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We describe various techniques to synthesize three types of computer-generated hologram (CGH): the
Fresnel–Fourier CGH, the Fresnel CGH, and the image CGH. These holograms are synthesized by fusing
multiple perspective views of a computer-generated scene. An initial hologram is generated in the computer
as a Fourier hologram. Then it can be converted to either a Fresnel or an image hologram by computing the
desired wave propagation and imitating an interference process of optical holography. By illuminating the
CGH, a 3D image of the objects is constructed. Computer simulations and experimental results underline
the performance of the suggested techniques. © 2006 Optical Society of America
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1. Introduction

Synthesizing a computer-generated hologram (CGH)
of a 3D object is a heavy computational task.1 We
need to superpose the mathematical contributions of
many waves originating from many points on the
objects, when obviously not all of them are located at
the same distance from the hologram plane. Recently,
we developed a new procedure for generating a CGH
of general 3D objects by fusing multiple angular pro-
jections of computer-designed objects.2 By a specific
computing process of data reduction on all angular
perspectives of the 3D object, a single 2D complex
function is obtained representing the wavefront dis-
tribution on the hologram plane. This complex func-
tion is then conventionally encoded in a CGH with
real and positive transparency values. Illuminating
the CGH by a plane wave constructs an image of the
original object with the desired 3D cues. This method
reduces the computation load to that of CGHs of 2D
objects, and more importantly, it enables us to syn-
thesize a hologram of both realistic3 and computer-
generated2,4 3D objects. Thus in some cases this

technique can replace the complicated interferomet-
ric process of hologram recording. Furthermore, we
have shown2,3 that merging angular projections to-
gether yields a Fourier hologram equivalent to the
well-known optical Fourier hologram5 recorded by a
coherent light source. As discussed in Ref. 2, although
the input data in our method are a set of the object’s
angular viewpoints, our technique differs from com-
puting CGHs by stereoscopic technique6 or by mul-
tiplexing7 CGHs. In this study, the procedure of
computing a CGH is extended to create other types of
hologram.

There are three well-known types of hologram: the
Fourier hologram, the Fresnel hologram, and the im-
age hologram.8 The differences among these holo-
grams can be manifested by different optical setups
placed between the object and the hologram planes as
described below.

In a Fourier hologram, the recording plane resides
in a plane that will yield the Fourier transform of the
object interfering with a reference wave. Reconstruc-
tion of the 3D object from the Fourier hologram can
be simulated with a computer by applying the fast-
Fourier transform numerical tool. Optical recon-
struction can be achieved using a Fourier lens and
illuminating the hologram with a plane wave. The
Fresnel hologram is generated from an object located
within a Fresnel region in which the Fresnel diffrac-
tion formula is satisfactorily valid.9 In principle, the
space between the Fresnel hologram and the viewer
is free of any lens or other optical device. This feature
makes the Fresnel hologram more practical as a
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holographic display than the Fourier hologram.
The generation of the Fresnel CGH of computer-
generated objects from a series of projections using
the principle of computer tomography, was proposed
by Sando et al.4 In the present study, we extend this
work, suggest two types of Fresnel CGH, and discuss
their advantages and limitations.

In the case of an image hologram, the hologram is
recorded by imaging an object on the plane of the
holographic recording medium and interfered with a
tilted reference wave. The constructed 3D image ap-
pears to float at the hologram plane, where parts
of the image are extended outside the hologram and
other parts remain inside the hologram. This feature
makes them highly attractive as a 3D display for
hardcopy and video applications. The generation of
the image CGH of 3D objects has been proposed by
Leseberg.10 Our image CGH is formed in two steps.
First, the 3D image is digitally created from the
Fourier hologram. Then, equivalent to the optical in-
terference process, the image is constructed by super-
posing a digital reference wave. Contrary to other
methods, ours has less computation complexity, and
it can be applied for real existing objects.

The paper is organized as follows: Section 2 briefly
describes the Fourier CGH algorithm generation for
3D objects through a set of scene projections. Sections
3–5 discuss the generation of three types of CGH and
present numerical and experimental results for each.
The paper ends with a conclusion in Section 6.

2. Synthesizing Fourier Computer-Generated
Holograms Using Multiple Points of View

In this section, we briefly summarize the algorithm
for synthesizing Fourier CGH from multiple perspec-
tives, first presented in Ref. 2, and shown schemati-
cally in Fig. 1.

The first step is to generate a 3D object in the
computer’s memory. Next, the set of the object’s an-
gular projections is computed. Then, each projection
is multiplied by a corresponding phase function, and
the product is summed to a single complex value. The
end product of this process is a single 2D complex
function representing the wavefront distribution on
the hologram plane. Every complex value of this func-
tion is computed from a different angular projection
and is positioned at the wavefront matrix precisely in
the scanning order. The mathematical expression of
the m, nth complex value at the wavefront matrix is
given by

s�m, n� ��� pmn�xp, yp�
� exp��i2�b�xp sin �m � yp sin �n��
� dxpdyp, (1)

where pmn�xp, yp� is the m, nth perspective image
viewed from the angles ��m, �n� in the horizontal and
vertical directions, respectively; �xp, yp� are the coor-
dinates of each projection; and b is a real-valued
constant determining the hologram scale. Finally,

the complex matrix s�m, n� is coded to a real- and
positive-valued matrix to be used as a holographic
transparency. The complete computational process is
illustrated schematically in Fig. 1.

We have shown in Ref. 2 that this algorithm gen-
erates a single complex function s�m, n� equal to the
wavefront on the Fourier plane sampled at the m, n
points. Therefore for large values of m and n, the
resulting CGH is equivalent to an optical Fourier
hologram of a realistic 3D scene recorded by a coher-
ently illuminated system. Based on the Fourier holo-
gram, we now propose new types of CGH.

3. Fresnel–Fourier Computer-Generated Hologram

A. Algorithm

The weaknesses of the Fourier hologram are the lack
of a virtual image and the need to place a lens be-
tween the viewer and the hologram to observe the
constructed image. To overcome these limitations, we
encode the transmission function of the Fourier lens
into the hologram. We call this type of hologram a
Fresnel–Fourier CGH, because on the one hand the
real and virtual images are constructed at a Fresnel
distance from both sides of the hologram, and on the

Fig. 1. CGH algorithm. fm,n � exp��i2�b�xp sin �m � yp sin �n�].
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other, this hologram is derived directly from a Fou-
rier hologram in the sense that it is actually a product
of two elements, the Fourier hologram and a lens,
which are attached. In addition, as Fig. 2(a) shows,
the spatial information is distributed all over the
hologram in a way similar to a Fourier hologram
without any local relation to the shape of the objects.

As mentioned earlier, our algorithm generates a sin-
gle complex function s�m, n� from the entire projection.
This complex function in continuous coordinates �u, v�
is related to the 3D object function t�xs, ys, zs� by the
following relation:

s�u, v� ���� t�xs, ys, zs�

� exp��i2�	�uxs � vys � 
zs�u2 � v2���
� dxsdysdzs, (2)

where �, � are some constants that enable us to con-
trol the transverse and longitudinal scales sepa-
rately, and �xs, ys, zs� are the coordinates of the object

space. The mathematical steps yielding Eq. (2) from
Eq. (1) are extensively detailed in Ref. 2. Equation (2)
actually describes the wavefront distribution on the
back focal plane obtained from a coherently illumi-
nated 3D object t�xs, ys, zs� positioned in the vicinity of
the front focal point. The function s�u, v� is equivalent
to a Fourier hologram recorded by a coherently illu-
minated system and with a 3D object as the system’s
input. Therefore to obtain the Fresnel–Fourier holo-
gram, the complex function s�u, v� is multiplied by a
quadratic phase function representing the lens trans-
fer function. To overcome the twin image effect,
s�u, v� is also multiplied by a linear phase function
representing the off-axis reference wave. Then, the
Fresnel–Fourier hologram transmission is given by

HFF�u, v� � �	s�u, v�exp
�i�r2

�z�
�

� exp
i2� sin �

�
v��� c, (3)

where � represents the real operator, r2 � u2 � v2, �
is the inclination angle of the first diffraction order,
and c is a constant bias added to avoid negative val-
ues in the hologram’s transmission. The image is
constructed at a distance z� from the hologram. To
calculate z� from the parameters of the actual exper-
iment, we look on the location of the focal point
obtained from a quadratic phase function displayed
on the hologram plane. The transmission of a qua-
dratic plus linear phase function, with � concentric
cycles from the center to the perimeter, and � linear
cycles is

HFF��u, v� � �	exp�i8�
 r
dN�2

� i4��
v

dN��, (4)

where N is the number of hologram pixels and d is the
gap between every two successive pixels. By compar-
ing the arguments of the quadratic phase, Eqs. (3)
and (4) yield the following values for the distance
between the hologram and the constructed object:

Z� �
�dN�2

8�
, (5)

and for the inclination angle of the first diffraction
order:

sin � �
2��

dN . (6)

The maximum number of cycles, max, limits
the minimal distance between the hologram and
the reconstructed image. max is calculated by assum-
ing that the possible minimal length of the shortest
cycle is of length 2d of two full pixels. This assump-
tion can be formulated by the following inequality:

Fig. 2. (a) Enlarged portion (300 � 300 pixels of 601 � 601) of the
color-inverted Fresnel–Fourier CGH. (b)–(d) Digital reconstruction
images from the hologram appear in (a), along the optical axis.
(e)–(g) The optical reconstruction in the vicinity of the back of an
imaging lens for three transverse planes at 470, 510, and 550 mm
for the C, G, and H planes, respectively. We used the imaging lens
to bring the far reconstruction plane nearer and for better visual-
ization.
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2�
 2r
dN�2

� 2��
2v
dN�

v,r�dN�2

� 2�
 2r
dN�2

� 2��
2v
dN�

v,r��dN�2��2d
� 2�. (7)

This inequality expresses the condition that the
length of the last two pixels is equal to or less than
the 2 � cycle. Substituting Eqs. (5) and (6) and the
approximation sin � � u�z� into inequality Eq. (7)
yields a conditional space in the shape of a cone in
which the reconstructed image can be obtained. The
cone has a height parallel to the z axis and an apex on
the z axis at a distance z�,min from the hologram. The
distance between the hologram and the reconstructed
image satisfies the following inequality:

z� �
d
� �Nd � 2ro�, (8)

where ro is the transverse radial variable of the re-
construction space. This means that the recon-
structed image cannot be obtained at a distance less
than z�,min � d2N�� from the hologram, and therefore,
the maximal diffraction angle is �max � tan�1���2d�.
For the present study with � � 632.8 nm, N � 600,
and d � 18 �m, the minimal allowed reconstruc-
tion distance �ro � 0� from the hologram plane is
z�,min � 31 cm, and the maximum diffracted angle is
� � 1°.

B. Computer Simulation and Optical Experiment

The Fresnel–Fourier hologram was synthesized ac-
cording to the analysis of Subsection 3.A. A 3D object
composed of three planes carrying the letters C, G,
and H, one on each plane at different transverse
planes, was generated in the computer. The first
plane with the letter C is located at the back of the
scene at point �x, y, z� � ��60, 180, �240� pixels, the
second plane with the letter G is located at the front
of the scene at point �x, y, z� � ��60, �180, 0� pixels,
and the third plane with the letter H was shifted to
the right of the G plane at the point �x, y, z� �
�60, �180, 240� pixels. Each plane has an area of
100 � 100 pixels. In the entire experiments of this
study, the 3D object was observed from an incremen-
tally changed angle in the azimuthally and elevation
angles of �10°, where the angular displacement be-
tween every two successive projections was 0.01°
in both directions. The inverted gray-scale Fresnel–
Fourier hologram computed according to Eq. (3) is
shown in Fig. 2(a). The images constructed from the
hologram by computer simulation in three transverse
planes are depicted in Figs. 2(b)–2(d). The reconstruc-
tion results were obtained by calculating the diffrac-
tion patterns from the hologram plane along the
propagation axis at three different transverse planes.

To optically reconstruct the 3D object, we illumi-
nate the computed Fresnel–Fourier CGH, which is
displayed on a spatial light modulator (SLM) (CRL,
Model XGA3), with a collimated beam emerging from
a He–Ne laser radiating at 632.8 nm. The entire

reconstruction pictures were captured with an 8-bit
795 � 596 pixel CCD camera (Sony-XC75CE). The
three letters, C, G, and H, shown in Figs. 2(e)–2(g),
appeared, respectively, at 470, 510, and 550 mm from
an imaging lens (f � 400 mm). This imaging lens was
used for clear visualization. The distance between the
lens and the SLM was 160 mm. Although the exper-
imental results without using the imaging lens have
not been presented here, the reconstruction plane
was observed at approximately 300 cm from the
SLM. This distance satisfies the condition given in
Eq. (8).

4. Fresnel Computer-Generated Holograms

A. Algorithm

In the Fresnel–Fourier hologram just described, the
information is distributed globally all over the holo-
gram, which makes it suitable for relatively long dis-
tances between the hologram and the reconstructed
image. For shorter hologram–image distances, we
propose a generating method of a Fresnel hologram
by imitating the optical holography recording. First,
the objects are digitally constructed from s(u, v) by a
2D Fourier transform. Then the propagation along a
distance zF is computed by convolving the object’s
central transverse slice with a quadratic phase func-
tion according to the rule of Fresnel propagation in
free space.9 In the last step, we multiply the convo-
lution operation by a linear phase to obtain the off-
axis object’s construction. This step also avoids the
twin-image problem. The complete formula for the
Fresnel CGH is

HFr�x, y� � �	��1�s�u, v�� � exp i�
�zF

�x2 � y2��
� exp
i2�

sin �

�
y��� c, (9)

where ��1 and the asterisk indicate the inverse
Fourier transform and the convolution operator,
respectively. In practice, we can convolve the dig-
ital matrix with a quadratic phase of the form
��k, l� � exp�i2����2k�N�2 � �2l�N�2��, where �= is
the number of cycles from the center to the perimeter.
Calculation of the construction distance zF versus the
parameters of the experiment is similar to that in
Eq. (7), but this time the diameter of the quadratic
phase is less than the diameter of the SLM, depend-
ing on the chosen parameter �. Since the maximal
diffraction angle is still �max � tan�1���2d�, and since
it is also the ratio between the hologram radius
�dN�2� and the minimal axial distance �dN�2�8�mx�,
the maximal number of cycles is mx� � N�8. Substi-
tuting mx� into Eq. (5) indicates that the axial dis-
tance between the hologram and the constructed
image satisfies the condition

zF �
d2N

�
. (10)
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This limit is the same as the value obtained from
solving Eq. (7). Therefore in a same SLM used for the
Fourier–Fresnel hologram, illuminated by the same
wavelength, we have to reduce the number of used
pixels on the SLM if smaller axial distances are re-
quired.

B. Computer Simulation and Optical Experiment

For the Fresnel CGH, the test object is composed of
three balls with radii of 70 pixels each. Each ball is
denoted by the letters C, G, H and is positioned at
different depths. The C ball was located at point
�x, y, z� � �0, 220, 220� pixels, the G ball was located
at point �x, y, z� � �0, 0, 0� pixels, and finally the H
ball was located at point �x, y, z� � �0, �220, �220�
pixels. The hologram pattern, created according to
Eq. (9), and the digital reconstruction from this CGH
are shown in Figs. 3(a) and 3(b)–3(d), respectively.

To optically reconstruct the 3D object, the same
setup as in Fig. 3(b) was used. In Figs. 3(e)–3(g), the
experimental reconstruction from the Fresnel CGH
was observed at 145, 160, and 177 mm away from the
SLM for C, G, and H balls, respectively. The expected
image reconstruction of the C, G, and H balls should
be 148.5, 160.5, and 171.7 mm. Because it is hard to

precisely measure the exact location of each in-focus
plane, the experimental results shown in Figs. 3(e)–
3(g) fairly agree with these calculations. The experi-
mental reconstruction from the Fresnel CGH was
observed without using any lens between the holo-
gram and the images. These results, together with
those in Subsection 3.B, show that at each transverse
plane a different letter of a different ball is in focus,
thus indicating the success of the 3D reconstruction.

5. Image Computer-Generated Hologram

A. Algorithm

The last type of CGH considered in this study is the
image hologram. After computing the inverse Fourier
transform of s�u, v�, the image of the object’s volume
is constructed in the computer. Then a reference
wave is added to the reconstruction volume. Conse-
quently the distribution of the image CGH becomes

HI�x, y� � �	��1�s�u, v��exp
i2�
sin �

�
y��� c.

(11)

HI�x, y� given by Eq. (11) is a computed transmittance
pattern, which is later displayed on the holographic
display.

B. Computer Simulation and Optical Experiment

The 3D object used for demonstrating the image ho-
logram was composed of three cubes with the letters
B, G, and U. The B, G, and U cubes were positioned,
respectively, at the front of the scene at point
�x, y, z� � �0, 180, 220� pixels, at the center of the
scene at point �x, y, z� � �0, 0, 0� pixels, and at the
back of the scene at point �x, y, z� � �0, �180, �220�
pixels, respectively. The size of each cube was
120 � 120 � 120 pixels. Nine projections, the central
and the eight most extreme, out of 201 � 201 pro-
jections are shown in Fig. 4. As mentioned in Subsec-

Fig. 4. Nine out of 201 � 201 projections of the 3D object.

Fig. 3. (a) Enlarged portion of the Fresnel CGH. (b)–(d) Digitally
reconstructed images for three successive transverse planes along
the optical axis. (e)–(g) The optical reconstruction for three trans-
verse planes at 145, 160, and 177 mm from the SLM for the C, G,
and H balls, respectively.
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tion 5.A, the process for generating the image CGH
starts from the creation of the Fourier CGH. By com-
puting the inverse Fourier transform of the hologram
the images of the cubes are digitally reconstructed.
Then, we digitally add a reference plane wave and get
the desired image hologram, as shown in Fig. 5(a).
The digital reconstruction from this CGH is shown in
Fig. 5(b) for the G cube and in Fig. 5(c) for the U cube.
The white area appearing in the center of the recon-
struction is due to the influence of an intense zero-
order diffraction. Although we can see that parts of
the objects are in focus, other parts appear to be out
of focus. This effect creates the desired illusion of an
object with a considerable volume.

The experimental results of the image CGH ob-
tained using the same previous setup are shown

in Figs. 5(d) and 5(e). Also, here we used an imaging
lens �f � 400 mm� placed between the hologram and
the observer to improve visualization. The cubes G
and H, shown in Figs. 5(d) and 5(e), appeared, respec-
tively, at 230 and 270 mm from the lens, indicate
the success of the 3D reconstruction. The distance
between the lens and the SLM was 140 mm.

6. Conclusions

We have presented and demonstrated a process for
computing three types of CGH: the Fourier–Fresnel,
the Fresnel, and the image holograms. A complex
function was obtained from multiple-view projections
of a 3D object. This function contains the 3D infor-
mation of the object and is related to the object’s
Fourier transform. We found that the experimental
results, observed in Figs. 2, 3, and 5, are in good
agreement with the theoretical and numerical simu-
lation results that provide a strong validity of our
idea. The loss of quality in the pictures of the optical
reconstruction is mostly due to the poor quality of the
SLM, which suffer from nonuniformity, brightness
quantization, and structure of partially blocked pix-
els. In addition to a nonuniform illumination, the
CCD records the reconstructed object in a nonideal
way. All these distortion sources are accumulated for
the noisy results shown in the figures. The presented
techniques have a high potential in versatile holo-
graphic applications such as 3D cameras and dis-
plays.
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