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Abstract— In this paper, we develop a universal algorithm to Notation: We use capital letteX to denote a random
estimate Massey's directed information for stationary er@dic variable and use small letter to denote the corresponding
processes. The sequential probability assignment inducebly a aqjization or constant. Calligraphic lettet denotes the

universal source code plays the critical role in the estimaon. -
In particular, we use context tree weighting to implement tre alphabet ofX" and|X| denotes the cardinality of the alphabet.

algorithm. Some numerical results are provided to illustrae the 1

performance of the proposed algorithm. - PRELIMINARIES

We first give the mathematical definitions of directed infor-
mation and causally conditional entropy, and then discliss t
. INTRODUCTION relation between universal sequential probability agsignt
First introduced by Massey in [1], directed informatiorand universal source coding.
arises as a natural counterpart of mutual information famneh
nel capacity when feedback is present. In [2] and [3], Kraméx Directed information
extended the use of directed information to discrete memory Directed information fromX™ to Y is defined as
less networks with feedback, including the two-way channel
and the multiple access channel. For a class of stationary I(X" = Y")=HY") - HY"[[X"), @)

channels with feedback, where the output is a function of thghere 77(y(|X™) is the causally conditional entropy [2],
current and past: inputs and channel noise, Kim [4] provedyefined as

that the feedback capacity is equal to the limit of the supmem n
of the normalized directed information from the input to the H(Y™||X") = ZH(YAY“HX@. 2)
output. Tatikonda and Mitter [5] used directed informatton im1

prove a general feedback channel coding theorem for Chﬁn'@l)mpared with the definition of mutual information
with memory. In [6], Permuter et al. considered the capadfity

discrete-time channels with feedback where the feedbaak is I(X™Y")=H(X") — HX"[Y"™),
time-invariant deterministic function of the output. Undeild tr}e conditional entropy is replaced by the causal condiign
conditions, _they showed t_hat the capacity Is the maximum chd unlike mutual information, directed information is not
the normalized directed information between the input an mmetric, i.e.I (Y" — X™) £ (X" — Y™ in general
output sequence in the limit. .Recently, Pe.rmuter etal [ ther interesting properties of directed information sash
showed that directed information plays an important role N & conservation law can be found in 2, [11]

portfolio theory, data compression, and hypothesis tgstin For random processé&, Y, which are joi,ntly s.tationary we
where causality constraints exist. T '

Besides information theory, directed information is shaan can define directed information rate [2] as follows:

be a valuable tool in biology, when inference about causalit H(Y||X) = lim lH(Yn”Xn)’ ©)
is needed. In [8], directed information was used to identify n—oomn
pairwise influence. The authors in [9] used directed informa I[(X—Y)= lim l] (X" = Y"), (4)
tion to test the inference of influence in gene networks. Thus n—oomn
it is of both theoretical and practical interests to develapay The existence of the limit can be checked as follows:
to estimate directed information efficiently. I[(X—Y)
As we were completing this paper, [10] was brought to
our attention, in which the authors used directed inforomati = lim —I(X" — Y™)

n—oco N

to infer causal relationships in ensemble neural spikentrai 1

recordings. At the heart of both our estimation framewor#t an = lim — (H(Y™") — H(Y"[[X"))
theirs is the estimation of causally conditional entropeT

main difference is that they took a parametric approach [10~=
Assumption 3, Page 10], while our approach is based on non-
parametric universal data compressors, and thereforéntpad = H(Yo|Y L) — H(Yo| X ., Y1),
to stronger universality properties.

1< . 1< . .
HY;lY7 ) = lim =Y H(Y|Y ! Xt
; (Yi|y' ) nggon; (VY= X7)

lim —
n—oo 1, 4

where the last equality is obtained via the property of @esa
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B. Universal sequential probability assignment and universal By the Kraft inequalit ,—% log k,, > 0. Given a universal

source coding source coding scheme and a stationary soXcéy (10),
1
. . . ) lim sup — D(PXn||QXn)
A sequential probability assignmeid) consists of a set n—00

. e ) . i—1 i—11 00 1
of condltlona_\l probablllues{QXé‘_wl(_ ),_V:c ed _}1-:1 < limsup —Eln(X") — ZH(X™)
Note that@ induces a probability distribution oX™ in the n—oo \7 n
obvious way. =0. (13)
Definition 1 A sequential probability assignment @ isuniver- Thus we can construct a universal sequential probability
sal if assignment from a universal coding scheme.

1
limsup —D(Px»[|Qx») = 0 (6)
n—0o0 [1l. ESTIMATION OF (X — Y)

for any stationary probability measure P. As we have seer(X — Y) = H(Y) — H(Y||X). In this

section, we will show an estimate &f(Y||X) based on a
universal sequential probability assignments. Similathoe
applies to the estimate @f(Y).

Let M(X,Y) be the set of all distribution ot x ).

A source code for am-block source sequence&,, is
defined as a mapping from a source sequericéo a binary
sequence of finite length, i.e.,

Cp: X" — {0,1}". (7) Define f as the function that maps a joint distributid?x y
o of a random vectofX,Y") to the corresponding conditional
More explicitly, entropy H(Y | X), i.e.,
Cn(z") = b1,b2,--- by, (8) f(Pxy) = ZPXY (z,y)log Py|x (ylz),  (14)
wherel,, = 1,,(z™) is the code length. Furthermoi@, is said T,y

to be non-singular i, (¢") # Cn(y"), V2™ # y". Itis said where Pyx(-|-) is the conditional distribution induced by
to beuniquely decodable if all its extensions are non- smgularpX v.

[12]. The codeword lengths,(-) of any uniquely decodable .
code must satisfy the Kraft inequality Lemma 1 For any € > 0, there exists K. > 0 such that for

- all Pand @ in M(X,Y):
27" <1, 9
2 = ©) ()= F(Q) <+ K. |P—0Ql, .

See [12] for a proof. where ||-||, is the I; norm (viewing P and @ as |X||Y|-
dimensional simplex vectors),

1 1 1 1 Proof: Fix e > 0. SinceM (X, Y) is bounded and closed,
—El,(X") = —H(X")+—D(PX71||QXn)— —logky, (10) f() is uniformly continuous. Thus there exisfs such that
" " |f(P) = f(Q)] < e if |P—Ql, < d. Furthermoref(-) is

For any uniquely decodable code, we have

where k, = 3. 271" and Q(=") = 7:“) Q(z") bounded byfm.x = log|X| + log |V|. We have

induces a probab|I|ty measure oti™. With sl|ght abuse of

notation, call this measur@. [f(P) = F(Q)] < elyp—q, <o} + fmaxL{P-ql, >5.}
B e

Definition 2 The sequential probability assignment induced = max 5.

by a source code C,, is the set of conditional probabilities fmdx

{Q@x;jzi-1}i1, where <e+—[P-Ql,

-1 Q) = —F———.
il Qx'~1) where K, = % ]

where, az’~! is a concatenation of symbol a and sequence | emma 2 [15] Let X be a stationary ergodic process. If
at =t limy, o0 gr(X) — ¢(X), wp. 1, and {g(-)} are bounded,

then
Definition 3 A source coding scheme is a sequence of source

codes. It is said to be universal if each code is uniquely li 1 . TH(X)) — Ea(X). wo. 1 andin I 16
decodable and Jim = g (TH(X)) = Eg(X), wp 1, (16)

lim sup lE [l.(X™)] = H(X). (12) where T'(-) is the shift operator.

for every stationary source X. Now definegy(X, Y) = J(Px, yx- y-}) for a jointly

stationary and ergodic proces$X,Y). Note that, by mar-

The per-symbol expected number of bits based on tHegale convergence [13]g.(X,Y) — ¢(X,Y), wp. 1,
universal source coding scheme is a good estimaté(®f). Whereg(X,Y) = f(Px_ y, x-1 y-1). Noting further that



E

Eg(X,Y) = H(Y||X), we can apply LemmB]2 and get the « (a) comes from Lemm@l 1,

following corollary: e (b) is due to Pinsker's inequality. Note that
both P k-1 yk—1 and Q k-1 yk—1
Corollary 1 X, Y| XP=1Y X, Yie| XELY
y are functions of (XKL yhr-l), Thus
R . D (P —le] i1 yr—1) is a random
nlinéog;f(PXk,mXH,ykfl) = H(Y||X) wp. 1, and in L. var(iaglkéfk‘x vt @iy yeet)

(17) « (c) and (d) come from the concavity f-,

) ) - ) « (e) is because of the chain rule of the Kullback-Leibler
Let @ be a universal sequential probability assignment on divergence.

(X x Y)°°. Denote the normalized casual conditional entropy
estimate induced by) by:
hmsupE’HQ (X"t Yyl - (Y||X)’

1 - n— o0
H (X'n, 1 Y"l 1 é E Z Qxhnlxi—l’}/i—l) (18) 1 n
=1 <limsupE HQ(X” ! ,Yyn— 1 —Zf PXk7Yk‘Xk—1,Yk—l)
Note thatHo (X", Y"~!) is arandom variable, which is a e "=

function of the pair(X”~!,Y"~1), not to be confused with . 1
deterministic objects such ad(X"~! y"~1), that depend  +limsupE o

n—oo

> F (Pxyigxrye1) — H<Y||X>|

on thedistribution of (X™~',Y"~!). Our goal is to prove k=1
that HQ is a good esnmator oH(Y||X) if @ is a universal ) n—1 yrn—1 1 ¢
sequential probability assignment. nf;pE Ho(X"1y"!) = n ;f (Pxicvixr-t,ye-)
Theorem 1 Let Q be a universal sequential probability as- () 1
signment on on (X’ x YV)*°. Then <e+ limsup K- nD (Pxn yn||Qxn yn)
lim Ho(X" L y" 1) =H(Y|[X)inL. (19) ®, (21)
Proof: Fix an arbitrarye > 0. where (f) is because of Corollafy 1; (g) comes frdml (20); (h)
L is due to Definitior[Il. Now we can use the arbitrariness of
Ho(X" 1Y) = =3 f (Px vy xi-1,ye1) to complete the proof. n
"= SetX = (. If Qv is a universal probability assignment for
1 & V>, we have
E|- Q yeer) = f (P yke _ .
n ]; (f( X, Yi|XF-1 Yk 1) ( X, Yi| XE-1 Yk 1)) nh‘}H;o HQY (Ynfl) _ H(Y) in L. (22)

To sum up, provided with universal probability assignments

S
m
NE

Q —1yk-1) = f(P —1yk- :
f T (Qxevperryin) (Pt yes)] Qv and Qxy on Y and (X,))>, respectively, we can

k=
1o construct an estimate d{X — Y) based on a realization
_ZE (e+K€ 1@, v xk—1, 01 —PXk’Yk‘Xkﬂyklel) of (X,Y), which converges to the true value ih;. As
"= we have shown in the previous section, a universal source

< 1 coding scheme induces a universal probability assignment.
— Z E §D (PX;C.,YHX’C*l,kal||QX;€,Y;€\X’C*1,Y’C*1)

+¢€ Thus, using two universal compressors &hand (X,Y),
respectively (Actually, it can be the same source coding

_gzn: \/EE [D (P e ||Q . . )] Le method. Just apply it to different alphabets.), we can have

n &=V2 Ko, Vi XEL YRR Vi | X1, YR a good estimate of the directed information rate fr¥mto

R Y.

k=1 IV. ALGORITHM AND NUMERICAL EXAMPLES

Given a source realization™,y™ and universal source
codeCY onY andCXY on (X,Y), we use the sequential
1 probability assignments)y and Qx.y induced byCY and
€+ Keyfo-x CXY to calculateH o, (y* ) and Hoy (21, y™ ). The
- first one is our estimate dfi(Y) and the second one is our
k—1 yk—1 estimate of H(Y||X). The difference of the two gives the
ZD (P veppcn -yt 1@ vigosyns [ X7, VA estimate oﬂ(}(( —|>| Y)). We have proved that when ig large,
our estimates will be close to the true value (in fhesense.).
6 + K \/ D (Pxn yn||Qxn yn) Although our theorem holds true for any universal source
coding scheme, in practice, a scheme with low complexity
(20) i i
and fast rates of convergence is preferred. We emphasiee her
where that the computation of the sequential probability assigmim




(I1) induced by an arbitrary source code is computationa X107 Ir=>%)
non-trivial in general.

In our implementation, we choose the context tree weighti
as our universal source coding scheme. One advantage
that the complexity of the algorithm is linear in the blocl
lengthn and the algorithm provides the sequential probabilit
assignment§ Q) x, |- }i—, directly [16]. Note that while the

—6— estimated
= = =true value

11

10

original context tree weighting was tuned for binary seaqégn or
it has been extended for larger alphabet [17]. As a first st
experiment, we assume a degthof the context tree, which 8f
is larger than the memory of the source. This short comil

can be overcome by the method introduced in [18], althou 7t ]
we did not implement it here. Our algorithm of estimatin

H(Y||X) is explained in AlgorithniLH(Y) can be obtained ¢ ‘

similarly as we have discussed. 10" 10° 10°

n

Algorithm 1 Universal estimation algorithm based on Conte)fitig. 2. X is a binary first order Markov process with transition praligh

tree weighting 0.1.Y is the result ofX passing through a binary symmetric channel with
Fix block lengthn and context tree depth. parameter 0.4. The simulation was performed four timed) edih data length

10%,10%5,10%,10%5,10% and context tree depth 3.

H+~—0
for 1 +— 1, n do

zi = (zi,yi) > Make a super symbol with alphabet0
size |X||Y|
end for
for i — D+ 1, ndo

Gather the context! ;, for the ith symbolz;.

Update the context tree. The estimated probabili
Py, .i-1(-) is obtained along the way.

bserved, i.eZ; = X;q4, Wwhered is the unit of shifts. We
use our algorithm to estimat (Y ||Z) for differentd values.
Note thatH (Y;|Y*~1, Z%) = H(Y;|X;) for d > 0. Ford < 0,
H(Y;|Y*=1, Z%) increases withl for largei.

We run the algorithm fop = 0.2 ande = 0.4 with block
%ngth 200000 and context tree depth 3. Note #igY;| X;) =
H5(0.2) wheni — oo. In Fig.[3, the simulation results is

UpdateH asH — H + f (Pxi,myifl,mifl)- plotted for different values ofl.
end for
H—1ip
H is the estimation oH(Y||X). L *

0.995

—O— estimated H(Y||Z)
1 H,(0.4)

A. Sationary process passing through a DMC

Let X be a binary first order Markov process with transitiol
probability p, i.e. P(X,, # X,-1|X,-1) = p. Let’ Y be the
output of a binary symmetric channel with parametewith 0.985F
X the input process, illustrated in Figl. 1.

0.99

0.98 -

sy X1, Xo, Xy 0 ¢ ~ 0} . Yu.YoY, -
-_ >< > 0975}
1 Z_££ > 1
) ) ) ] -3 -2 -1 0 1 2 3
Fig. 1. Example 1 setugX is a binary first order Markov process. d

We run our universal estimation algorithm to estimate thﬁg. 3. X is a binary first order Markov process with transition prdbigh

directed information raté (Y — X) with p = 0.1 ande = 0.2.Y is the result ofX passing through a binary symmetric channel with

0.4. The results are shown in F@. 2. The depth of the contel@rameter 0.4Z is a shifted version oX with d units of shift. The algorithm
. ) . -estimatesH (Y'||Z) with n = 200000 and context tree depth 6.

tree is set to b&. As data length grows, the estimated vale is

getting closer to the true value.

B. Presence of shifts C. Detection of the presence of feedback.

We use the same setup in Secfion IV-A. Instead of observingThe following example is used by Massey to demonstrate
X™ directly, we assume that a shifted versiondf is actually the difference between mutual information (MI) and direlcte



information (DI) when feedback is present in a discrete mem 1 n=10"
ryless channel. The input of a binary symmetric channelas t
delayed output of the channel, Fig. 4. The mutual infornmatic Wb o
\\\\\\\ o
oo
Yo Y, 08r o ]
unit delay *  Estimated DI rate
0.6 <> &  Estimated MI rate
\\<)' = = = True DI rate
EE A True Ml rate
0.4t =
X_1,X0,X1,-- ] O € o .Yu.YoY, |- o2k o i
>< s
1 € 1 OF = e o e e e e e o - ]
. . . . _02 ; ; ' ;
Fig. 4. Example 2 setup: The output of a binary symmetric okhis used 0 0.1 0.2 0.3 0.4 0.5
as the input to the channel with unit delay. €

rate and directed information can be easily computed in th 5 Estimaton of Mirate and DI rate when feedback is enes

following way:

. 1 n.own [7] H. Permuter, Y. H. Kim, and T. Weissman, “Interpretagon
I(X;Y) ZHILH;O EI(X Y") of Directed Information in Portfolio Theory, Data Compriess
1 1 and Hypothesis Testing”,|[EEE Trans. on Inf. Th., submitted,
= lim _H(Y") — lim _H(Y"|X") http://arxiv.org/abs/0912. 4872
n—o0 7 n—oo n [8] P. Mathai, N. Martins, B. Shapiro "On the Detection of @eNetwork
. 1 n . 1 n Interconnections using Directed Mutual Information”, I2®07.
:nlggo EH(Y ) — nlggo EH(YHX ) [9] A. Rao, A. O. Hero lil, D. J. States, and J. D. Engel, “UsiDgected
Information to Build Biologically Relevant Influence Netvis,” Journal
=H, (6)7 (23) on Bioinformatics and Computational Biology, vol. 6, no.3, pp. 493-519,
L June 2008.
where the second last equality is becai§e= Y;_; the last [10] C. Quinn, T. P. Coleman, N. Kiyavash, and N. G. Hatsopsul'Esti-
equality comes from the fack/ (Y, |X™) is bounded by 1. matinglg th(_ekdirec_ted info(;r_natis)n to;rllfefréausal rglat;ldpshn en_semple
Hy(t) A “tlogyt — (1 —t)logy(1 — t). Similarly, neural spike train recordingsJournal of Computational Neuroscience:

Foecial Issue on Methods of Information Theory in Computational
Neuroscience, submitted Dec 15, 2009,

I(X - Y) [11] J. Massey and P.C. Massey. Conservation of mutual anectdd
. 1 information. Proc. Int. Symp. Information Theory (IST-05), pages 157—
= lim —I(X" —=Y") 158, 2005.
n—eon [12] T. M. Cover and J. A. ThomagElements of Information Theory. Wiley,

i1 i1 xi New-York, 2nd edition, 2006.
= HILH;O n ZH Yi|Y HILH;O n ZH YilY X') [13] Leo Breiman,Probability, SIAM: Society for Industrial and Applied
Mathematics, May, 1992
[14] M. Weinberger, N. Merhav, and M. Feder “Optimal SeqisnProb-

_ - _ - abilty Assignment for Individual Sequencd€EE Trans. on Inf. Th.,
S n Z H(Yi|Yi-1) Jim Z H(Yi[Yi-1) Vol. 40, No. 2, March 1994, pp 384 —pp396.

i=1 i=1 [15] R. Durrett,Probability: Theory and Example, Duxbury Press, 3 edition,
=0 (24) 2004.
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P, 1995, pp 653 — 664.
and DI rate can be used as an indicator of the presence 19] Ti. 3. Tialkens, Y. M. Shtarkov, and F. M. J. Willems, ‘Geential

feedback. For different value, we estimate the Ml rate an Weighting Algorithms for Multi-Alphabet Sources@th Joint Swedish-
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