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Abstract
 
We propose a method of synthesizing computer-generated holograms of real-life three-dimensional (3-D) objects. An 
ordinary digital camera illuminated by incoherent white light records several projections of the 3-D object from different 
points of view. The recorded data are numerically processed to yield a two-dimensional complex function, which is then 
encoded as a computer-generated hologram. When this hologram is illuminated by a plane wave, a 3-D real image of the 
object is reconstructed. 
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1. Introduction 
 

Since the invention of the hologram more than 50 years ago,1 holographic recording of real objects has been performed 
by wave interference. In general, interference between optical waves demands special stability of the optical system and 
relatively intense light with a high degree of coherence between the involved beams. These requirements have prevented 
hologram recorders from becoming as widely used for outdoor photography as conventional cameras. A partial solution 
to these limitations is obtained by the techniques of holographic stereograms2,3 (also known as multiplex holograms4,5) 
However, optical interference is also involved in recording of holographic stereograms, although it is off-line 
interference. The meaning of "off-line" here is that a reference beam interferes with a beam diffracted from a motion 
picture film. The motion picture film contains many viewpoints of the object, and the object is in-line recorded by a 
motion picture camera. However, unlike ordinary holograms,1,6 holographic stereograms do not reconstruct the true wave 
front that is diffracted from an object when this object is coherently illuminated. The reconstructed wave front from a 
holographic stereogram is composed of a set of discrete patches; each patch contains a different perspective projection of 
the object. Because of the discontinuity between those patches, the imitation of the observed reality cannot be complete. 
In this study we propose a process of recording a computer-generated hologram (CGH) of a real-world three-dimensional 
(3-D) object under conditions of incoherent white illumination. Yet the true wave front diffracted from the object, when 
it is coherently illuminated, can be reconstructed from the proposed hologram. In other words, after a process of 
recording the scene under incoherent illumination and digital computing, we get a two-dimensional (2-D) complex 
function. This function is equal to the complex amplitude of coherent light diffracted from the same object and 
propagates through a particular optical system described below. Thus apparently we succeed in recording the complex 
amplitude of some wave front without beam interference. It should immediately be said that we do not propose here a 
general method of recording complex amplitude without interference. Our system cannot sense any phase modulations 
that happen between the object and the recording system. However, let us look at a 3-D object illuminated by a coherent 
plane wave. If the reflected beam from the object propagates in free space and then through the particular optical system, 
the result at the output plane is some complex amplitude. We claim that this complex amplitude can be restored under 
incoherent conditions. Once this complex function is in computer memory, we can encode it to a CGH. When this CGH 
is illuminated by a plane wave, which then propagates through the same optical system mentioned above, the image of 
the 3-D object is reconstructed in space as a common holographic image. Similarly as in stereogram photography, we 
record several digital pictures of the object from different points of view. The pictures are recorded into a digital 
computer, which computes a CGH from the input data. Illuminating this hologram by a plane wave reconstructs the 
original objects and creates the volume effect in the observer's eyes. The hologram that we would like to produce is of the 
type of a Fourier hologram. This means that the image is reconstructed in the vicinity of the back focal plane of a 
spherical lens when the hologram is displayed on the front focal plane. However, a complete 2-D Fourier hologram can 
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be recorded if the camera's points of view are on a 2-D transverse grid of points. Because it is technically impractical, or 
at least quite difficult, to shift the camera out of the horizontal plane along a 2-D transverse grid of points, the hologram 
that we produce here is only a one-dimensional (1-D) Fourier hologram along the horizontal axis and an image hologram 
along the vertical axis. Consequently, the coherent system that we emulate and the reconstructing system are both 
composed of a cylindrical Fourier lens in the horizontal axis and a second cylindrical imaging lens in the vertical axis. In 
Section 2 we describe the recording process in detail. 
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2. Recording and Synthesizing the CGH 
 
The recording setup is shown in the upper part of Fig. 1. A 3-D object function o1(x,y,z) is located at the coordinate 
system (x,y,z). o1(x,y,z) represents the intensity reflected from all the observed bodies in the scene. From each point of 
view, the camera observes the scene through an imaging lens located at a distance L from the origin of (x,y,z). The 
camera is actually shifted in constant angular steps along a horizontal arc centered about the origin, and it is always 
directed to the origin. The angle between the camera's optical axis and the z axis is denoted �i. For each �i, the projected 
image o2(xi,yi,�i) is recorded into the computer, where (xi,yi) are the coordinates of the image plane of each camera. On 
the basis of simple geometrical considerations, the relation between (xi,yi,�i) and (x,y,z) is given by 

( )1).,sincos(),( yzxyx iiii θθ +=     

For simplicity, we assume that the magnification factor of the imaging lens is 1. Also, because distance L is much greater 
than the depth of the object, all the object points are equally imaged with the same magnification factor of 1. 
 
The maximum range of the angle �i is chosen to be small (no more than 16o on each side in the present example). 
Therefore we are allowed to use the following small-angle approximations: cos�i§1 and sin�i§�i. Recalling our original 
goal to get a 2-D hologram containing the information of the objects' volume, we next reduce the 3-D function o2(xi,yi,�i) 
to a 2-D function. We assume that the following digital process is a perfect imitation of an optical system, which will be 
discussed below. Inside the computer, the hologram values are computed from the projected functions according to the 
following equation, 

( ) ( ) ( ) ( ) ( )2.2exp,,, 2∫∫ −−= iiiiiii dydxfuxiyvyxovuh λπδθ  

where � is the wavelength of the plane wave illuminating the system and f is the focal length of a cylindrical lens. The 
variable u is related to the angle �i via the equation �i=au, where a is some chosen parameter.  
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Let us consider now the relation between h(u,v) and the object o1(x,y,z). For a single infinitesimal element of size 
(ûx,ûy,ûz), at point (x',y',z'), with the intensity o1(x',y',z') from the entire 3-D object function, the distribution on the (u,v) 
plane for each �i value is 

( ) ( ) ( ) ( ) ( )3.2exp',',', 1 zyxyvfuxizyxovuh ii ∆∆∆−−∝ δλπ  

Relation (3) is obtained from Eq. (2) because, for each �i value, a single point at the input scene is imaged to a point at 
the (xi,yi) plane. The / function in relation (3) is a mathematical idealization of the fact that the point at yi is imaged to the 
line v=yi on the (u,v) plane. Substituting Eq. (1) into relation (3) yields 

( ) ( ) ( )[ ] ( ) ( )4.'sin'cos'2exp',',', 1 zyxyvfuzuxizyxovuh ii ∆∆∆−+−∝ δλθθπ  

Next we examine the influence of all points of the object o1(x,y,z) on the distribution of h(u,v). The object is 3-D, and 
therefore the summation of the object's points is performed along the (x,z) axes, whereas along the vertical axis the 
picture is perfectly imaged. Therefore the overall distribution of h(u,v) is obtained by a 3-D integral of the expression in 
relation (4) as follows: 

( ) ( ) ( )[ ] ( ) ( )5.sincos2exp,,, 1∫∫∫ −+−∝ dxdydzyvfuzuxizyxovuh ii δλθθπ  

Substituting the condition �i=au and the small-angle approximations into relation (5), yields the following 2-D function:  

( ) ( ) ( ) ( )[ ] ( )6.2exp,,, 2
1∫∫∫ +−−∝ dxdydzfzauuxiyvzyxovuh λπδ  

 
Next we show that, if a is chosen to be a=-1/(2f ), h(u,v) is equal to the complex amplitude on the output plane of the 
equivalent coherent system, shown in Fig. 2. It should be emphasized that this coherent system is only the equivalent 
optical system for the expression in relation (6), and we depict it in Fig. 2 only to clarify the equivalent model. The 
complex amplitude is examined at the back focal plane of a convex cylindrical lens (horizontally focusing) when a plane 
wave is reflected from the 3-D object o1(x,y,z) located at the back focal plane and is perfectly imaged along the vertical 
axis. For a single infinitesimal element of the size (ûx,ûy,ûz) from the entire object with an amplitude of o1(x',y',z'), the 
complex amplitude at the plane (u,v) is7 
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where A is a constant. Summation over the contributions from all the points of the 3-D object yields the following 
complex amplitude: 
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Comparing Eqs. (8) and (6), we see indeed that substituting a=-1/(2f ) into Eq. (6) yields an expression similar to the one 
given in Eq. (8). The only difference is that o1(x,y,z) in Eq. (8) represents a complex amplitude, whereas in Eq. (6) it 
represents an intensity. As the intensity of the reconstructed object from h(u,v) is proportional to |o1(x,y,z)|2, its gray-tone 
distribution is expected to be deformed compared with the gray-tone map of the original object. However, we can 
compensate for this deformation by computing the square root of the grabbed pictures in the recording stage. In both 
functions h(u,v) and g(u,v) the object's 3-D structure is preserved in a holographic manner. This means that the light 
diffracted from the hologram is focused into various transverse planes along the propagation axis according to the 
object's 3-D structure. 
 
Parameter a can in fact take any arbitrary real value, not just the value -1/(2f). In that case, after integration variable z is 
changed to z'=-2faz, Eq. (6) becomes 
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Relation (9) also has the form of Eq. (8) but with the change that the hologram obtained describes the same object on a 
different scale along its longitudinal dimension z. We conclude that by our choice of parameter a we can control the 
longitudinal magnification of the reconstructed image, as we show below. Equation (8) represents a complex wave front, 
which usually should be interfered with a reference wave to be recorded. In the case of wave interference the intensity of 
the resultant interference pattern keeps the original complex wave front in one of four separable terms.6 However, in our 
case the complex wave-front distribution is recorded into computer memory in the form of Eq. (6) [or (9)] without any 
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interference experiment and actually without the need to illuminate the object with coherent laser light. Because the 
expression in Eq. (6) describes the equivalent of a wave-front distribution, it contains 3-D holographic information on the 
original objects, which can be retrieved as described in what follows. 
 
As we mentioned above, the hologram values are stored in computer memory in the form of the complex function h(u,v). 
To reconstruct the image from the hologram, the computer should modulate some transparency medium with the 
hologram values. If the transparency cannot be modulated directly with complex values, one of many well-known coding 
methods for CGHs8 might be used. The spatial light modulator (SLM) that we use in this study can modulate the intensity 
of light with continuous gray tones. Therefore, complex function h(u,v) is coded into a positive real transparency as 
follows, 
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where (dx,dy) is the new origin point of the reconstruction space, and |h(u,v)| is normalized at 0-1.  
 
The holographic reconstruction setup is shown in the lower part of Fig. 1. To get the output image with the same 
orientation as the object, we display the 180o-rotated hologram h(-u,-v) on the SLM. Then the SLM is illuminated by a 
plane wave, which propagates through the SLM and the two cylindrical lenses with two orthogonal axes. Through lens Lu 
,a 1-D FT of h(-u,-v) along u is obtained at the back focal plane along xo. Lens Lv images the distribution along the v axis 
on the yo axis. This optical setup is identical to the equivalent coherent system shown in Fig. 2, and therefore the real 
image of the original 3-D object is reconstructed in the vicinity of the back focal plane of cylindrical lens Lu.  
 
To calculate the magnification of the image along each axis we consider the equivalent optical process on object and on 
image planes. Based on Eq. (6) together with the operation of lens Lu, the effective system from plane (x,y) to the output 
plane, along the horizontal axis, is similar to a 4-f system.9 Therefore the overall horizontal magnification is identical to 
1. In the vertical axis the object is imaged twice from plane (x,y) to output plane (xo,yo), and therefore the magnification is 
also equal to 1. On the longitudinal axis the situation is a bit more complicated. Looking at Eq. (6) and the lens Lu, we see 
a telescopic system but with two different lenses. From Eq. (6) the effective focal length of the first lens is  

Fig. 3: 16 projections out of 65 of the input scene 
taken by the camera from various viewpoints

Fig. 4: (a) The magnitude (the maximum value is whitest) and (b) 
the phase anglxe (π  is white and π−  is black) of the hologram 
recorded and computed in the experiment. (c) The central part of 
the CGH, computed by relation (10) from the complex function 
shown in Figs 4a and 4b. 

(a) (b)

(c)
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( )aff 21 = . The focal length of re-constructing lens Lu is f2=f. Using the well-known result that the longitudinal 

magnification of a telescopic system9 is (f2/f1)
2, we find the longitudinal magnification in our case to be 2f|a|. Note that 

with parameter a  magnification independently of the transverse magnification. 
 

3. Experimental results 
 
In our experiment the recording was carried out by the system shown in the upper part of Fig. 1 and the reconstruction 
was demonstrated by an optical experiment shown in the lower part of Fig. 1. The scene observed contains three cubes of 
size 5cmê5cmê5cm located at different distances from the camera. We show in Fig. 3 16 examples selected from 65 
scene viewpoints taken by the camera. Each projection contains 256ê256 pixels. Figure 3 shows the scene observed by 

the CCD from a distance of 77cm. The angular range is o16±  from the CCD axis to the z axis, and the angular increment 
between every two successive projections is 0.5o.  
 
The hologram was computed from the set of the 65 projections according to the procedure described above. The 
magnitude and the phase angle of the computed 256ê256-pixel complex function h(-u,-v) are shown in Figs. 4(a) and 
4(b), respectively. The central part of the CGH computed according to Eq. (10) is depicted in Fig. 4(c). The total size of 
the CGH is 800 pixels on the horizontal axis and 256 pixels on the vertical axis.  
 
In the optical experiment the CGH [part of which is shown in Fig. 4�c�] was displayed on a SLM (Central Research 
Laboratories, Model XGA1). Parameter a in this example was chosen to be [sin(32o)/3.5]cm-1, where 32o is the angular 
range of the capturing camera and 3.5cm is the width of the SLM located in the (u,v) plane. The reconstruction results in 
the region of the left-hand diffraction order are shown in Fig. 5 at three transverse planes along the optical axis. 
Evidently, the effect in which every letter is in focus on a different transverse plane appears in Fig. 5.  
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4. Conclusions 
 

In conclusion, we have proposed and demonstrated a process of recording holograms of real-life 3-D objects without 
wave interference. There are two main differences between our method and previous techniques10,11 for recording CGH's 
of 3-D objects. First, as we have shown, our hologram is a single hologram with properties similar to those of a hologram 
recorded optically by the interference of laser beams. Our hologram is neither a composite hologram nor a holographic 
stereogram as previously suggested.10,11 Second, we deal with a real-life 3-D object recorded into computer memory, 
whereas others compute CGHs of artificial computer-generated objects. The last-named difference also distinguishes our 
method from the method of 3-D CGH suggested in Ref. 12. This method is also different from the techniques for 
recording holographic stereograms and multiplex holograms2-5 in two aspects. First, there is no need to interfere coherent 

Fig. 5: The experimental results from the hologram shown in Fig. 4(c), at the vicinity of the back focal 
point of Lu, on three different transverse planes at: (a) zo=-0.5cm, (b) zo= 2.5cm, (c) zo= 6cm. 

(a) (b) (c)

Proc. SPIE Vol. 447164



beams in any stage of our process. The final CGH is obtained from the set of the object's projections purely by numerical 
computation. Second, our process is a true imitation of a particular holographic coherent system. Therefore the 
reconstructed image has features similar to those of an image coming from a coherently recorded hologram. This method 
might lead to development of a generally used holographic camera for outdoor photography.  
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