonal matrix with the 

appropriate quadratic phase elements along its diagonal. It also may be stated that in the MVP 
holography setup, the hologram size 2 x yN N N corresponds to the number of acquired 

projections. 
Thus, it can be inferred from this section that MVP holography encodes the 3D scene in a 

form of a Fourier hologram, permitting its digital reconstruction using a straightforward 
numerical FFT based back propagation. 

3. Compressive sensing approach for reducing the number of projections 

3.1 Basics of compressive sensing 

Compressive sensing [ 13, 14] was established as a sensing paradigm in recent years. The CS 
mechanism seeks to capture the most essential signal information with the smallest number of 
measurements, i.e., to minimize the collection of redundant data in the acquisition step. Based 
on this relatively new theory, many new works have already sprung up in the field of 
compressive imaging [ 15- 21]. Compressive sensing relies on the assumption that the signal 
we want to acquire has a sparse representation in some arbitrary (known) basis. Practically, 
CS suggests that a signal can be reconstructed only from M=O(KlogN) randomly chosen 
samples in Fourier space, where K is the number of nonzero elements in the signal under an 
arbitrary sparsifying operator (e.g. Haar wavelet, total-variation), and N2 is the total number 
of object pixels [ 14]. The reconstruction is carried out by applying an algorithm solving an 1 

norm minimization problem. Similar results for other (non-Fourier) spaces also exist, but our 
interest in Fourier space comes from the fact that the present MVP method encodes the 
scene's data in Fourier space. 

3.2 Compressive sampling multiple view projection holography 

In this subsection, the reconstruction problem of different object planes from a subsampled 
Fourier hologram is formulated. As it has been explained in section 2, each value of the 
synthesized Fourier hologram, h(m,n), corresponds to a captured projection of the scene. This 
means that in order to reconstruct accurately the different planes of the scene only 2KlogN 
projections (Fourier samples) of the scene are needed. By doing so, we create a digital 
subsampled Fourier hologram with a fraction of the pixels and without any modification of 
the sensing hardware. We designate the subsampled Fourier hologram as hM, or in its vector 
form as hM , where M is the number of samples (projections). In order to reconstruct an 
object plane ui at distance zi from z=0 plane, given the subsampled Fourier hologram, hM, we 
solve the following equation: 

 2
i 1-λ z

2

2
min ,

   
 

u FQ h Ψ uM
i i i  (3) 

where γ is a regularization parameter which controls the ratio between the data fit and the 
sparsity level, ||.||p is the p-norm and Ψi is an operator which promotes the sparsest 

representation for the plane ui, such as Haar wavelet or total variation (TV). The sparsifying 
basis may be the same for all reconstructed planes, or specifically adapted for each object's 
plane ui. The compressive multiple view projection (CMVP) holography approach may be 
summarized as follows [ 22]: 

#140581 - $15.00 USD Received 4 Jan 2011; revised 22 Feb 2011; accepted 27 Feb 2011; published 17 Mar 2011
(C) 2011 OSA 28 March 2011 / Vol. 19, No. 7 / OPTICS EXPRESS 6112



 Acquire only 2KlogN random projections of the 3D scene (instead of N2 = Nx·Ny 
projections, which are the nominal number of projections required for the original 
MVP method). 

 Multiply each acquired projection mnp  by its corresponding phase function mnf  (see 

section 2). The digital summation of each product yields a single Fourier hologram 
coefficient h(m,n). We obtain, an undersampled Fourier hologram from the 2KlogN 
acquired projections (coefficients). 

 Reconstruct the depth planes of the 3D object using an 2-1 norm minimization (Eq. 

(3)) with an appropriate sparsifying operator. 

A schematic illustration of the acquisition and hologram generation process is shown in 
Fig. 1. For convenience, only a scan along the x-axis is shown. The minimal angular distance 
between two adjacent projections is  , and zo is the distance between the imaging system 

and the object. The length of the CCD's translation trajectory is 2 .L  In Fig. 1 the synthesized 
Fourier hologram is heavily undersampled. This fact underlies the present work, but not the 
general MVP holography. 

CCD

CCD

CCD

max


0f

/2xNf

Measured (sub-sampled) Fourier 
hologram

/2xNp

0p

1p

/2 /2( )
x xN p N pp x f dx

0 0( )p pp x f dx
oz

CCD

2L

/2 1xNp 

Mh

 

Fig. 1. Illustration of CMVP hologram acquisition. Acquisition of only KlogNx projections 
results in a heavily undersampled Fourier hologram. Each sample in the hologram plane 
corresponds to a nonuniformly randomly picked projection. 

Basically, by moving the camera to sparse translation locations we subsample the Fourier 
plane as pioneered by Candes, et al in [ 14]. However, unlike the common uniform random 
subsampling [ 14], we use a variable density sampling of the Fourier space, so that more 
samples are taken at low frequencies, near the origin, and less samples are taken as we tend 
away from the origin (as can be seen in Fig. 1). This random subsampling scheme has been 
shown to be more efficient than uniform random subsampling for CS in the Fourier [ 17] or 
Fresnel [ 21] domains. 

The presented method has several advantages over the technique in [ 6] which has also 
demonstrated MVP holography with a reduced sampling of the scene. The method in [ 6] 
requires the distinct anchor points in order to interpolate the different perspectives of the 
scene from a small number of projections. Consequently, textured and smooth scenes may 
require much more projections. The number and locations of these anchor points, as well as 
the number of projections should be adapted to the particular 3D object. Our proposed 
method is free from this limitation; it is virtually universal, and its only assumption is that the 
scene has a sparse representation in some known basis, hence it can infer any natural scenery. 
Another advantage is that the method does not require any modification of the sensing 
hardware, unlike in [ 6], where the hologram synthesis should be performed at the sensor 
level. 
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3.3 Simulation and experimantal results 

Simulation and experimental data were used in order to show the applicability of the method. 
A 3D scene was simulated with the letters B,G,U, which were placed at different axial 
locations. We have digitally generated a Fourier hologram according to the process described 
in section 2. The generated hologram was 256×256 pixels in size, which corresponds to 
256×256 projections. Afterwards, we subsampled the Fourier hologram according to the 
random variable sampling scheme mentioned in subsection 3.2. We reconstructed the depth 
planes ui by solving Eq. (3) using the TwIST [ 23] solver, where the sparsifying operator was 
chosen as the Haar wavelet transform. The choice of the sparsifying operator affected the 
quality of the reconstruction and convergence rate. The Haar wavelet basis was chosen 
because of the piecewise constant nature of the objects, and its incoherence with Fourier 
sensing basis [ 17]. In Fig. 2 the resulted reconstruction from the undersampled Fourier 
hologram has been compared with the complete Fourier hologram. It could be seen in Fig. 2 
that by using only 6% of the projections, the different planes have accurately been 
reconstructed. 

(a)                                         (b)                                            (c)              (d) 
 

Fig. 2. Reconstruction examples of the B and U planes of simulated data. (a) Reconstruction of 
the B plane from 100% of the projections. (b) CS reconstruction of the B plane from 6% of the 
projections. (c) Reconstruction of the U plane from 100% of the projections. (d) CS 
reconstruction of the U plane from 6% of the projections. 

In the real experiment we have used a 3D scene which contains 3 cubes, each of them 
3.5cm×3.5cm×3.5cm in size. The distances along the optical axis between the imaging lens of 
the CCD camera and the first, middle and last cubes were 30cm, 37cm, and 40cm, 
respectively. A Fourier hologram was synthesized from 400 1D projections captured along 
the x-axis. The 1D MVP algorithm and its difference from 2D MVP were detailed in [2]. The 
distance between the two most extreme projections along the CCD path was 4cm and the 
interval between every two successive projections was 0.1mm. In Fig. 3 an accurate 
reconstruction was demonstrated from only 25% of the nominal number of acquired 
projections. 
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(a)

(b)
 

Fig. 3. CMVP reconstruction results of experimental data. (a) Reconstruction from 100% of 
the projections. (b) Reconstruction from 25% of the projections using the CS framework. 

We point out that in this experiment the scanning is performed only in one dimension, 
therefore the compressive sensing ratio is smaller than with 2D scanning. In fact, 25% 
subsampling obtained with 1D scanning is equivalent to 6% in 2D subsampling obtained in 
the simulated 2D scanning experiment (0.25×0.250.06). 

Thus, in this section we have demonstrated a reduction in the scanning effort by applying 
the CS framework to the acquisition process of an incoherent MVP hologram. This has also 
resulted in a major reduction in bandwidth or storage requirements. This reduction has come 
with no alteration in the system's hardware, and it has completely nonadaptive to the scene. 
The only assumption being made is that the scene is sparse, in some basis, which is a 
reasonable assumption for any natural scene. 

4. Efficient depth sectioning with compressive multiple view projection holography 

4.1 Applying a 3D-2D forward model 

As seen in Figs. 2 and 3 the reconstruction obtained by focusing digitally on different object 
depth planes may be distorted due to out of focus object points located in other object planes. 
These disturbances are the result of an incomplete model of the system because the back 
propagation model of Eq. (2) follows a 2D-2D model linking the hologram to a single depth 
plane, and ignoring other object planes. Clearly, applying reconstruction by using this system 
or any such 2D-2D model is subject to distortions if an object point disobeys the model, i.e., 
the object point is located in another depth plane. In order to avoid these distortions, a 3D-2D 
forward model relating all the   object x y zN N N N  voxels to the synthesized 

 holo x yN N N  hologram points should be considered. Such approach has been recently 

introduced for different types of coherent holography applications [ 24- 27]. The 3D-2D model 
linking the contribution of the different object planes, located at distance zi, to z=0 plane is 
shown in the following equation: 

      2 2 2 2

1 1

( , ) exp exp ,
 

               
 

z zN N

x y i x y i i
i i i

j
h j z u u x y

z

    


   (4) 
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where each plane denoted by ui is separated by a distance zi from z=0 plane, and there is a 
total number of Nz planes which contribute to the hologram generation. Rewriting Eq. (4) in 
discrete vector-matrix form, as in section 2, yields the following: 

 2

1

( , ) .


  z
Q Fu

z

i

N

i
i

h m n


 (5) 

When using this form we may express the model of the hologram generation as the 
following: 

 2 2
1

1;...; ;...; .       z z
h Q F Q F u u Φu

ZNz

T T
N 

 (6) 

Equations (5) and (6) represent a system forward model for the complete hologram, h. 
Here the reconstruction is applied to the subsampled Fourier hologram, hM, as described in 
section 3. Therefore, we may formulate our reconstruction problem as follows: 

  2

2
min , h Φu uM T

TV
  (7) 

where 

    2 2

1, , , , , 1, , ,
,

    u u u u ui j l i j l i j l i j lTV
l i j

 (8) 

as stated in [ 24- 25]. In Eq. (7) τ is a regularization parameter which controls the ratio between 
the data fit and the sparsity level. Using Eq. (7) and Eq. (8), we are able to look for the 
sparsest solution in a 3D cube, rather than in each plane separately. Thereafter we combine 
the subsampling shown in the previous section with the extended ability to apply tomographic 
image reconstruction. This approach can be named CMVP tomography (CMVPT). The 
procedure may be summarized as the following: 

 Acquire only 2KlogN projections of the 3D scene. 

 Reconstruct the sparsest solution of the entire 3D data cube according to the problem 
formulation in Eq. (7). The reconstruction result is the collection of planes 

1 2
[ ; ;...; ]u u u

Nz z z . 

4.2 Experimental results 

We again use the experimental data shown in section 3. One hundred 1D projections are used 
in order to reconstruct 400×400×3 object voxels. Figure 4 demonstrates the sectioning of the 
3D scene. 
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(a)

(b)
 

Fig. 4. Applying CMVP tomographic sectioning to experimental data. (a) Reconstruction from 
100% of the projections. (b) Compressive holography approach applied to CMVP, with only 
25% of the nominal number of projections. 

Figure 4 exhibits the ability of the method to increase the contrast between in focus and 
out of focus objects. The contrast between the in focus objects and the out of focus objects is 
increased by approximately 4-5 times, compared to regular back propagation applied to the 
MVP generated hologram (Fig. 3). The remaining unfocused data may be further easily 
removed by applying thresholding or filtering techniques. 

4.3 System's Resolution Analysis 

The theoretical analysis of the system's resolution limit is based upon the fact that the moving 
CCD captures projections of the object from different directions. Consequently, the resolution 
should be determined by the imaging system's parameters, and by the hologram generation 
process. The imaging system's resolution is governed by the optical or geometrical resolution 
(size of the CCD pixel). If we denote the finite aperture radius of the imaging lens as A and 
the distance from the object to the imaging system as zo, the optical lateral resolution is given 
by / /in oNA z A  , where NA stands for numerical aperture. The geometrical lateral 

resolution is approximated by projecting the pixel size, Δs, to the object plane, and therefore 
is given by / Ts M , where MT is the lateral magnification of the projections. Besides the 

imaging system's resolution, another limitation is introduced when attempting to reconstruct 
the object from the hologram. As shown in section 2, every projection is multiplied by the 
phase factor  exp 2 sin m p mf j bx  . The minimal cycle of fm determines the lateral 

resolution limit. Assuming xp,max = 1, the minimal cycle of fm is:  ,max/ sinp mN b   where Np 

is the number of pixels in each projection across the x-axis. Consequently, the minimal cycle 

of fm in the object plane is  ,max/ sin .p m TN s b M  From Fig. 1 the following equation can be 

obtained: 2 2
,maxsin / m oL L z . Therefore, the resolution limit induced by the NA of the 

hologram is  2 2 /p o TN s L z bLM  . Equation (9) concludes the discussion about the 

system's lateral resolution: 
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The axial resolution for a single aperture imaging system is given by: 
2/ /    SA oz NA x z A . Since our system is based on multi-aperture, the axial resolution 

is determined by the maximal angular range of the setup, i.e., ,max/ tan mz x    . Therefore, 

the axial resolution can be approximated as follows: 

 0 .  MA

z
z x

L
 (10) 

From the experimental data, the transversal resolution is approximately equal to 0.25cm, 
and the axial resolution is approximately equal to 3cm according to Eq. (9) and Eq. (10), 
respectively. Since less projections are taken within the given area, which is determined by 
the camera trajectory, the CMVPT is much more effective than MVP in terms of an axial 
resolution gain relative to acquisition effort (number of exposures). The axial resolution gain 
is achieved by using a multi-aperture setup instead of a single aperture setup, and the gain is 
expressed as: / .    gain SA MAz z z L A  Eq. (11) shows this gain divided by the number of 

projections required to reconstruct the scene using the CS framework: 

 
/

.
log log


 gainz L A N

Number of projections K N K N
 (11) 

As a rule of thumb, while the amount of pixels in an image grows, its sparsity level 
increases at a slower rate. Therefore, the term N/K of Eq. (11) increases as the dimensionality 
of the problem increases, and in turn, the ratio of the axial resolution gain relative to the 
number of projections grows accordingly. Hence, we are able to obtain the superior axial 
resolution benefits of the MVP method while reducing the scanning effort. 

5. Conclusion 

In this paper we have presented a simple and nonadaptive way to reduce the number of 
projections in incoherent MVP hologram, while accurately reconstructing the 3D scene. 
Accurate reconstruction of the planes was possible by applying the compressive sensing 
theory. Simulation and experimental results exhibited accurate reconstruction from mere 6% 
of the nominal number of projections. The practical implications have been the reduction of 
the scanning effort in the acquisition step, as well as the reduction of the requirements for the 
hologram bandwidth and storage. We have also demonstrated improved sectioning of the 
scene from a reduced number of projections by applying a proper 3D to 2D model. This setup 
has allowed to perform totally incoherent light tomography, while keeping a highly compact 
representation of the scene. All of these advantages have required no hardware changes at the 
sensor level. 
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