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Three-dimensional imaging of random radiation sources
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A method to image random three-dimensional source distributions is proposed. We show that, by using a
Michelson stellar interferometer in a prescribed fashion, one is able to measure a special form of a three-
dimensional degree of coherence. The inverse Fourier transform of this coherence function yields the three-
dimensional intensity distribution of the source as seen from the paraxial far zone.  1996 Optical Society of
America
The Van Cittert–Zernike theorem1,2 establishes that
the two-point coherence function in the far field of a
quasi-monochromatic spatially incoherent light source
is proportional to the Fourier transform of the source’s
planar intensity distribution. This is the basis of,
among others, the long-baseline interferometry in as-
tronomy, in which one uses a measurement of the
coherence function to obtain the source intensity dis-
tribution. In this Letter the relationship between a
three-dimensional (3-D) source and the coherence data
obtained in the far paraxial zone is considered. Carter
and Wolf3 generalized the Van Cittert–Zernike theo-
rem for 3-D sources. According to them, in the case of
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a quasi-monochromatic spatially incoherent source the
complex degree of coherence is proportional to the 3-D
Fourier transform of the source’s (volume) intensity
distribution. Devaney4 and LaHaie5 considered the
inverse problem of 3-D random sources, and Friberg6

calculated the radiation efficiency of 3-D partially
coherent primary sources. All these authors assumed
that the coherence function is available on an envelope
that encloses the source from all 3-D directions. In
some cases—for example, in stellar observations—
the coherence can be measured only in the paraxial
far zone in one essential direction. In what follows
we propose a new method to deduce a 3-D source
distribution from coherence data obtained in the far
paraxial zone in a single plane.

Recently we derived a relationship between the com-
plex degree of coherence in the far paraxial zone and
the intensity distribution of a quasi-monochromatic
spatially incoherent 3-D source. The main results are
summarized briefly as follows: A 3-D light source,
shown in Fig. 1 with a coordinate system sxs, ys, zsd, il-
luminates from the far field two points located in the
coordinates system sx, y, zd. Without loss of genera-
lity, we assume that z and zs are on the same line.
Each volume element source dVm, with an amplitude
0146-9592/96/141011-03$10.00/0
Amstd, located a distance R1, m from one point and R2, m
from the other, illuminates P1 and P2 with spheri-
cal waves with a complex amplitude proportional to1

Amst 2 Ri, mycd expf2jksct 2 Ri, mdgyRi, m, where i ­
1, 2; c is the velocity of light; k ­ 2pyl; and l is the
average wavelength. We also assume that the radia-
tion from each element source is not blocked by other
elements. Of course, a source’s points whose radia-
tion does not reach the observation points cannot be
reconstructed.

The complex degree of coherence, defined by the time
average of the normalized product of the fields E1, E2

p

at points P1 and P2, sampled at the same time, is
where I0 ­
R

Issrsdd3rs, rs ­ sxs, ys, zsd, and Issrsd
is the intensity per unit volume of the source, i.e.,
IssrmddVm ­ kAmstdAp

mstdl. For each spherical wave
we approximate the distance Ri in the denomina-
tor by the average distance R. In this derivation
we use the quasi-monochromatic assumption2 [i.e.,
kAmst 2 R1, mycdAp

mst 2 R2, mycdl ­ jAmj2] and the com-
plete incoherence of the source1 [i.e., kAmstdAp

nstdl ­
dmnjAmj2].

Fig. 1. Schematic showing the calculation of the degree of
coherence between P1 and P2.
 1996 Optical Society of America
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The quantity sR1 2 R2d in the exponent of relation (1)
is approximated under the far-field assumption [i.e.,
R .. maxsjrsjd] and under the paraxial-zone assump-
tion [i.e., R .. maxsjrjd, where r ­ sx, y, zd]. With
these approximations the complex degree of coherence
between point P1 at sx1, y1, z1d and point P2 at sx2, y2, z2d
is
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where C0 ­ I0
21 exphjkfDz 1 sx̂Dx 1 ŷDydyRgj, â ­

sa1 1 a2dy2, and Da ­ a1 2 a2, with a representing
x, y, z.

A special case of relation (2) is obtained if both points
are in the transverse plane z ­ 0 and one of them is
fixed at the origin. In this case msx, yd becomes a two-
dimensional function given by
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We showed that msx, yd is formally analogous to the
field resulting from coherent propagation through a
spherical lens with a focal length R to the plane
sx, yd from a 3-D coherent source Issrsd located near
the front focal plane. Based on this holographic anal-
ogy we can reconstruct the 3-D source by f irst mea-
suring the complex msx, yd [with a Michelson stellar
interferometer1,2 (MSI), for instance] and then illumi-
nating a transparency msx, yd located at the front focal
plane of a spherical lens by a plane wave incident along
z. The reconstructed 3-D object is obtained around
the rear focal point with the appropriate magnif ica-
tion. Such reconstruction, however, does not yield the
original source distribution Issrsd since, based on the
holographic imaging analogy, each transverse plane zs
contains, in addition to the reconstructed (thus fo-
cused) radiation of that plane, unfocused radiation
from all the other reconstructed source points.

We now demonstrate a method of overcoming the
problem of the unfocused background. A special 3-D
degree of coherence yields, by a Fourier transforma-
tion, the original 3-D object. The degree of coherence
msP1, P2d is measured with the two points P1, P2 on the
xy plane and on a line passing through the origin (i.e.,
x1y2 ­ x2y1). Under these conditions we use the rela-
tion r̂Dr ­ x̂Dx 1 ŷDy, where r̂ ­ fsx1 1 x2d2 1 s y1 1

y2d2g
1/2y2, and Dr ­ fsx1 2 x2d2 1 s y1 2 y2d2g

1/2. If we
further change the variable r̂ to q ­ r̂DryDrmin, rela-
tion (2) becomes
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Equation (4) is the fundamental result here, indicating
that the degree of coherence along the coordinates
sDx, Dy, qd (although it is on one transverse plane) is
a 3-D Fourier transform of the random source’s 3-D
intensity distribution as seen from the far paraxial
zone. msDx, Dy, qd is a degree of coherence obtained
from all the possible values of the two-point separation
sDx, Dyd and the points’ center of gravity r̂ in which the
line connecting the points passes through the origin.
The practical meaning of the variable change from r̂ to
q is that, if for minimum separation Drmin the center
of gravity changes in steps of dq until reaching the
maximum value of r̂max, then for any other value of
Dr the center of gravity changes in steps of dqDrminyDr
until reaching the maximum value of r̂maxDrminyDr.

msDx, Dy, qd is a function of three orthogonal coordi-
nates and a 3-D Fourier transform (with scaling fac-
tors) of the source intensity distribution, now given by
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where FT3-D
21 indicates a 3-D inverse Fourier trans-

form. Relation (5) describes the reconstruction pro-
cedure of the source from the measured degree of
coherence.

When a degree of coherence is measured by a MSI
the actual measured function is a truncated sampled
version of msDx, Dy, qd and can be expressed as
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where sdx, dy, dqd are the intervals between the sam-
ples in the sDx, Dy, qd space and 2sNdx, Mdy , Kdqd is
the volume of the measured coherence function. As
a result of the sampling, the reconstructed image be-
comes
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where the asterisk denotes convolution. From rela-
tion (7) we see that the width of the sinc functions,
which is due to the sampling truncation, determines
the resolution limits of the imaging. Therefore the
minimum planar distance that can be resolved in the
target is sDxs, min, Dys, mind ø lRs1yNdx, 1yMdy d, and
the minimum depth interval that can be resolved is
Dzs, min ø lR2yKDrmindq ­ lR2yr̂maxDrmin. The f ield
of view is determined by the sampling rate, and, for
reconstruction of the full object, its size should be less
than the distance between two d functions. Therefore
the object’s maximum dimensions that can be recon-
structed are sXs, Ys, Zsd ø lRs1ydx, 1ydy, RydqDrmind.
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Fig. 2. (a) 3-D source intensity distribution. (b) Part of
the 3-D visibility function calculated from the interference
gratings of the simulated MSI (q ­ 1 is q ­ 8.5 m). (c)
Reconstruction from the complete 3-D complex visibility
function on a few planes along the zs axis (zs ­ 1 is
zs ­ 400 m).

As an example we simulate the quasi-monochromatic
incoherent light source shown in Fig. 2(a). Each of
the three letters is positioned at a different location
along the zs axis. Each letter is a collection of point
sources of spherical waves. We simulated the MSI
operation at a distance R ­ 105 m from the source
by placing two pinholes at P1 and P2, thus measur-
ing the degree of coherence msP1, P2d. We did this
by measuring in the far f ield the complex visibility
and phase of the fringes resulting from the interfer-
ence of the light from P1 and P2 for every point in
the space sDx, Dy, qd. The simulation’s parameters
are l ­ 10 mm, sXS , YS , ZS d ­ s0.35, 0.15, 800d m,
sdx, dy , dqd ­ s2, 2, 8.5d m, r̂max ­ 80.6 m, Drmin ­
1.4 m, and N ­ M ­ K ­ 10. The resulting 3-D
visibility distribution are shown in Fig. 2(b) for a few
successive values of q. Each value si, j , kd in this
matrix indicates the visibility of the grating obtained
when the pinholes are in the si, j , kd location in the
space sDx, Dy, qd. Finally, the reconstruction of the
source intensity in a few transverse planes along the zs
axis is shown in Figs. 2(c). These results are obtained
by calculation of relation (7). At three transverse
planes a different letter was obtained without the
background of the unfocused radiation, thus yielding
the reconstruction of the object distribution in the
3-D space.

In conclusion, we have developed a formalism and a
method for reconstructing the 3-D intensity distribu-
tion of a random light source from measurements of
the two-point coherence in the far paraxial zone. This
method can be applied to a conventional MSI by selec-
tion of the pinholes’ coordinates sP1, P2d in the degree of
coherence msP1, P2d in the specif ic way described above;
i.e., the pinholes must be situated simultaneously on a
radial line emanating from the origin.
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