2nd Semester 2010

Solutions to Homework Set #6

Source channel separation, Max entropy principle, and channel coding with side information

1. Fading channel.

Consider an additive noise fading channel

$$X \longrightarrow \bigodot Y \longrightarrow \bigodot Y$$

$$Y = XV + Z,$$

where Z is additive noise, V is a random variable representing fading, and Z and V are independent of each other and of X.

(a) Argue that knowledge of the fading factor V improves capacity by showing

$$I(X;Y|V) \ge I(X;Y).$$

(b) Incidentally, conditioning does not always increase mutual information. Give an example of p(u, r, s) such that I(U; R|S) < I(U; R).

Solution: Fading channel

We may show the inequality as follows:

$$I(X;Y|V) = h(X|V) - h(X|Y,V) = h(X) - h(X|Y,V)$$
(1)

$$\geq h(X) - h(X|Y) \tag{2}$$

$$= I(X;Y)$$

where (1) follows from the independence of X and V, and (2) is true because conditioning reduces entropy.

2. Source and channel.

We wish to encode a Bernoulli(α) process V_1, V_2, \ldots for transmission over a binary symmetric channel with error probability p.

$$\begin{array}{cccc} V^n \longrightarrow & X^n(V^n) & \longrightarrow \\ 011011101 & & & \\ \end{array} \xrightarrow{1} & & & \\ 0 & & & \\ \end{array} \xrightarrow{p} & & & \\ 0 & & & \\ \end{array} \xrightarrow{1} & & & \\ 0 & & & \\ \end{array} \xrightarrow{p} & & & \\ 0 &$$

Find conditions on α and p so that the probability of error $P(\hat{V}^n \neq V^n)$ can be made to go to zero as $n \longrightarrow \infty$.

Solution: Source and channel.

Suppose we want to send a binary i.i.d. Bernoulli(α) source over a binary symmetric channel with error probability p.

By the source-channel separation theorem, in order to achieve the probability of error that vanishes asymptotically, i.e. $P(\hat{V}^n \neq V^n) \rightarrow 0$, we need the entropy of the source to be less than the capacity of the channel. Hence,

$$H(\alpha) + H(p) < 1,$$

or, equivalently,

$$\alpha^{\alpha}(1-\alpha)^{1-\alpha}p^p(1-p)^{1-p} < \frac{1}{2}.$$

3. Maximum entropy.

Find the maximum entropy density f satisfying $EX = \alpha_1, E \ln X = \alpha_2$. That is,

maximize h(f)

subject to $\int xf(x) dx = \alpha_1$, $\int (\ln x)f(x) dx = \alpha_2$. What family of densities is this?

Solution: Maximum entropy.

As derived in class, the maximum entropy distribution subject to constraints

$$\int xf(x)\,dx = \alpha_1\tag{3}$$

and

$$\int (\ln x) f(x) \, dx = \alpha_2 \tag{4}$$

is of the form

$$f(x) = e^{\lambda_0 + \lambda_1 x + \lambda_2 \ln x} = c x^{\lambda_2} e^{\lambda_1 x},$$
(5)

which is a Gamma distribution. The constants should be chosen to satisfy the constraints.

- 4. Minimum relative entropy $D(P \parallel Q)$ under constraints on P. We wish to find the (parametric form) of the probability mass function $P(x), x \in \{1, 2, ...\}$ that minimizes the relative entropy $D(P \parallel Q)$ over all P such that $\sum P(x)g_i(x) = \alpha_i, i = 1, 2, ...$
 - (a) Use Lagrange multipliers to guess that

$$P^*(x) = Q(x)e^{\sum_{i=1}^{\infty}\lambda_i g_i(x) + \lambda_0}$$

achieves this minimum if there exist λ_i 's satisfying the α_i constraints. This generalizes the theorem on maximum entropy distributions subject to constraints.

(b) Verify that P^* minimizes $D(P \parallel Q)$.

Solution: Minimize relative entropy D(P||Q) under constraints on P.

(a) We construct the functional using Lagrange multipliers

$$J(P) = \int P(x) \ln \frac{P(x)}{Q(x)} + \sum_{i} \lambda_i \int P(x) h_i(x) + \lambda_0 \int P(x).$$
 (6)

'Differentiating' with respect to P(x), we get

$$\frac{\partial J}{\partial P} = \ln \frac{P(x)}{Q(x)} + 1 + \sum_{i} \lambda_i h_i(x) + \lambda_0 = 0, \tag{7}$$

which indicates that the form of P(x) that minimizes the Kullback Leibler distance is

$$P^*(x) = Q(x)e^{\lambda_0 + \sum_i \lambda_i h_i(x)}.$$
(8)

(b) Though the Lagrange multiplier method correctly indicates the form of the solution, it is difficult to prove that it is a minimum using calculus. Instead we use the properties of D(P||Q). Let P be any other distribution satisfying the constraints. Then

$$D(P||Q) - D(P^*||Q) \tag{9}$$

$$= \int P(x) \ln \frac{P(x)}{Q(x)} - \int P^*(x) \ln \frac{P^*(x)}{Q(x)}$$
(10)

$$= \int P(x) \ln \frac{P(x)}{Q(x)} - \int P^*(x) [\lambda_0 + \sum_i \lambda_i h_i(x)]$$
(11)

$$= \int P(x) \ln \frac{P(x)}{Q(x)} - \int P(x) [\lambda_0 + \sum_i \lambda_i h_i(x)] \quad \text{(since both } P \text{ and } P^* \text{ satisfy the constraints)}$$

$$= \int P(x) \ln \frac{P(x)}{Q(x)} - \int P(x) \ln \frac{P^*(x)}{Q(x)}$$
(12)

$$= \int P(x) \ln \frac{P(x)}{P^*(x)} \tag{13}$$

$$= D(P||P^*) \tag{14}$$

$$\geq 0,$$
 (15)

and hence P^* uniquely minimizes D(P||Q).

In the special case when Q is a uniform distribution over a finite set, minimizing D(P||Q) corresponds to maximizing the entropy of P.

5. Maximum entropy with marginals.

What is the maximum entropy probability mass function p(x, y) with the following marginals? You may wish to guess and verify a more general result.

Solution: Maximum entropy with marginals.

Given the marginal distributions of X and Y, H(X) and H(Y) are fixed. We may write

$$H(X,Y) = H(X) + H(Y|X) \le H(X) + H(Y),$$
(16)

with equality if and only if X and Y are independent. Hence the maximum value of H(X, Y) is H(X) + H(Y), and is attained by choosing the joint distribution to be the product distribution, i.e.,

	y_1	y_2	y_3	
x_1	1/3	1/12	1/12	1/2
x_2	1/6	1/24	1/24	1/4
x_3	1/6	1/24	1/24	1/4
	2/3	1/6	1/6	

This problem can also be solved by using the maximum entropy distribution with the $r_i(x, y)$ as indicator functions on x and y for each of the six constraints, and recognizing that the solution is the product distribution.