Introduction to $\operatorname{LAT} T_{E X}$

Yuval Carmel

Ben-Gurion University

June 30, 2009

Introduction

${ }^{1}{ }^{A} T_{E X}$ is not a word processor!
Word, for instance, is a WYSIWYG - What you see is what you get.
LATEX is WYSIWYM - What you see is what you mean.

What you can do in ATEX is:

- Generate papers for journals and conferences
- Control and organize large documents
- Generate complex math formulas
- Manage bibliographies, references and indexes
- Support endless number of fonts and styles

Some examples: organize large documents

Document is actually a project, consist of few files.

Some examples: tables

Fruits	Summer	Autumn	Winter	Spring
Apple	\checkmark	\checkmark	\checkmark	\checkmark
Pear				\checkmark
Watermelon	\checkmark			
Grapes	\checkmark			
Orange		\checkmark	\checkmark	

Some examples: complex math formulas

Automatic numbering:

$$
\begin{gather*}
y=\int_{0}^{\infty} \frac{\beta x^{2}}{2 \pi \arcsin \left(\frac{x}{\pi}\right)} d x \tag{1}\\
E=m c^{2} \tag{2}
\end{gather*}
$$

Avoid numbering, ident and provide array of equations:

$$
\begin{aligned}
\left|\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} X_{n} e^{j 2 \pi k n \Delta f T}\right|^{2} & \leq \frac{1}{N} \sum_{n=0}^{N-1}\left|X_{n} e^{j 2 \pi k n \Delta f T}\right|^{2} \\
& =\frac{1}{N} \sum_{n=0}^{N-1}\left|X_{n}\right|^{2} \sum_{n=0}^{N-1}\left|e^{j 2 \pi k n \Delta f T}\right|^{2}
\end{aligned}
$$

Start writing in $\operatorname{AT} T_{E X}$

- Install MiKTeX
- Install Ghostscript
- Install either TeXnicCenter or LEd
- Start writing!

Start writing in $\operatorname{LA} T_{E} X$

Setting the document:

LATEX code

\documentclass\{article\}
\begin\{document\} }
Hello world!
\end\{document\} }
And the result is:

Result
Hello world!

I have a comment to make ...

```
LATEX code
\documentclass{article}
\begin{document}
Hello world!
%But I have a comment to make!
\end{document}
```

And the result is:

Result
 Hello world!

Files, files, files

It is time to save the text into a file!

Simple $\operatorname{AR} T_{E X}$ file extension is *.tex

Files, files, files

Common file types:

- *.tex - document description file (text).
- *. bib - bibliography information (text).
- *.dvi - document description file (binary), can be converted to ps/pdf or be preview using YAP.
- *.ps - description language of documents.
- *.pdf - evolution of *.ps files, commonly used.
- *.bst - BibTeX style description file (text).
- *.sty - document style description file (text).

Document with class!

The \documentclass[options] \{class\} sets some basic document properties.
class:

- article - for journals (no chapters, just sections)
- report - used for thesis (chapters allowed)
- book, letter and additional custom made...
options:
- 11p - or any other value, set the font size
- a4paper - set the page size
- onecolumn, twocolumn - split (or not) the text into 2 columns

I have a package for you

ATEX allows adding additional packages.
Those packages enriches the ${ }^{A T} T_{E X}$ fonts, symbols and possibilities.

For instance: sepackage\{slashbox\}allows:undefinedundefinedundefined

	Y	0
X	1	
0	$1 / 3$	$1 / 3$
1	0	$1 / 3$

Where in regular ${ }^{A} T_{E} \mathrm{X}$, this table slash is not supported.

Some order

ATEX has a simple way to make the document be in order, there are:

- \part\{\} - everything but a letter class
- \chapter\{\} - books and reports
- \section\{\} - everything but a letter class
- \subsection\{\} - everything but a letter class
- \subsubsection\{\} - everything but a letter class
- \paragraph\{\} - everything but a letter class
- \subparagraph\{\} - everything but a letter class

Some order - example:

LATEX code\section\{Introduction\}\subsection\{Sub Introduction\}

\section\{Another Introduction\}\section*\{Just Introduction\}\subsection\{Sub Just Introduction\}

Result
1 Introduction
1.1 Sub Introduction
2 Another IntroductionJust Introduction2.1 Sub Just Introduction

Shopping list

ATEX code

\begin\{itemize\}
 - Item 1. \\ \begin\{itemize\} } \\
- List 2, Item 1 \\ \end\{itemize\} } \\
- Item 2. \\ \end\{itemize\} }
}

Result

- Item 1.

List 2, Item 1

- Item 2.

Shopping list, what else do we have in the basket?
On top of bullets, one can have:
enumerate:
(1) enumerate
(2) enumerate (too)
description:
description 1. description
description 2. description too
list:
same label: First item in the list
same label: Second item in the list

Setting up the table

```
LATEX code
\begin{tabular}[h]{|l||c|c|}
\hline
this & is & a table\\ \hline
this is & the second & row \\ \hline \hline
\end{tabular}
```


Result

this	is	a table
this is	the second	row

Font fashion

LATEX code

\tiny\{tiny\}
\large\{large\}
\Large $\{$ Large \}

Result

tiny large Large
Sizes, from tiny to huge:
\tiny, \scriptsize, \footnotesize, \small, \normalsize, \large, \Large, \LARGE, \huge, \Huge.

Font fashion, the bold and the beautiful

```
LATEX code
\textit{Italic}
\textbf{Bold}
\underline{Underline}
\textsc{Small Capital}
\emph{Emphasize}
```

```
Result
Italic
Bold
Underline
Small Capital
Emphasize
```


Font fashion, the text collection

```
LATEX code
\textrm{roman font}
\textsf{sans serif font}
\texttt{teletype font, it also called monospace font}
```

```
Result
roman font
sans serif font
teletype font, it also called monospace font
```


Font fashion, the math collection

```
LATEX code
\begin{align*}
&\mathcal{X,Y} ~ \text{like in information theory} \\
&\mathfrak{L,F} ~ \text{like Laplace and Fourier transforms}
&\mathbb{R,C} ~ \text{like Real numbers and Complex numbers}
\end{align*}
```


Result

\mathcal{X}, \mathcal{Y} like in information theory
$\mathfrak{L}, \mathfrak{F}$ like Laplace and Fourier transforms
\mathbb{R}, \mathbb{C} like Real numbers and Complex numbers

Do the math

One of the most powerful parts of $A T_{E} X$ is the formula formating and writing.

In addition to the $A T_{E X}$ basic math support, additional packages can provide more symbols and can make formulas look better.

Some of the popular packages are the amsmath and amssymb.

Math, the ABC

There are few main ways to write equations and formulas in $\Delta \mathrm{A} T_{\mathrm{E}} \mathrm{X}$:

- $\$ \mathrm{y}=\mathrm{x} \$$ is used to insert formula or equation inside text
- \begin\{equation\} coupled with \end\{equation\} }
- \begin\{eqnarray\} coupled with \end\{eqnarray\} }
- \lefteqn is rarely used for splitting formulas

While the equation can support only one line of equations, eqnarray supports multiple lines and helps align the equations.

Math, you need to give me an example

LTTEX code

This is a text with an equation $\$ y=2 x+3.1 \mathrm{~S}+1.2 \mathrm{f} \$$ inside.
\begin\{eqnarray\} }
$y \&=\&(x+2)^{\wedge} 2 \backslash \backslash$
$\&=\&(x+2)(x+2) \backslash \backslash$
\& $=\& x^{\wedge} 2+2 x+2 x+4 \backslash \backslash$
\&=\& $x \wedge 2+4 x+4$
\end\{eqnarray\} }

Result

This is a text with an equation $y=2 x+3.1 S+1.2 f$ inside.

$$
\begin{align*}
y & =(x+2)^{2} \tag{1}\\
& =(x+2)(x+2) \tag{2}\\
& =x^{2}+2 x+2 x+4 \tag{3}\\
& =x^{2}+4 x+4 \tag{4}
\end{align*}
$$

My two cents...

ATEX code

\begin\{eqnarray\}

}```
y & = & (x+2) ^{10}\\
 & = & (x+2) (x+2)(x+2)(x+2)(x+2) \nonumber \\
 & & (x+2)(x+2)(x+2)(x+2)(x+2) \\
 & = & \dots \nonumber
\end{eqnarray}
```


## Result

$$
\begin{align*}
y= & (x+2)^{10}  \tag{1}\\
= & (x+2)(x+2)(x+2)(x+2)(x+2) \\
& (x+2)(x+2)(x+2)(x+2)(x+2) \tag{2}
\end{align*}
$$

## Greek alphabet

The Greek alphabet is used in math mode.
Capital Greek letters are spelled the same as lower case Greek letters but with capital letter in the start:

```
LATEX code
α, γ, Γ, ϵ and ε\\
λ, ω, τ and σ\\
Σ, 0, β and Ω\\
\aleph
```

```
Result
\alpha,\gamma, Г, \epsilon and }
\lambda,\omega,\tau and }
\Sigma,0,\beta and \Omega
\aleph
```


## SUPERscript

Adding argument superscript or subscript notation is very simple LTEX code
\begin\{eqnarray*\} }
\&t_0\& $\backslash \backslash$
\&f_\{cutoff\}\&<br>
$\& x^{\wedge} 2 \& \backslash \backslash$
$\& e^{\wedge}\{j \quad(2 \backslash p i f t+\backslash p h i)\} \&$
\end\{eqnarray*\} }

## Result

$$
\begin{gathered}
t_{0} \\
f_{\text {cutoff }} \\
x^{2} \\
e^{j(2 \pi f t+\phi)}
\end{gathered}
$$

## Getting on top of things

## LTTEX code

\begin\{eqnarray*\} }
$\& \backslash f r a c\{1\}\{2\} \& \backslash \backslash$
$\& \backslash f r a c\{x\}\{\backslash$ frac $\{x+y\}\{2 y+z\}\} \& \backslash \backslash$
$\& 2 x+4 \backslash$ stackrel $\{(\mathrm{a})\}\{=\} 4 \& \backslash \backslash$
\& $\backslash$ binom $\{5\}\{2\}=\backslash$ frac $\{5!\}\{3!2!\} \&$
\end\{eqnarray*\} }

## Result

$$
\begin{gathered}
\frac{1}{2} \\
\frac{x}{\frac{x}{2 y+y}} \\
2 x+4 \stackrel{(a)}{=} 4 \\
\binom{5}{2}=\frac{5!}{3!2!}
\end{gathered}
$$

## The collection

Summation, multiplication and integration are very easy:

## ATEX code

\begin\{eqnarray\} }
\prod_\{l=1\}^L
\sum_\{n=0\}へ\{N-1\}
\int_0^\{\infty\}
\iiint
\oint
\int_\{\frac\{3\pi\}\{4\}\}へ\{\frac\{7\pi\}\{4\}\} \nonumber
\end\{eqnarray\} }
Result

$$
\prod_{I=1}^{L} \sum_{n=0}^{N-1} \int_{0}^{\infty} \iiint \oint \int_{\frac{3 \pi}{4}}^{\frac{7 \pi}{4}}
$$

## Parenthesis

Writing () or [] may result sometimes with parenthesis size which doesn't fit the equation.

## ATEX code

\begin\{eqnarray*\} }
\& $\backslash \operatorname{left}\left(\backslash f r a c\left\{\backslash s u m \_\{n=1\}^{\wedge} \mathrm{Nb} \wedge n\right\}\{\backslash\right.$ sum_\{n=1\}^Nb^\{2n\}\}\right)$\& \backslash \backslash$
 $\& \backslash$ left $\backslash\left\{\backslash\right.$ frac $\left\{\backslash\right.$ sum_ $\left.\{n=1\}^{\wedge} \mathrm{Nb}^{\wedge} \mathrm{n}\right\}\left\{\backslash\right.$ sum_ $\left.\{\mathrm{n}=1\}^{\wedge} \mathrm{Nb} \wedge\{2 \mathrm{n}\}\right\} \backslash$ right $\left.\backslash\right\} \&$ \end\{eqnarray*\} }

## Result

$$
\begin{aligned}
& \left(\frac{\sum_{n=1}^{N} b^{n}}{\sum_{n=1}^{N} b^{2 n}}\right) \\
& {\left[\frac{\sum_{n=1}^{N} b^{n}}{\sum_{n=1}^{N} b^{2 n}}\right]} \\
& \left\{\frac{\sum_{n=1}^{N} b^{n}}{\sum_{n=1}^{N} b^{2 n}}\right\}
\end{aligned}
$$

## Parenthesis

Self generated parenthesis are in the case of commands like \binom\{\}\{\} or \begin\{cases\}, \end\{cases\} and other... }

```
LATEX code
\begin{eqnarray*}
g(x) =
\begin{cases}
x^2 & \text{if } x \geq 1 \\
 1 & \text{if } x < 1
\end{cases}
\end{eqnarray*}
```


## Result

$$
g(x)= \begin{cases}x^{2} & \text { if } x \geq 1 \\ 1 & \text { if } x<1\end{cases}
$$

## When you really need a reference

Labels are the method being used to add references in $A T_{E X}$ documents. Adding a prefix, allows more than one element could have the same label.

```
LATEX code
\begin{eqnarray}\label{Equation}
x[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k]e^{\frac{j2\pi n k}{N}}
\end{eqnarray}
See how to write a complicated equation in equation
\eqref{Equation}.
```


## Result

$$
\begin{equation*}
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{j 2 \pi n k}{N}} \tag{3}
\end{equation*}
$$

See how to write a complicated equation in equation (3).

## When you really need a reference

```
ATEX code
\begin{eqnarray}\label{eq:Eq1} X[1]=1 \end{eqnarray}
\begin{center} \begin{tabular}[h]{c|c} a & b \\
\hline c & d \label{tab:Eq1} \end{tabular} \end{center}
We use the same label in equation \eqref{eq:Eq1} and table
\ref{tab:Eq1}.
```


## Result

$$
\begin{align*}
& X[1]=1  \tag{4}\\
& \begin{array}{c|c}
\mathrm{a} & \mathrm{~b} \\
\hline \mathrm{c} & \mathrm{~d}
\end{array}
\end{align*}
$$

We use the same label in equation (4) and table 33.

## A picture is worth a thousand words

LATEX supports various kind of pictures, the most common format is *.EPS (encapsulated postscript). The following programs supports *.EPS format:

- Inkscape
- Ghostscript
- Matlab
- Adobe Illustrator
- And more ...

The following formats are also supported: PDF, JPG and PNG, but not all of them can be compiled into DVI, meaning, no preview.

A picture is worth a thousand words
Don't forget to add: \{graphicx\}LTTEXcodeundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## Result



## It's time to thank someone

## Additional strong part of the ${ }^{A} T_{E} \mathrm{EX}$ is the bibliography management. Major articles sources supports a format called BibTeX.



## It's time to thank someone

```
BibTeX format
@ARTICLE{1362497,
title={Pre-scrambling method for PAPR reduction in OFDM
communication systems},
author={Kwang Don Choe and Si Chul Kim and Park, S.K.},
journal={Consumer Electronics, IEEE Transactions on},
year={2004},
month={Nov.},
volume={50},
number={4},
pages={ 1044-1048},
doi={10.1109/TCE.2004.1362497},
ISSN={0098-3063}, }
```


## It's time to thank someone Bibliography

[1] S. H. Han and J. H. Lee, "An overview of peak-to-average power ratio reduction techniques for multicarrier transmission," Wireless Communications, IEEE, vol. 12, no. 2, pp. 56-65, April 2005.
[2] K. D. Choe, S. C. Kim, and S. Park, "Pre-scrambling method for papr reduction in ofdm communication systems," Consumer Electronics, IEEE Transactions on, vol. 50, no. 4, pp. 1044-1048, Nov. 2004.
[3] J. Forney, G.D. and M. Eyuboglu, "Combined equalization and coding using precoding," Communications Magazine, IEEE, vol. 29, no. 12, pp. 25-34, Dec 1991.
[4] R. G. Gallager, Information Theory and Reliable Communication. Wiley, 1968.
[5] R. Price, "Nonlinearly feedback equalized pam vs. capacity," in Proc. ICC' '72, June 1972.
[6] P. Chow, J. Cioffi, and J. Bingham, "A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels," Communications, IEEE Transactions on, vol. 43, no. 234, pp. 773-775, Feb/Mar/Apr 1995.

## It's time to thank someone

Once a record is added to the bibliography *.BIB file. It can referred to with \cite\{\} command.
To refer the article in the previous slide the command would be \cite\{1362497\}.
The number can be changed to something more meaningful, like:
@ARTICLE\{TheArticleIdontUnderstand, title=....

And refer it by that name: \cite\{TheArticleIdontUnderstand\}.

## Where to go from here?

There is a lot of additional material on $A_{E} T_{E X}$ all over the internet: Forums, web pages and wikis.

You can either google or bing with latex + problem: latex how to make my thesis to look cool.

Or you can start here: latex wiki

