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Universal Estimation of Directed Information
Lei Zhao, Young-Han Kim, Haim Permuter, and Tsachy Weissman

Abstract— In this paper, we develop a universal algorithm to
estimate Massey’s directed information for stationary ergodic
processes. The sequential probability assignment inducedby a
universal source code plays the critical role in the estimation.
In particular, we use context tree weighting to implement the
algorithm. Some numerical results are provided to illustrate the
performance of the proposed algorithm.

I. I NTRODUCTION

First introduced by Massey in [1], directed information
arises as a natural counterpart of mutual information for chan-
nel capacity when feedback is present. In [2] and [3], Kramer
extended the use of directed information to discrete memory-
less networks with feedback, including the two-way channel
and the multiple access channel. For a class of stationary
channels with feedback, where the output is a function of the
current and pastm inputs and channel noise, Kim [4] proved
that the feedback capacity is equal to the limit of the supremum
of the normalized directed information from the input to the
output. Tatikonda and Mitter [5] used directed informationto
prove a general feedback channel coding theorem for channels
with memory. In [6], Permuter et al. considered the capacityof
discrete-time channels with feedback where the feedback isa
time-invariant deterministic function of the output. Under mild
conditions, they showed that the capacity is the maximum of
the normalized directed information between the input and
output sequence in the limit. Recently, Permuter et al. [7]
showed that directed information plays an important role in
portfolio theory, data compression, and hypothesis testing,
where causality constraints exist.

Besides information theory, directed information is shownto
be a valuable tool in biology, when inference about causality
is needed. In [8], directed information was used to identify
pairwise influence. The authors in [9] used directed informa-
tion to test the inference of influence in gene networks. Thus
it is of both theoretical and practical interests to developa way
to estimate directed information efficiently.

As we were completing this paper, [10] was brought to
our attention, in which the authors used directed information
to infer causal relationships in ensemble neural spike train
recordings. At the heart of both our estimation framework and
theirs is the estimation of causally conditional entropy. The
main difference is that they took a parametric approach [10,
Assumption 3, Page 10], while our approach is based on non-
parametric universal data compressors, and therefore leading
to stronger universality properties.
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Notation: We use capital letterX to denote a random
variable and use small letterx to denote the corresponding
realization or constant. Calligraphic letterX denotes the
alphabet ofX and|X | denotes the cardinality of the alphabet.

II. PRELIMINARIES

We first give the mathematical definitions of directed infor-
mation and causally conditional entropy, and then discuss the
relation between universal sequential probability assignment
and universal source coding.

A. Directed information

Directed information fromXn to Y n is defined as

I (Xn → Y n) = H(Y n)−H(Y n||Xn), (1)

where H(Y n||Xn) is the causally conditional entropy [2],
defined as

H(Y n||Xn) =

n∑

i=1

H(Yi|Y i−1, X i). (2)

Compared with the definition of mutual information

I(Xn; Y n) = H(Xn)−H(Xn|Y n),

the conditional entropy is replaced by the causal conditioning.
And unlike mutual information, directed information is not
symmetric, i.e.,I (Y n → Xn) 6= I (Xn → Y n) in general.
Other interesting properties of directed information suchas
the conservation law can be found in [2], [11].

For random processesX,Y, which are jointly stationary, we
can define directed information rate [2] as follows:

H(Y||X) = lim
n→∞

1

n
H(Y n||Xn), (3)

I (X→ Y) = lim
n→∞

1

n
I (Xn → Y n) , (4)

The existence of the limit can be checked as follows:

I (X→ Y)

= lim
n→∞

1

n
I(Xn → Y n)

= lim
n→∞

1

n
(H(Y n)−H(Y n||Xn))

= lim
n→∞

1

n

n∑

i=1

H(Yi|Y i−1)− lim
n→∞

1

n

n∑

i=1

H(Yi|Y i−1, X i)

= H(Y0|Y −1
−∞)−H(Y0|X0

−∞, Y −1
−∞),

where the last equality is obtained via the property of Cesáro
mean [12] and standard martingale arguments [13]. Note
that the entropy rateH(Y) of the processY is equal to
H(Y0|Y −1

−∞), andH(Y||X) = H(Y0|X0
−∞, Y −1

−∞). Thus

I (X→ Y) = H(Y)−H(Y||X). (5)
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B. Universal sequential probability assignment and universal
source coding

A sequential probability assignmentQ consists of a set
of conditional probabilities{QXi|xi−1(·), ∀xi−1 ∈ X i−1}∞i=1.
Note thatQ induces a probability distribution onXn in the
obvious way.

Definition 1 A sequential probability assignment Q is univer-
sal if

lim sup
n→∞

1

n
D(PXn ||QXn) = 0 (6)

for any stationary probability measure P .

A source code for ann-block source sequence,Cn, is
defined as a mapping from a source sequencexn to a binary
sequence of finite length, i.e.,

Cn : Xn → {0, 1}∗. (7)

More explicitly,

Cn(xn) = b1, b2, · · · , bln , (8)

whereln = ln(xn) is the code length. Furthermore,Cn is said
to be non-singular ifCn(xn) 6= Cn(yn), ∀xn 6= yn. It is said
to beuniquely decodable if all its extensions are non-singular
[12]. The codeword lengthsln(·) of any uniquely decodable
code must satisfy the Kraft inequality

∑

xn∈Xn

2−ln(xn) ≤ 1. (9)

See [12] for a proof.

For any uniquely decodable code, we have

1

n
Eln(Xn) =

1

n
H(Xn)+

1

n
D(PXn ||QXn)− 1

n
log kn, (10)

where kn =
∑

xn 2−l(xn), and Q(xn) = 2−l(xn)

kn
. Q(xn)

induces a probability measure onXn. With slight abuse of
notation, call this measureQ.

Definition 2 The sequential probability assignment induced
by a source code Cn is the set of conditional probabilities
{QXi|xi−1}ni=1, where

QXi|xi−1(a) =
Q(axi−1)

Q(xi−1)
. (11)

where, axi−1 is a concatenation of symbol a and sequence
xi−1.

Definition 3 A source coding scheme is a sequence of source
codes. It is said to be universal if each code is uniquely
decodable and

lim sup
n→∞

1

n
E [ln(Xn)] = H(X). (12)

for every stationary source X.

The per-symbol expected number of bits based on the
universal source coding scheme is a good estimate ofH(X).

By the Kraft inequality,− 1
n

log kn ≥ 0. Given a universal
source coding scheme and a stationary sourceX, by (10),

lim sup
n→∞

1

n
D(PXn ||QXn)

≤ lim sup
n→∞

(
1

n
Eln(Xn)− 1

n
H(Xn)

)

= 0. (13)

Thus we can construct a universal sequential probability
assignment from a universal coding scheme.

III. E STIMATION OF I(X→ Y)

As we have seen,I(X→ Y) = H(Y) − H(Y||X). In this
section, we will show an estimate ofH(Y||X) based on a
universal sequential probability assignments. Similar method
applies to the estimate ofH(Y).

Let M(X ,Y) be the set of all distribution onX × Y.
Define f as the function that maps a joint distributionPX,Y

of a random vector(X, Y ) to the corresponding conditional
entropyH(Y |X), i.e.,

f(PX,Y ) = −
∑

x,y

PX,Y (x, y) log PY |X(y|x), (14)

where PY |X(·|·) is the conditional distribution induced by
PX,Y .

Lemma 1 For any ǫ > 0, there exists Kǫ > 0 such that for
all P and Q in M(X ,Y):

|f(P )− f(Q)| ≤ ǫ + Kǫ ‖P −Q‖1 ,

where ‖·‖1 is the l1 norm (viewing P and Q as |X ||Y|-
dimensional simplex vectors),

Proof: Fix ǫ > 0. SinceM(X ,Y) is bounded and closed,
f(·) is uniformly continuous. Thus there existsδǫ such that
|f(P ) − f(Q)| ≤ ǫ, if ‖P −Q‖1 ≤ δǫ. Furthermore,f(·) is
bounded byfmax , log |X |+ log |Y|. We have

|f(P )− f(Q)| ≤ ǫ1{‖P−Q‖1≤δǫ} + fmax1{‖P−Q‖1>δǫ}

≤ ǫ + fmax
‖P −Q‖1

δǫ

≤ ǫ +
fmax

δǫ

‖P −Q‖1
= ǫ + Kǫ ‖P −Q‖1 , (15)

whereKǫ = fmax

δǫ
.

Lemma 2 [15] Let X be a stationary ergodic process. If
limk→∞ gk(X) → g(X), w.p. 1, and {gk(·)} are bounded,
then

lim
n→∞

1

n

n∑

k=1

gk

(
T k(X)

)
= Eg(X), w.p. 1 and in L1, (16)

where T (·) is the shift operator.

Now definegk(X,Y) = f(PX0,Y0|X
−1
−k

,Y
−1
−k

) for a jointly
stationary and ergodic process(X,Y). Note that, by mar-
tingale convergence [13],gk(X,Y) → g(X,Y), w.p. 1,
where g(X,Y) = f(PX0,Y0|X

−1
−∞

,Y −1
−∞

). Noting further that
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Eg(X,Y) = H(Y||X), we can apply Lemma 2 and get the
following corollary:

Corollary 1

lim
n→∞

1

n

n∑

k=1

f(PXk,Yk|Xk−1,Y k−1) = H(Y||X) w.p. 1, and in L1.

(17)

Let Q be a universal sequential probability assignment on
(X ×Y)∞. Denote the normalized casual conditional entropy
estimate induced byQ by:

ĤQ(Xn−1, Y n−1) ,
1

n

n∑

i=1

f
(
QXi,Yi|Xi−1,Y i−1

)
(18)

Note thatĤQ(Xn−1, Y n−1) is a random variable, which is a
function of the pair(Xn−1, Y n−1), not to be confused with
deterministic objects such asH(Xn−1, Y n−1), that depend
on the distribution of (Xn−1, Y n−1). Our goal is to prove
that ĤQ is a good estimator ofH(Y||X) if Q is a universal
sequential probability assignment.

Theorem 1 Let Q be a universal sequential probability as-
signment on on (X × Y)∞. Then

lim
n→∞

ĤQ(Xn−1, Y n−1) = H(Y||X) in L1. (19)

Proof: Fix an arbitraryǫ > 0.

E

∣∣∣∣∣ĤQ(Xn−1, Y n−1)− 1

n

n∑

k=1

f
(
PXk,Yk|Xk−1,Y k−1

)
∣∣∣∣∣

= E

∣∣∣∣∣
1

n

n∑

k=1

(
f

(
QXk,Yk|Xk−1,Y k−1

)
− f

(
PXk,Yk|Xk−1,Y k−1

))
∣∣∣∣∣

≤ 1

n
E

n∑

k=1

∣∣f
(
QXk,Yk|Xk−1,Y k−1

)
− f

(
PXk,Yk|Xk−1,Y k−1

)∣∣

(a)

≤ 1

n

n∑

k=1

E

(
ǫ + Kǫ

∥∥QXk,Yk|Xk−1,Y k−1 − PXk,Yk|Xk−1,Y k−1

∥∥
1

)

(b)

≤ Kǫ

n

n∑

k=1

E

[√
1

2
D

(
PXk,Yk|Xk−1,Y k−1 ||QXk,Yk|Xk−1,Y k−1

)
]

+ ǫ

(c)

≤ Kǫ

n

n∑

k=1

√
1

2
E

[
D

(
PXk,Yk|Xk−1,Y k−1 ||QXk,Yk|Xk−1,Y k−1

)]
+ ǫ

= ǫ +
Kǫ

n

n∑

k=1√
1

2
D

(
PXk,Yk|Xk−1,Y k−1 ||QXk,Yk|Xk−1,Y k−1

∣∣Xk−1, Y k−1
)

(d)

≤ ǫ + Kǫ

√
1

2n
×

√√√√
n∑

k=1

D
(
PXk,Yk|Xk−1,Y k−1 ||QXk,Yk|Xk−1,Y k−1

∣∣Xk−1, Y k−1
)

(e)
= ǫ + Kǫ

√
1

2n
D (PXn,Y n ||QXn,Y n)

(20)

where

• (a) comes from Lemma 1,
• (b) is due to Pinsker’s inequality. Note that

both PXk,Yk|Xk−1,Y k−1 and QXk,Yk|Xk−1,Y k−1

are functions of (Xk−1, Y k−1). Thus
D

(
PXk,Yk|Xk−1,Y k−1 ||QXk,Yk|Xk−1,Y k−1

)
is a random

variable,
• (c) and (d) come from the concavity of

√·,
• (e) is because of the chain rule of the Kullback-Leibler

divergence.

lim sup
n→∞

E

∣∣∣ĤQ(Xn−1, Y n−1)−H(Y||X)
∣∣∣

≤ lim sup
n→∞

E

∣∣∣∣∣ĤQ(Xn−1, Y n−1)− 1

n

n∑

k=1

f
(
PXk,Yk|Xk−1,Y k−1

)
∣∣∣∣∣

+ lim sup
n→∞

E

∣∣∣∣∣
1

n

n∑

k=1

f
(
PXk,Yk|Xk−1,Y k−1

)
−H(Y||X)

∣∣∣∣∣

(f)
= lim sup

n→∞
E

∣∣∣∣∣ĤQ(Xn−1, Y n−1)− 1

n

n∑

k=1

f
(
PXk,Yk|Xk−1,Y k−1

)
∣∣∣∣∣

(g)

≤ ǫ + lim sup
n→∞

Kǫ

√
1

2n
D (PXn,Y n ||QXn,Y n)

(h)
= ǫ (21)

where (f) is because of Corollary 1; (g) comes from (20); (h)
is due to Definition 1. Now we can use the arbitrariness ofǫ

to complete the proof.
SetX = ∅. If QY is a universal probability assignment for
Y∞, we have

lim
n→∞

ĤQY
(Y n−1) = H(Y) in L1. (22)

To sum up, provided with universal probability assignments
QY and QX,Y on Y∞ and (X ,Y)∞, respectively, we can
construct an estimate ofI(X → Y) based on a realization
of (X,Y), which converges to the true value inL1. As
we have shown in the previous section, a universal source
coding scheme induces a universal probability assignment.
Thus, using two universal compressors onY and (X,Y),
respectively (Actually, it can be the same source coding
method. Just apply it to different alphabets.), we can have
a good estimate of the directed information rate fromX to
Y.

IV. A LGORITHM AND NUMERICAL EXAMPLES

Given a source realizationxn, yn and universal source
codeCY

n on Y and CX,Y
n on (X,Y), we use the sequential

probability assignmentsQY and QX,Y induced byCY
n and

CX,Y
n to calculateĤQY

(yn−1) andĤQX,Y
(xn−1, yn−1). The

first one is our estimate ofH(Y) and the second one is our
estimate ofH(Y||X). The difference of the two gives the
estimate ofI(X→ Y). We have proved that whenn is large,
our estimates will be close to the true value (in theL1 sense.).

Although our theorem holds true for any universal source
coding scheme, in practice, a scheme with low complexity
and fast rates of convergence is preferred. We emphasize here
that the computation of the sequential probability assignment
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(11) induced by an arbitrary source code is computationally
non-trivial in general.

In our implementation, we choose the context tree weighting
as our universal source coding scheme. One advantage is
that the complexity of the algorithm is linear in the block
lengthn and the algorithm provides the sequential probability
assignments{QXi|xi−1}ni=1 directly [16]. Note that while the
original context tree weighting was tuned for binary sequence,
it has been extended for larger alphabet [17]. As a first step
experiment, we assume a depthD of the context tree, which
is larger than the memory of the source. This short coming
can be overcome by the method introduced in [18], although
we did not implement it here. Our algorithm of estimating
H(Y||X) is explained in Algorithm 1.H(Y) can be obtained
similarly as we have discussed.

Algorithm 1 Universal estimation algorithm based on context
tree weighting

Fix block lengthn and context tree depthD.
Ĥ ← 0
for i← 1, n do

zi = (xi, yi) ⊲ Make a super symbol with alphabet
size |X ||Y|
end for
for i← D + 1, n do

Gather the contextzi−1
i−D for the ith symbolzi.

Update the context tree. The estimated probability
P̂Zi|zi−1(·) is obtained along the way.

UpdateĤ asĤ ← Ĥ + f
(
P̂Xi,Yi|yi−1,xi−1

)
.

end for
Ĥ ← 1

n
Ĥ

Ĥ is the estimation ofH(Y||X).

A. Stationary process passing through a DMC

Let X be a binary first order Markov process with transition
probability p, i.e. P(Xn 6= Xn−1|Xn−1) = p. Let Y be the
output of a binary symmetric channel with parameterǫ with
X the input process, illustrated in Fig. 1.

· · · , X−1, X0, X1, · · · · · · , Y−1, Y0, Y1, · · ·00

11 ǫ

ǫ

Fig. 1. Example 1 setup:X is a binary first order Markov process.

We run our universal estimation algorithm to estimate the
directed information rateI (Y→ X) with p = 0.1 and ǫ =
0.4. The results are shown in Fig. 2. The depth of the context
tree is set to be3. As data length grows, the estimated vale is
getting closer to the true value.

B. Presence of shifts

We use the same setup in Section IV-A. Instead of observing
Xn directly, we assume that a shifted version ofXn is actually

10
4

10
5

10
6

6

7

8

9

10

11

12
x 10

−3

n

I(Y−>X)

 

 
estimated
true value

Fig. 2. X is a binary first order Markov process with transition probability
0.1. Y is the result ofX passing through a binary symmetric channel with
parameter 0.4. The simulation was performed four times, each with data length
104, 104.5, 105, 105.5, 106 and context tree depth 3.

observed, i.e.Zi = Xi+d, whered is the unit of shifts. We
use our algorithm to estimateH(Y||Z) for differentd values.
Note thatH(Yi|Y i−1, Zi) = H(Yi|Xi) for d ≥ 0. For d < 0,
H(Yi|Y i−1, Zi) increases withd for largei.

We run the algorithm forp = 0.2 and ǫ = 0.4 with block
length 200000 and context tree depth 3. Note thatH(Yi|Xi) =
H2(0.2) when i → ∞. In Fig. 3, the simulation results is
plotted for different values ofd.

−3 −2 −1 0 1 2 3
0.97

0.975

0.98

0.985

0.99

0.995

1

 

 

estimated H(Y||Z)
H

2
(0.4)

d

Fig. 3. X is a binary first order Markov process with transition probability
0.2. Y is the result ofX passing through a binary symmetric channel with
parameter 0.4.Z is a shifted version ofX with d units of shift. The algorithm
estimatesH(Y||Z) with n = 200000 and context tree depth 6.

C. Detection of the presence of feedback.

The following example is used by Massey to demonstrate
the difference between mutual information (MI) and directed
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information (DI) when feedback is present in a discrete memo-
ryless channel. The input of a binary symmetric channel is the
delayed output of the channel, Fig. 4. The mutual information

· · · , X−1, X0, X1, · · · · · · , Y−1, Y0, Y1, · · ·

YnYn−1

00

11 ǫ

ǫ

unit delay

Fig. 4. Example 2 setup: The output of a binary symmetric channel is used
as the input to the channel with unit delay.

rate and directed information can be easily computed in the
following way:

I(X;Y) = lim
n→∞

1

n
I(Xn; Y n)

= lim
n→∞

1

n
H(Y n)− lim

n→∞

1

n
H(Y n|Xn)

= lim
n→∞

1

n
H(Y n)− lim

n→∞

1

n
H(Yn|Xn)

=H2(ǫ), (23)

where the second last equality is becauseXi = Yi−1; the last
equality comes from the factH(Yn|Xn) is bounded by 1.
H2(t) , −t log2 t− (1− t) log2(1− t). Similarly,

I (X→ Y)

= lim
n→∞

1

n
I(Xn → Y n)

= lim
n→∞

1

n

n∑

i=1

H(Yi|Y i−1)− lim
n→∞

1

n

n∑

i=1

H(Yi|Y i−1, X i)

= lim
n→∞

1

n

n∑

i=1

H(Yi|Yi−1)− lim
n→∞

1

n

n∑

i=1

H(Yi|Yi−1)

= 0 (24)

In this setup, the difference between the estimated MI rate
and DI rate can be used as an indicator of the presence of
feedback. For differentǫ value, we estimate the MI rate and
DI rate for data sizen = 105, shown in Fig. 5.
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