Homework Set \#4 Channel and Source coding

1. Preprocessing the output.

One is given a communication channel with transition probabilities $p(y \mid x)$ and channel capacity $C=\max _{p(x)} I(X ; Y)$. A helpful statistician preprocesses the output by forming $\tilde{Y}=g(Y)$, yielding a channel $p(\tilde{y} \mid x)$. He claims that this will strictly improve the capacity.
(a) Show that he is wrong.
(b) Under what conditions does he not strictly decrease the capacity?

2. The Z channel.

The Z-channel has binary input and output alphabets and transition probabilities $p(y \mid x)$ given by the following matrix:

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right] \quad x, y \in\{0,1\}
$$

Find the capacity of the Z-channel and the maximizing input probability distribution.

3. Using two channels at once.

Consider two discrete memoryless channels $\left(\mathcal{X}_{1}, p\left(y_{1} \mid x_{1}\right), \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2}, p\left(y_{2} \mid x_{2}\right), \mathcal{Y}_{2}\right)$ with capacities C_{1} and C_{2} respectively. A new channel $\left(\mathcal{X}_{1} \times \mathcal{X}_{2}, p\left(y_{1} \mid x_{1}\right) \times p\left(y_{2} \mid x_{2}\right), \mathcal{Y}_{1} \times \mathcal{Y}_{2}\right)$ is formed in which $x_{1} \in \mathcal{X}_{1}$ and $x_{2} \in \mathcal{X}_{2}$, are simultaneously sent, resulting in y_{1}, y_{2}. Find the capacity of this channel.
4. A channel with two independent looks at Y.

Let Y_{1} and Y_{2} be conditionally independent and conditionally identically distributed given X. Thus $p\left(y_{1}, y_{2} \mid x\right)=p\left(y_{1} \mid x\right) p\left(y_{2} \mid x\right)$.
(a) Show $I\left(X ; Y_{1}, Y_{2}\right)=2 I\left(X ; Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)$.
(b) Conclude that the capacity of the channel

is less than twice the capacity of the channel

5. Choice of channels.

Find the capacity C of the union of 2 channels $\left(\mathcal{X}_{1}, p_{1}\left(y_{1} \mid x_{1}\right), \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2}, p_{2}\left(y_{2} \mid x_{2}\right), \mathcal{Y}_{2}\right)$ where, at each time, one can send a symbol over channel 1 or over channel 2 but not both. Assume the output alphabets are distinct and do not intersect.
(a) Show $2^{C}=2^{C_{1}}+2^{C_{2}}$.
(b) What is the capacity of this Channel?

6. Cascaded BSCs.

Consider the two discrete memoryless channels $\left(\mathcal{X}, p_{1}(y \mid x), \mathcal{Y}\right)$ and $\left(\mathcal{Y}, p_{2}(z \mid y), \mathcal{Z}\right)$. Let $p_{1}(y \mid x)$ and $p_{2}(z \mid y)$ be binary symmetric channels with crossover probabilities λ_{1} and λ_{2} respectively.

2
(a) What is the capacity C_{1} of $p_{1}(y \mid x)$?
(b) What is the capacity C_{2} of $p_{2}(z \mid y)$?
(c) We now cascade these channels. Thus $p_{3}(z \mid x)=\sum_{y} p_{1}(y \mid x) p_{2}(z \mid y)$. What is the capacity C_{3} of $p_{3}(z \mid x)$? Show $C_{3} \leq \min \left\{C_{1}, C_{2}\right\}$.
(d) Now let us actively intervene between channels 1 and 2, rather than passively transmitting y^{n}. What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output y^{n} of channel 1 and then reencode it as \tilde{y}^{n} for transmission over channel 2? (Think $\left.W \longrightarrow x^{n}(W) \longrightarrow y^{n} \longrightarrow \tilde{y}^{n}\left(y^{n}\right) \longrightarrow z^{n} \longrightarrow \hat{W}.\right)$
(e) What is the capacity of the cascade in part c) if the receiver can view both Y and Z ?

7. Channel capacity

(a) What is the capacity of the following channel

(b) Provide a simple scheme that can transmit at rate $R=\log _{2} 3$ bits through this channel.

