
Solutions to Homework Set #4

Channel and Source coding

1. Lossless source coding with side information.

Consider the lossless source coding with side information that is avail-
able at the encoder and decoder, where the source X and the side
information Y are i.i.d. ∼ PX,Y (x, y).

Xn f(Xn, Y n) ∈ {1, 2, ..., 2nR}
Encoder Decoder

Y nY n

X̂n(f(Xn, Y n), Y n)

Figure 1: Lossless source coding with side information at the encoder and
decoder.

Show that a code with rate R < H(X|Y ) can not be achievable, and
interpret the result.

Hint: Let T , f(Xn, Y n). Consider

nR ≥ H(T )

≥ H(T |Y n), (1)

and use similar steps, including Fano’s inequality, as we used in the
class to prove the converse where side information was not available.

Solution Sketch of the solution (please fill in the explanation for each
step):

nR ≥ H(T )

≥ H(T |Y n),

≥ I(Xn;T |Y n)

= H(Xn|Y n)−H(Xn|T, Y n)

= nH(X|Y )− ǫn,

where ǫn → 0.
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2. Preprocessing the output.

One is given a communication channel with transition probabilities
p(y | x) and channel capacity C = maxp(x) I(X ; Y ). A helpful statisti-

cian preprocesses the output by forming Ỹ = g(Y ), yielding a channel
p(ỹ|x). He claims that this will strictly improve the capacity.

(a) Show that he is wrong.

(b) Under what conditions does he not strictly decrease the capacity?

Solution: Preprocessing the output.

(a) The statistician calculates Ỹ = g(Y ). Since X → Y → Ỹ forms a
Markov chain, we can apply the data processing inequality. Hence
for every distribution on x,

I(X ; Y ) ≥ I(X ; Ỹ ).

Let p̃(x) be the distribution on x that maximizes I(X ; Ỹ ). Then

C = max
p(x)

I(X ; Y ) ≥ I(X ; Y )p(x)=p̃(x) ≥ I(X ; Ỹ )p(x)=p̃(x) = max
p(x)

I(X ; Ỹ ) = C̃.

Thus, the helpful suggestion is wrong and processing the output
does not increase capacity.

(b) We have equality (no decrease in capacity) in the above sequence
of inequalities only if we have equality in data processing inequal-
ity, i.e., for the distribution that maximizes I(X ; Ỹ ), we have
X → Ỹ → Y forming a Markov chain. Thus, Ỹ should be a
sufficient statistic.

3. The Z channel.

The Z-channel has binary input and output alphabets and transition
probabilities p(y|x) given by the following matrix:

Q =

[

1 0
1/2 1/2

]

x, y ∈ {0, 1}

Find the capacity of the Z-channel and the maximizing input probabil-
ity distribution.
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Solution: The Z channel.

First we express I(X ; Y ), the mutual information between the input
and output of the Z-channel, as a function of α = Pr(X = 1):

H(Y |X) = Pr(X = 0) · 0 + Pr(X = 1) · 1 = α

H(Y ) = H(Pr(Y = 1)) = H(α/2)

I(X ; Y ) = H(Y )−H(Y |X) = H(α/2)− α

Since I(X ; Y ) is strictly concave on α (why?) and I(X ; Y ) = 0 when
α = 0 and α = 1, the maximum mutual information is obtained for
some value of α such that 0 < α < 1.

Using elementary calculus, we determine that

d

dα
I(X ; Y ) =

1

2
log2

1− α/2

α/2
− 1 ,

which is equal to zero for α = 2/5. (It is reasonable that Pr(X = 1) <
1/2 since X = 1 is the noisy input to the channel.) So the capacity of
the Z-channel in bits is H(1/5)− 2/5 = 0.722− 0.4 = 0.322.

4. Using two channels at once.

Consider two discrete memoryless channels (X1, p(y1 | x1),Y1) and
(X2, p(y2 | x2),Y2) with capacities C1 and C2 respectively. A new
channel (X1 × X2, p(y1 | x1) × p(y2 | x2),Y1 × Y2) is formed in which
x1 ∈ X1 and x2 ∈ X2, are simultaneously sent, resulting in y1, y2. Find
the capacity of this channel.

Solution: Using two channels at once.

To find the capacity of the product channel (X1×X2, p(y1, y2|x1, x2),Y1×
Y2), we have to find the distribution p(x1, x2) on the input alphabet
X1 × X2 that maximizes I(X1, X2; Y1, Y2). Since the transition proba-
bilities are given as p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2),

p(x1, x2, y1, y2) = p(x1, x2)p(y1, y2|x1, x2)

= p(x1, x2)p(y1|x1)p(y2|x2),
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Therefore, Y1 → X1 → X2 → Y2 forms a Markov chain and

I(X1, X2; Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2)

= H(Y1, Y2)−H(Y1|X1, X2)−H(Y2|X1, X2)(2)

= H(Y1, Y2)−H(Y1|X1)−H(Y2|X2) (3)

≤ H(Y1) +H(Y2)−H(Y1|X1)−H(Y2|X2) (4)

= I(X1; Y1) + I(X2; Y2),

where Eqs. (2) and (3) follow from Markovity, and Eq. (4) is met with
equality if X1 and X2 are independent and hence Y1 and Y2 are inde-
pendent. Therefore

C = max
p(x1,x2)

I(X1, X2; Y1, Y2)

≤ max
p(x1,x2)

I(X1; Y1) + max
p(x1,x2)

I(X2; Y2)

= max
p(x1)

I(X1; Y1) + max
p(x2)

I(X2; Y2)

= C1 + C2.

with equality iff p(x1, x2) = p∗(x1)p
∗(x2) and p∗(x1) and p∗(x2) are the

distributions that maximize C1 and C2 respectively.

5. A channel with two independent looks at Y.

Let Y1 and Y2 be conditionally independent and conditionally identi-
cally distributed given X. Thus p(y1, y2|x) = p(y1|x)p(y2|x).

(a) Show I(X ; Y1, Y2) = 2I(X ; Y1)− I(Y1; Y2).

(b) Conclude that the capacity of the channel

- -X (Y1, Y2)

is less than twice the capacity of the channel

- -X Y1

Solution: A channel with two independent looks at Y.
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(a)

I(X ; Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X) (5)

= H(Y1) +H(Y2)− I(Y1; Y2)−H(Y1|X)−H(Y2|X) (6)

(since Y1 and Y2 are conditionally independent given X)(7)

= I(X ; Y1) + I(X ; Y2)− I(Y1; Y2) (8)

= 2I(X ; Y1)− I(Y1; Y2) (since Y1 and Y2 are conditionally
identically distributed)

.(9)

(b) The capacity of the single look channel X → Y1 is

C1 = max
p(x)

I(X ; Y1). (10)

The capacity of the channel X → (Y1, Y2) is

C2 = max
p(x)

I(X ; Y1, Y2) (11)

= max
p(x)

2I(X ; Y1)− I(Y1; Y2) (12)

≤ max
p(x)

2I(X ; Y1) (13)

= 2C1. (14)

Hence, two independent looks cannot be more than twice as good
as one look.

6. Choice of channels.

Find the capacity C of the union of 2 channels (X1, p1(y1|x1),Y1) and
(X2, p2(y2|x2),Y2) where, at each time, one can send a symbol over
channel 1 or over channel 2 but not both. Assume the output alphabets
are distinct and do not intersect.

(a) Show 2C = 2C1 + 2C2 .

(b) What is the capacity of this Channel?

Solution: Choice of channels.
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(a) Let

θ =

{

1, if the signal is sent over the channel 1
2, if the signal is sent over the channel 2

.

Consider the following communication scheme: The sender chooses
between two channels according to Bern(α) coin flip. Then the
channel input is X = (θ,Xθ).

Since the output alphabets Y1 and Y2 are disjoint, θ is a function
of Y , i.e. X → Y → θ.

Therefore,

I(X ; Y ) = I(X ; Y, θ)

= I(Xθ, θ; Y, θ)

= I(θ; Y, θ) + I(Xθ; Y, θ|θ)

= I(θ; Y, θ) + I(Xθ; Y |θ)

= H(θ) + αI(Xθ; Y |θ = 1) + (1− α)I(Xθ; Y |θ = 2)

= H(α) + αI(X1; Y1) + (1− α)I(X2; Y2).

Thus, it follows that

C = sup
α

{H(α) + αC1 + (1− α)C2} ,

which is a strictly concave function on α. Hence, the maxi-
mum exists and by elementary calculus, one can easily show C =
log2(2

C1 + 2C2), which is attained with α = 2C1/(2C1 + 2C2).

If one interprets M = 2C as the effective number of noise free
symbols, then the above result follows in a rather intuitive manner:
we have M1 = 2C1 noise free symbols from channel 1, and M2 =
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2C2 noise free symbols from channel 2. Since at each step we get
to choose which channel to use, we essentially have M1 + M2 =
2C1 + 2C2 noise free symbols for the new channel. Therefore, the
capacity of this channel is C = log2(2

C1 + 2C2).

This argument is very similiar to the effective alphabet argument
given in Problem 19, Chapter 2 of the text.

(b) From part (b) we get capacity is

log(21−H(p) + 20).

7. Cascaded BSCs.

Consider the two discrete memoryless channels (X , p1(y|x),Y) and (Y , p2(z|y),Z).

Let p1(y|x) and p2(z|y) be binary symmetric channels with crossover
probabilities λ1 and λ2 respectively.
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(a) What is the capacity C1 of p1(y|x)?

(b) What is the capacity C2 of p2(z|y)?

(c) We now cascade these channels. Thus p3(z|x) =
∑

y p1(y|x)p2(z|y).
What is the capacity C3 of p3(z|x)? Show C3 ≤ min{C1, C2}.

(d) Now let us actively intervene between channels 1 and 2, rather
than passively transmitting yn. What is the capacity of channel 1
followed by channel 2 if you are allowed to decode the output yn of
channel 1 and then reencode it as ỹn for transmission over channel
2? (Think W −→ xn(W ) −→ yn −→ ỹn(yn) −→ zn −→ Ŵ .)
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(e) What is the capacity of the cascade in part c) if the receiver can
view both Y and Z?

Solution: Cascaded channels.

(a) Brute force method: Let C1 = 1 − H(p) be the capacity of the
BSC with parameter p, and C2 = 1 − α be the capacity of the
BEC with parameter α. Let Ỹ denote the output of the cascaded
channel, and Y the output of the BSC. Then, the transition rule
for the cascaded channel is simply

p(ỹ|x) =
∑

y=0,1

p(ỹ|y)p(y|x)

for each (x, ỹ) pair.

Let X ∼Bern(π) denote the input to the channel. Then,

H(Ỹ ) = H((1−α)(π(1−p)+p(1−π)), α, (1−α)(pπ+(1−p)(1−π)))

and also

H(Ỹ |X = 0) = H((1− α)(1− p), α, (1− α)p)

H(Ỹ |X = 1) = H((1− α)p, α, (1− α)(1− p)) = H(Ỹ |X = 0).

Therefore,

C = max
p(x)

I(X ; Ỹ )

= max
p(x)

[H(Ỹ )−H(Ỹ |X)]

= max
p(x)

[H(Ỹ )]−H(Ỹ |X)

= max
π

[H((1− α)(π(1− p) + p(1− π)), α, (1− α)(pπ + (1− p)(1− π)))]

−H((1− α)(1− p), α, (1− α)p). (15)

Note that the maximum value of H(Ỹ ) occurs when π = 1/2 by
the concavity and symmetry of H(·). (We can check this also by
differentiating Eq. (15) with respect to π.)
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Substituting the value π = 1/2 in the expression for the capacity
yields

C = H((1− α)/2, α, (1− α)/2)−H((1− p)(1− α), α, p(1− α))

= (1− α)(1 + (1− p) log(1− p) + p log p)

= C1C2.

(b) Elegant method:

For the cascade of an arbitrary discrete memoryless channel (with
capacity C) with the erasure channel (with the erasure probability
α), we will show that

I(X ; Ỹ ) = (1− α)I(X ; Y ). (16)

Then, by taking suprema of both sides over all input distributions
p(x), we can conclude the capacity of the cascaded channel is
(1− α)C.

Proof of Eq. (16):
Let

E =

{

1, Ỹ = e

0, Ỹ = Y
.

Then, since E is a function of Y ,

H(Ỹ ) = H(Ỹ , E)

= H(E) +H(Ỹ |E)

= H(α) + αH(Ỹ |E = 1) + (1− α)H(Ỹ |E = 0)

= H(α) + (1− α)H(Y ),

where the last equality comes directly from the construction of E.
Similarly,

H(Ỹ |X) = H(Ỹ , E|X)

= H(E|X) +H(Ỹ |X,E)

= H(E) + αH(Ỹ |X,E = 1) + (1− α)H(Ỹ |X,E = 0)

= H(α) + (1− α)H(Y |X),

whence

I(X ; Ỹ ) = H(Ỹ )−H(Ỹ |X) = (1− α)I(X ; Y ).
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8. Channel capacity

(a) What is the capacity of the following channel

1

1

1
2

1
2

1
2

1
2

(Input) X Y (Output)

00

11

2

2 3

3 4

(b) Provide a simple scheme that can transmit at rate R = log2 3 bits
through this channel.

Solution for Channel capacity

(a) We can use the solution of previous home question:

C = log
(

2C1 + 2C2 + 2C3

)

Now we need to calculate the capacity of each channel:

C1 = max
p(x)

I(X ; Y ) = H(Y )−H(Y |X) = 0− 0 = 0

C2 = max
p(x)

I(X ; Y ) = H(Y )−H(Y |X) = 1− 1 = 0

C3 = max
p(x)

I(X ; Y ) = max
p(x)

{H(Y )−H(Y |X)}

= max
p(x)

[

−
1

2
p2 log

(

1

2
p2

)

−

(

1

2
p2 + p3

)

log

(

1

2
p2 + p3

)]

− p2

Assigning p3 = 1− p2 and derive against p2:

dI(X ; Y )

dp2
= −

p2
2

·
1

2
·
1
p2
2

−
1

2
log

(p2
2

)

+
2− p2

2
·
1

2
·

1
2−p2
2

+
1

2
log

(

2− p2
2

)

− 1 = 0
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And as result p2 =
2
5
:

C3 ≈ 0.322

And, finally:

C = log(20 + 20 + 20.322) ≈ 1.7

(b) Here is a simple code that achieves capacity.

Encoding: You just use ternary representation of the message and
send using 0,1,2 but no 3 (or 0,1,3 but no 2) of the input channel.
Decoding: map the ternary output into the message.
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