
2nd Semester 2010

Solutions to Homework Set #5
Differential Entropy and Gaussian Channel

1. Differential entropy.
Evaluate the differential entropy h(X) = −

∫

f ln f for the following:

(a) Find the entropy of the exponential density λe−λx, x ≥ 0.

(b) The sum of X1 and X2, where X1 and X2 are independent normal
random variables with means µi and variances σ2

i , i = 1, 2.

Solution: Differential entropy.

(a)

h(f) = log
e

λ
bits. (1)

(b) Sum of two normal distributions.

The sum of two normal random variables is also normal, so apply-
ing the result derived the class for the normal distribution, since
X1 +X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2),

h(f) =
1

2
log 2πe(σ2

1 + σ2
2) bits. (2)

2. Mutual information for correlated normals. Find the mutual
information I(X ; Y ), where

(

X

Y

)

∼ N2

(

0,

[

σ2 ρσ2

ρσ2 σ2

])

.

Evaluate I(X ; Y ) for ρ = 1, ρ = 0, and ρ = −1, and comment.

Mutual information for correlated normals.

[

X

Y

]

∼ N2

(

0,

[

σ2 ρσ2

ρσ2 σ2

])

(3)
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Using the expression for the entropy of a multivariate normal derived
in class

h(X, Y ) =
1

2
log(2πe)2|K| = 1

2
log(2πe)2σ4(1− ρ2). (4)

Since X and Y are individually normal with variance σ2,

h(X) = h(Y ) =
1

2
log 2πeσ2. (5)

Hence

I(X ; Y ) = h(X) + h(Y )− h(X, Y ) = −1

2
log(1− ρ2). (6)

(a) ρ = 1. In this case, X = Y , and knowing X implies perfect
knowledge about Y . Hence the mutual information is infinite,
which agrees with the formula.

(b) ρ = 0. In this case, X and Y are independent, and hence I(X ; Y ) =
0, which agrees with the formula.

(c) ρ = −1. In this case, X = −Y , and again the mutual information
is infinite as in the case when ρ = 1.

3. Markov Gaussian mutual information.
Suppose that (X, Y, Z) are jointly Gaussian and that X → Y → Z

forms a Markov chain. Let X and Y have correlation coefficient ρ1 and
let Y and Z have correlation coefficient ρ2. Find I(X ;Z).

Solution: Markov Gaussian mutual information.
First note that we may without any loss of generality assume that the
means of X , Y and Z are zero. If in fact the means are not zero one can
subtract the vector of means without affecting the mutual information
or the conditional independence of X , Z given Y . Similary we can also
assume the variances of X , Y , and Z to be 1. (The scaling may change
the differential entropy, but not the mutual information.)

Let

Σ =

(

1 ρxz
ρxz 1

)

,
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be the covariance matrix of X and Z. From Eqs. (9.93) and (9.94)

I(X ;Z) = h(X) + h(Z)− h(X,Z)

=
1

2
log

(

2πe
)

+
1

2
log

(

2πe
)

− 1

2
log

(

2πe det(Σ)
)

= −1

2
log(1− ρ2xz)

Now from the conditional independence of X and Z given Y , we have

ρxz = E[XZ]

= E [E[XZ|Y ]]

= E [E[X|Y ] · E[Z|Y ]]

= E[ρ1Y · ρ2Y ]

= ρ1ρ2.

We can thus conclude that

I(X ;Z) = −1

2
log(1− ρ21ρ

2
2)

4. Output power constraint.
Consider an additive white Gaussian noise channel with an expected
output power constraint P . (We might want to protect the eardrums
of the listener.) Thus Y = X + Z, Z ∼ N(0, σ2), Z is independent of
X, and EY 2 ≤ P . Assume σ2 < P . Find the channel capacity.

Solution: Output power constraint.
The output power constraint EY 2 ≤ P is equivalent to the input power
constraint

E(X + Z)2 = EX2 + EZ2 = EX2 + σ2 ≤ P,

that is, EX2 ≤ P − σ2. Thus, we reduce the problem to a previously
known one and get

C =
1

2
log

(

P

σ2

)

.
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5. Multipath Gaussian channel.
Consider a Gaussian noise channel of power constraint P , where the
signal takes two different paths and the received noisy signals are added
together at the antenna.

X Y

Y1

Y2

+

+

+

Z1

Z2

Let Y = Y1 + Y2 and EX2 ≤ P .

(a) Find the capacity of this channel if Z1 and Z2 are jointly normal
with covariance matrix

K =

[

N Nρ

Nρ N

]

.

(b) What is the capacity for ρ = 0,−1, and 1 ?

Solution: Multipath Gaussian channel.

(a) Since

Y = Y1 + Y2

= X + Z1 +X + Z2

= 2X + (Z1 + Z2),

and Z1 + Z2 is ∼ N(0, 2N(1 + ρ)), the capacity is given by

C =
1

2
log

(

1 +
4P

2N(1 + ρ)

)

=
1

2
log

(

1 +
2P

N(1 + ρ)

)

.
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(b) When ρ = 0,

C =
1

2
log

(

1 +
2P

N

)

.

When ρ = 1,

C =
1

2
log

(

1 +
P

N

)

,

which makes sense since Y1 = Y2 and Y = 2Y1. (Scaling the
output does not change the mutual information.)

When ρ = −1, we have C = ∞. Since Z1 +Z2 = 0, the channel is
given by Y = 2X without any additive noise. Hence we can trans-
mit unbounded amount of information (any real number satisfying
the power constraint) over the channel without any error.

6. The two-look Gaussian channel.

- -X (Y1, Y2)

Consider the ordinary additive noise Gaussian channel with two corre-
lated looks at X, i.e., Y = (Y1, Y2), where

Y1 = X + Z1

Y2 = X + Z2

with a power constraint P on X , and (Z1, Z2) ∼ N2(0, K), where

K =

[

N Nρ

Nρ N

]

.

Find the capacity C for

(a) ρ = 1.

(b) ρ = 0.

(c) ρ = -1.
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Solution: The two-look Gaussian channel

It is clear that the input distribution that maximizes the capacity is
X ∼ N (0, P ). Evaluating the mutual information for this distribution,

C2 = max I(X ; Y1, Y2)

= h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2|X)

= h(Y1, Y2)− h(Z1, Z2)

Now since

(Z1, Z2) ∼ N
(

0,

[

N Nρ

Nρ N

])

,

we have

h(Z1, Z2) =
1

2
log(2πe)2|KZ| =

1

2
log(2πe)2N2(1− ρ2).

Since Y1 = X + Z1, and Y2 = X + Z2, we have

(Y1, Y2) ∼ N
(

0,

[

P +N P + ρN

P + ρN P +N

])

,

and

h(Y1, Y2) =
1

2
log(2πe)2|KY | =

1

2
log(2πe)2(N2(1− ρ2) + 2PN(1− ρ)).

Hence the capacity is

C2 = h(Y1, Y2)− h(Z1, Z2)

=
1

2
log

(

1 +
2P

N(1 + ρ)

)

.

(a) ρ = 1. In this case, C = 1
2
log(1 + P

N
), which is the capacity of

a single look channel. This is not surprising, since in this case
Y1 = Y2.

(b) ρ = 0. In this case,

C =
1

2
log

(

1 +
2P

N

)

,

which corresponds to using twice the power in a single look. The
capacity is the same as the capacity of the channel X → (Y1+Y2).
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(c) ρ = −1. In this case, C = ∞, which is not surprising since if we
add Y1 and Y2, we can recover X exactly.

Note that the capacity of the above channel in all cases is the same as
the capacity of the channel X → Y1 + Y2.

7. Diversity System

For the following system, a messageW ∈ {1, 2, . . . , 2nR} is encoded into
two symbol blocksXn

1 = (X1,1, X1,2, ..., X1,n) andXn
2 = (X2,1, X2,2, ..., X2,n)

that are being transmitted over a channel. The average power constrain
on the inputs are 1

n
E[

∑n

i=1X
2
1,i] ≤ P1 and 1

n
E[

∑n

i=1X
2
2,i] ≤ P2. The

channel has a multiplying effect on X1, X2 by factor h1, h2, respec-
tively, i.e., Y = h1X1 + h2X2 + Z, where Z is a white Gaussian noise
Z ∼ N(0, σ2).

(a) Find the joint distribution of X1 and X2 that bring the mu-
tual information I(Y ;X1, X2) to a maximum? (You need to find
argmaxPX1,X2

I(X1, X2; Y ).)

X1

X2

Encoder Decoder

h1

h2

W

Z

Ŵ
Y

V1

V2

Figure 1: The communication model

(b) What is the capacity of the system ?

(c) Express the capacity for the following cases:

i. h1 = 1, h2 = 1?

ii. h1 = 1, h2 = 0?

iii. h1 = 0, h2 = 0?

Solution: Diversity System
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(a)

Y = h1X1 + h2X2 + Z

The mutual information is:

I(X1, X2; Y ) = h(Y )− h(Y |X1, X2)

= h(Y )− h(Z)

Since h(z) is constant, we need to find the maximum of h(Y ), the
second moment of Y is:

E[Y 2] = E[(h1X1 + h2X2 + Z)2]
(i)
= E[(h1X1 + h2X2)

2] + E[Z2]

= h2
1[X

2
1 ] + h2

2[X
2
2 ] + 2h1h2E[X1X2] + σ2

Z

≤ h2
1P1 + h2

2P2 + 2h1h2E[X1X2] + σ2
Z

(ii)

≤ h2
1P1 + h2

2P2 + 2h1h2

√

E[X2
1 ]E[X2

2 ] + σ2
Z

≤ h2
1P1 + h2

2P2 + 2h1h2

√

P1P2 + σ2
Z

= (h1

√

P1 + h2

√

P2)
2 + σ2

Z

(i) - Z is independent of X1, X2.

(ii) - Cauchy-Schwarz inequality. Where X1 = αX2,
(

X1

X2

)

∼
N (0, K) and K =

(

P1

√

P1P2
√

P1P2 P2

)

will result with equality and
bring the mutual information to a maximum.

Therefore, the mutual information is bounded by:

I(X1, X2; Y ) ≤ 1

2
log

(

1 +
(h1

√
P1 + h2

√
P2)

2

σ2
Z

)

(b) The capacity of the system is:

C = max
Px1,x2

I(X1, X2; Y ) =
1

2
log

(

1 +
(h1

√
P1 + h2

√
P2)

2

σ2
Z

)

(c) For h1 = 1 and h2 = 1 the capacity of the system would be:

C =
1

2
log

(

1 +
(
√
P1 +

√
P2)

2

σ2
Z

)

=
1

2
log

(

1 +
P1 + 2

√
P1P2 + P2

σ2
Z

)
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For h1 = 1 and h2 = 0 the capacity of the system would be:

C =
1

2
log

(

1 +
P1

σ2
Z

)

For h1 = 0 and h2 = 0 the capacity of the system would be:

C =
1

2
log (1) = 0

We can see that having 2 Gaussian channels with one message, it
is the best to transmit the signals coherently.

9



8. AWGN with two noises

Figure 2 depicts a communication system with an AWGN (Additive
white noise Gaussian) channel whith two i.i.d. noises Z1 ∼ N(0, σ2

1),
Z2 ∼ N(0, σ2

2) that are independent of each other and are added to
the signal X , i.e., Y = X + Z1 + Z2. The average power constrain on
the input is P , i.e., 1

n
E[

∑n

i=1X
2
i ] ≤ P . In the sub-questions below we

consider the cases where the noise Z2 may or may not be known to the
encoder and decoder.

X Y

Z1

Z2

Encoder DecoderW Ŵ

1 2

Figure 2: Two noise sources

(a) Find the channel capacity for the case in which the noise in not
known to either sides (lines 1 and 2 are disconnected from the
encoder and the decoder).

(b) Find the capacity for the case that the noise Z2 is known to the
encoder and decoder (lines 1 and 2 are connected to both the
encoder and decoder). This means that the codeword Xn may
depend on the message W and the noise Zn

2 and the decoder de-
cision Ŵ may depend on the output Y n and the noise Zn

2 . (Hint:
Could the capacity be lager than 1

2
log(1 + P

σ2

1

)?)

(c) Find the capacity for the case that the noise Z2 is known only to
the decoder. (line 1 is disconnected from the encoder and line 2
is connected to the decoder). This means that the codewords Xn

may depend only on the message W and the decoder decision Ŵ

may depend on the output Y n and the noise Zn
2 .

Solution: AWGN with two noises
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(a) Since the noise is not know to both sides, the total noise is σ2
1+σ2

2

and the capacity is:

C =
1

2
log

(

1 +
P

σ2
1 + σ2

2

)

(b) Once Z2 is known to the receiver, we can add a subtraction unit
in the decoder that subtract Z2 and therefore the noise is only Z1.
And the capacity is:

C =
1

2
log

(

1 +
P

σ2
1

)

9. Parallel channels and waterfilling
Consider a pair of parallel Gaussian channels, i.e.,

(

Y1

Y2

)

=

(

X1

X2

)

+

(

Z1

Z2

)

,

where
(

Z1

Z2

)

∼ N
(

0,

[

σ2
1 0
0 σ2

2

])

,

and there is a power constraint E(X2
1+X2

2 ) ≤ P . Assume that σ2
1 > σ2

2 .
At what power does the channel stop behaving like a single channel
with noise variance σ2

2 , and begin behaving like a pair of channels, ie.,
at what power does the worst channel become useful?

Solution: Parallel channels and waterfilling
By the result of water filling taught in the class , it follows that we will
put all the signal power into the channel with less noise until the total
power of noise + signal in that channel equals the noise power in the
other channel. After that, we will split any additional power evenly
between the two channels.

Thus the combined channel begins to behave like a pair of parallel
channels when the signal power is equal to the difference of the two
noise powers, i.e., when P = σ2

1 − σ2
2.
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