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Abstract: The principle and the applications of a recently proposed unconventional holography 
technique, called coherence holography, and a related technique for dispersion-free 3-D coherence 
imaging based on a spatial frequency comb will be reviewed. 
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1. Introduction 

Low-coherence interferometry is a well-established technique which is widely used for the measurement of complex 
3-D microstructures and for the 3-D biological imaging such as optical coherence tomography (OCT). However, 
because of the broadband spectrum of the light source, low-coherence interferometry suffers from spectral 
absorption and/or index dispersion problems, particularly when the object and/or the propagation medium have 
inhomogeneous spectral response as in the case of biological samples submerged in a liquid medium. This talk will 
introduce some of our recent efforts to solve this problem by taking new approaches called coherence holography 
[1] and a spatial frequency comb [2]. As an alternative to the use of a temporal coherence function associated with a 
wide optical frequency spectrum, we have proposed the use of a spatial coherence function, in which the angular 
spectrum of quasi-monochromatic light is tailored to create a desired spatial coherence function in 3-D space.  

2. Coherence holography 

The principle of coherence holography is based on the formal analogy between the diffraction integral and the 
formula of van Cittert-Zernike theorem. Except that the intensity (rather than amplitude) transmittance of the 
hologram is made proportional to the recorded interference fringe intensity, the recording process of a 
coherence hologram is same as that of a conventional hologram. However, the reconstruction process is quite 

different. Instead of illuminating the hologram with coherent light, we illuminate the hologram with spatially 
incoherent quasi-monochromatic light so that the hologram represents the irradiance distribution of a spatially 
incoherent extended source, as shown in Fig.1. In this case, the relation between the intensity transmittance of the 
hologram and the mutual intensity (or the spatial coherence function) is described by van Cittert-Zernike 
theorem [3, 4].  
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Fig.2 Simple optical geometry for reconstruction and 
visualization of coherence image. 
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Fig.1 Reconstruction of coherence hologram.

We cannot perceive any image directly from the field intensity distribution, but, if we detect, by means of 
interferometry, the coherence function between a probe point Q at an arbitrary location and a reference point R at 
the location of the reference point source, we can reconstruct the object image as a 3-D distribution of the coherence 
function represented by the fringe contrast and the fringe shift. However, the detection of coherence image by 
scanning the probe point of Young’s interferometer, as shown in Fig.1, is not practical. We proposed a simple 
optical geometry shown in Fig.2, which is in essence a Fizeau interferometer but can also be realized conveniently 
with a Michelson interferometer. It can be seen easily that each point source S on the incoherently illuminated 
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hologram produces an interference fringe pattern of a Fresnel zone plate (FZP). As a result of intensity-based super 
position of many FZPs weighted by the irradiance of the hologram, we observe interference fringe intensity at point 
P given by 
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where ( )zα Δ  is the initial phase of the FZP fringe, ( , )zμ Δr  is a complex degree of coherence given by 
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It should be noted that the complex degree of coherence is given by the Fresnel transform of the incoherently 
illuminated hologram. If we record a Fresnel hologram with coherent light for an object at distance 2 /(2 )z z z= Δ  
from the hologram, and illuminate the hologram with spatially incoherent light from behind, we will observe on the 
beam splitter a set of interference fringe patterns whose fringe contrast is proportional to the brightness of the 
original object recorded with coherent light. Just as a computer-generated hologram (CGH) can create a three-
dimensional image of a non-existing object, a computer-generated coherence hologram (CGCH) can create an 
optical field with a desired three-dimensional distribution of spatial coherence function. This CGCH gives a new 
possibility of optical tomography and profilometry [5] based on a synthesized spatial coherence function, and serves 
as a generator of coherence vortices [6]. 

Fig.3 (a) Computer-generated coherence hologram. (b) Coherence image with the high coherence region representing a letter H.

(a) (b) 

 
An example of an on-axis (Gabor-type) CGCH for an object of a letter H is shown in Fig.3 (a). Figure 3 (b) 

shows the reconstructed coherence image, in which the letter H is displayed by the region of high contrast fringes 
representing the designed high coherence area [1]. 

3. Spatial frequency comb for dispersion-free depth sensing 
 
One example of the application of CGCH is the generation of a spatial frequency comb (SFC) [2].  The concept of 

SPC is shown in Fig. 4. A conventional optical frequency comb (OFC), composed of equally spaced multiple line 
spectrum components in optical frequency domain, can be expressed by multiple collinear k-vectors with their arrow 
tips equally spaced in the k-space represented by the Eward sphere (see Fig. 4 (a)). These radially distributed k-
vectors inside the Ewald sphere cause the dispersion problems as they correspond to multiple optical frequencies. 
We note that phase difference between the two layers in depth sensing by an interferometer is given by 

2 2 coskhφ θΔ = ⋅ =k h , with  being a depth vector normal to the surface of the layers, and h θ  being angle between 
k- and h-vectors. This relation suggests an alternative solution in which we change the angle θ  while keeping the 
optical frequency constant. The angular spectrum of monochromatic light is tailored to have a comb shape in the 
spatial frequency domain with a spatial-frequency-tunable source realized by a spatial light modulator (SLM). The 
Fourier-transform relation of Wiener-Khinchin theorem between the temporal coherence function and the optical 
frequency spectrum in OFC is now replaced by the Fourier-transform relation of the generalized van Cittert-Zernike 
theorem between the longitudinal spatial coherence function and the longitudinal component of the spatial frequency 
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spectrum in SFC, similarly to the McChutchen theorem [7]. From the lateral component k of the k-vectors shown 
in Fig.4 (b), one can see that the intensity distribution of spatially incoherent quasi-monochromatic source has the 
form of a Fresnel zone plate as in our previous paper [5], which may be interpreted as a special type of coherence 

hologram for longitudinal coherence control. Figure 4 shows an example of depth sensing with a variable 
longitudinal spatial coherence function created by an SLM-generated tunable spatial frequency comb, which is 
completely free from dispersion problems and mechanical moving components.  
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Fig.4 (a) Optical frequency comb is represented by collinear k-vectors of different lengths for polychromatic light; (b) 
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Fig.5 Sensing of the depth of block gauge surfaces by spatial coherence gating. Spatial coherence 
gating function is scanned by changing the mode interval of the spatial frequency comb. 
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