Solutions to Homework Set \#6

Source channel separation, Max entropy principle, and channel coding with side information

1. Fading channel.

Consider an additive noise fading channel

where Z is additive noise, V is a random variable representing fading, and Z and V are independent of each other and of X.
(a) Argue that knowledge of the fading factor V improves capacity by showing

$$
I(X ; Y \mid V) \geq I(X ; Y) .
$$

(b) Incidentally, conditioning does not always increase mutual information. Give an example of $p(u, r, s)$ such that $I(U ; R \mid S)<$ $I(U ; R)$.

Solution: Fading channel

We may show the inequality as follows:

$$
\begin{align*}
I(X ; Y \mid V) & =h(X \mid V)-h(X \mid Y, V) \\
& =h(X)-h(X \mid Y, V) \tag{1}\\
& \geq h(X)-h(X \mid Y) \tag{2}\\
& =I(X ; Y)
\end{align*}
$$

where (1) follows from the independence of X and V, and (2) is true because conditioning reduces entropy.

2. Source and channel.

We wish to encode a Bernoulli (α) process V_{1}, V_{2}, \ldots for transmission over a binary symmetric channel with error probability p.

Find conditions on α and p so that the probability of error $P\left(\hat{V}^{n} \neq V^{n}\right)$ can be made to go to zero as $n \longrightarrow \infty$.
Solution: Source and channel.
Suppose we want to send a binary i.i.d. Bernoulli (α) source over a binary symmetric channel with error probability p.
By the source-channel separation theorem, in order to achieve the probability of error that vanishes asymptotically, i.e. $P\left(\hat{V}^{n} \neq V^{n}\right) \rightarrow 0$, we need the entropy of the source to be less than the capacity of the channel. Hence,

$$
H(\alpha)+H(p)<1,
$$

or, equivalently,

$$
\alpha^{\alpha}(1-\alpha)^{1-\alpha} p^{p}(1-p)^{1-p}<\frac{1}{2} .
$$

3. Maximum entropy.

Find the maximum entropy density f satisfying $E X=\alpha_{1}, E \ln X=\alpha_{2}$. That is,

$$
\text { maximize } \quad h(f)
$$

subject to $\int x f(x) d x=\alpha_{1}, \int(\ln x) f(x) d x=\alpha_{2}$. What family of densities is this?

Solution: Maximum entropy.

As derived in class, the maximum entropy distribution subject to constraints

$$
\begin{equation*}
\int x f(x) d x=\alpha_{1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int(\ln x) f(x) d x=\alpha_{2} \tag{4}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
f(x)=e^{\lambda_{0}+\lambda_{1} x+\lambda_{2} \ln x}=c x^{\lambda_{2}} e^{\lambda_{1} x} \tag{5}
\end{equation*}
$$

which is a Gamma distribution. The constants should be chosen to satisfy the constraints.
4. Minimum relative entropy $D(P \| Q)$ under constraints on P. We wish to find the (parametric form) of the probability mass function $P(x), x \in\{1,2, \ldots\}$ that minimizes the relative entropy $D(P \| Q)$ over all P such that $\sum P(x) g_{i}(x)=\alpha_{i}, i=1,2, \ldots$.
(a) Use Lagrange multipliers to guess that

$$
P^{*}(x)=Q(x) e^{\sum_{i=1}^{\infty} \lambda_{i} g_{i}(x)+\lambda_{0}}
$$

achieves this minimum if there exist λ_{i} 's satisfying the α_{i} constraints. This generalizes the theorem on maximum entropy distributions subject to constraints.
(b) Verify that P^{*} minimizes $D(P \| Q)$.

Solution: Minimize relative entropy $D(P \| Q)$ under constraints on P.

(a) We construct the functional using Lagrange multipliers

$$
\begin{equation*}
J(P)=\int P(x) \ln \frac{P(x)}{Q(x)}+\sum_{i} \lambda_{i} \int P(x) h_{i}(x)+\lambda_{0} \int P(x) . \tag{6}
\end{equation*}
$$

'Differentiating' with respect to $P(x)$, we get

$$
\begin{equation*}
\frac{\partial J}{\partial P}=\ln \frac{P(x)}{Q(x)}+1+\sum_{i} \lambda_{i} h_{i}(x)+\lambda_{0}=0 \tag{7}
\end{equation*}
$$

which indicates that the form of $P(x)$ that minimizes the Kullback Leibler distance is

$$
\begin{equation*}
P^{*}(x)=Q(x) e^{\lambda_{0}+\sum_{i} \lambda_{i} h_{i}(x)} . \tag{8}
\end{equation*}
$$

(b) Though the Lagrange multiplier method correctly indicates the form of the solution, it is difficult to prove that it is a minimum using calculus. Instead we use the properties of $D(P \| Q)$. Let P be any other distribution satisfying the constraints. Then

$$
\begin{align*}
D(P \| Q) & -D\left(P^{*} \| Q\right) \tag{9}\\
& =\int P(x) \ln \frac{P(x)}{Q(x)}-\int P^{*}(x) \ln \frac{P^{*}(x)}{Q(x)} \tag{10}\\
& =\int P(x) \ln \frac{P(x)}{Q(x)}-\int P^{*}(x)\left[\lambda_{0}+\sum_{i} \lambda_{i} h_{i}(x)\right] \tag{11}\\
& =\int P(x) \ln \frac{P(x)}{Q(x)}-\int P(x)\left[\lambda_{0}+\sum_{i} \lambda_{i} h_{i}(x)\right] \\
& =\int P(x) \ln \frac{P(x)}{Q(x)}-\int P(x) \ln \frac{P^{*}(x)}{Q(x)} \tag{12}\\
& =\int P(x) \ln \frac{P(x)}{P^{*}(x)} \tag{13}\\
& =D\left(P \| P^{*}\right) \tag{14}\\
& \geq 0 \tag{15}
\end{align*}
$$

and hence P^{*} uniquely minimizes $D(P \| Q)$.
In the special case when Q is a uniform distribution over a finite set, minimizing $D(P \| Q)$ corresponds to maximizing the entropy of P.

5. Maximum entropy with marginals.

What is the maximum entropy probability mass function $p(x, y)$ with the following marginals? You may wish to guess and verify a more general result.

	y_{1}	y_{2}	y_{3}
x_{1}	p_{11}	p_{12}	p_{13}
	$1 / 2$		
x_{2}	p_{21}	p_{22}	p_{23}
x_{3}	p_{31}	p_{32}	p_{33}
	$1 / 4$		

$$
2 / 3 \quad 1 / 6 \quad 1 / 6
$$

Solution: Maximum entropy with marginals.

Given the marginal distributions of X and $Y, H(X)$ and $H(Y)$ are fixed. We may write

$$
\begin{equation*}
H(X, Y)=H(X)+H(Y \mid X) \leq H(X)+H(Y), \tag{16}
\end{equation*}
$$

with equality if and only if X and Y are independent. Hence the maximum value of $H(X, Y)$ is $H(X)+H(Y)$, and is attained by choosing the joint distribution to be the product distribution, i.e.,

	y_{1}		y_{2}
y_{3}			
x_{1}	$1 / 3$	$1 / 12$	$1 / 12$
$1 / 2$			
x_{2}	$1 / 6$	$1 / 24$	$1 / 24$
x_{3}	$1 / 6$	$1 / 24$	
		$1 / 24$	$1 / 24$

$2 / 3 \quad 1 / 6 \quad 1 / 6$

This problem can also be solved by using the maximum entropy distribution with the $r_{i}(x, y)$ as indicator functions on x and y for each of the six constraints, and recognizing that the solution is the product distribution.

