2nd Semester 2010

Homework Set #5 Differential Entropy and Gaussian Channel

1. Differential entropy.

Evaluate the differential entropy $h(X) = -\int f \ln f$ for the following:

- (a) Find the entropy of the exponential density $\lambda e^{-\lambda x}$, $x \ge 0$.
- (b) The sum of X_1 and X_2 , where X_1 and X_2 are independent normal random variables with means μ_i and variances σ_i^2 , i = 1, 2.
- 2. Mutual information for correlated normals. Find the mutual information I(X;Y), where

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N_2 \left(0, \begin{bmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{bmatrix} \right).$$

Evaluate I(X; Y) for $\rho = 1, \rho = 0$, and $\rho = -1$, and comment.

3. Markov Gaussian mutual information.

Suppose that (X, Y, Z) are jointly Gaussian and that $X \to Y \to Z$ forms a Markov chain. Let X and Y have correlation coefficient ρ_1 and let Y and Z have correlation coefficient ρ_2 . Find I(X; Z).

4. Output power constraint.

Consider an additive white Gaussian noise channel with an expected output power constraint P. (We might want to protect the eardrums of the listener.) Thus Y = X + Z, $Z \sim N(0, \sigma^2)$, Z is independent of X, and $EY^2 \leq P$. Assume $\sigma^2 < P$. Find the channel capacity.

5. Multipath Gaussian channel.

Consider a Gaussian noise channel of power constraint P, where the

signal takes two different paths and the received noisy signals are added together at the antenna.

Let $Y = Y_1 + Y_2$ and $EX^2 \le P$.

(a) Find the capacity of this channel if Z_1 and Z_2 are jointly normal with covariance matrix

$$K = \left[\begin{array}{cc} N & N\rho \\ N\rho & N \end{array} \right].$$

(b) What is the capacity for $\rho = 0, -1$, and 1 ?

6. The two-look Gaussian channel.

Consider the ordinary additive noise Gaussian channel with two correlated looks at X, i.e., $Y = (Y_1, Y_2)$, where

$$Y_1 = X + Z_1$$
$$Y_2 = X + Z_2$$

with a power constraint P on X, and $(Z_1, Z_2) \sim \mathcal{N}_2(\mathbf{0}, K)$, where

$$K = \left[\begin{array}{cc} N & N\rho \\ N\rho & N \end{array} \right].$$

Find the capacity C for

- (a) $\rho = 1$.
- (b) $\rho = 0.$
- (c) $\rho = -1$.

Note that the capacity of the above channel in all cases is the same as the capacity of the channel $X \to Y_1 + Y_2$.

7. Diversity System

For the following system, a message $W \in \{1, 2, ..., 2^{nR}\}$ is encoded into two symbol blocks $X_1^n = (X_{1,1}, X_{1,2}, ..., X_{1,n})$ and $X_2^n = (X_{2,1}, X_{2,2}, ..., X_{2,n})$ that are being transmitted over a channel. The average power constrain on the inputs are $\frac{1}{n}E[\sum_{i=1}^n X_{1,i}^2] \leq P_1$ and $\frac{1}{n}E[\sum_{i=1}^n X_{2,i}^2] \leq P_2$. The channel has a multiplying effect on X_1, X_2 by factor h_1, h_2 , respectively, i.e., $Y = h_1X_1 + h_2X_2 + Z$, where Z is a white Gaussian noise $Z \sim N(0, \sigma^2)$.

(a) Find the joint distribution of X_1 and X_2 that bring the mutual information $I(Y; X_1, X_2)$ to a maximum? (You need to find $\arg \max P_{X_1, X_2} I(X_1, X_2; Y)$.)

Figure 1: The communication model

- (b) What is the capacity of the system ?
- (c) Express the capacity for the following cases:
 - i. $h_1 = 1, h_2 = 1$? ii. $h_1 = 1, h_2 = 0$? iii. $h_1 = 0, h_2 = 0$?

8. AWGN with two noises

Figure 2 depicts a communication system with an AWGN (Additive white noise Gaussian) channel whith two i.i.d. noises $Z_1 \sim N(0, \sigma_1^2)$, $Z_2 \sim N(0, \sigma_2^2)$ that are independent of each other and are added to the signal X, i.e., $Y = X + Z_1 + Z_2$. The average power constrain on the input is P, i.e., $\frac{1}{n}E[\sum_{i=1}^{n}X_i^2] \leq P$. In the sub-questions below we consider the cases where the noise Z_2 may or may not be known to the encoder and decoder.

Figure 2: Two noise sources

- (a) Find the channel capacity for the case in which the noise in not known to either sides (lines 1 and 2 are <u>disconnected</u> from the encoder and the decoder).
- (b) Find the capacity for the case that the noise Z_2 is known to the encoder and decoder (lines 1 and 2 are <u>connected</u> to both the encoder and decoder). This means that the codeword X^n may depend on the message W and the noise Z_2^n and the decoder decision \hat{W} may depend on the output Y^n and the noise Z_2^n . (Hint: Could the capacity be lager than $\frac{1}{2}\log(1+\frac{P}{\sigma_1^2})$?)
- (c) Find the capacity for the case that the noise Z_2 is known only to the decoder. (line 1 is <u>disconnected</u> from the encoder and line 2 is <u>connected</u> to the decoder). This means that the codewords X^n may depend only on the message W and the decoder decision \hat{W} may depend on the output Y^n and the noise Z_2^n .

9. Parallel channels and waterfilling

Consider a pair of parallel Gaussian channels, i.e.,

$$\left(\begin{array}{c}Y_1\\Y_2\end{array}\right) = \left(\begin{array}{c}X_1\\X_2\end{array}\right) + \left(\begin{array}{c}Z_1\\Z_2\end{array}\right),$$

where

$$\left(\begin{array}{c} Z_1\\ Z_2 \end{array}\right) \sim \mathcal{N}\left(0, \left[\begin{array}{cc} \sigma_1^2 & 0\\ 0 & \sigma_2^2 \end{array}\right]\right),$$

and there is a power constraint $E(X_1^2 + X_2^2) \leq P$. Assume that $\sigma_1^2 > \sigma_2^2$. At what power does the channel stop behaving like a single channel with noise variance σ_2^2 , and begin behaving like a pair of channels, i.e., at what power does the worst channel become useful?