
2nd Semester 2009

Solutions to Set #3

Data Compression, Huffman code, Shannon Code

1. Huffman coding.

Consider the random variable

X =

(

x1 x2 x3 x4 x5 x6 x7

0.50 0.26 0.11 0.04 0.04 0.03 0.02

)

(a) Find a binary Huffman code for X.

(b) Find the expected codelength for this encoding.

(c) Extend the Binary Huffman method to Ternarry (Alphabet of 3)
and apply it for X.

Solution: Huffman coding.

(a) The Huffman tree for this distribution is

Codeword
1 x1 0.50 0.50 0.50 0.50 0.50 0.50 1
01 x2 0.26 0.26 0.26 0.26 0.26 0.50
001 x3 0.11 0.11 0.11 0.11 0.24
00011 x4 0.04 0.04 0.08 0.13
00010 x5 0.04 0.04 0.05
00001 x6 0.03 0.05
00000 x7 0.02

(b) The expected length of the codewords for the binary Huffman code
is 2 bits. (H(X) = 1.99 bits)

(c) The ternary Huffman tree is

Codeword
0 x1 0.50 0.50 0.50 1.0
1 x2 0.26 0.26 0.26
20 x3 0.11 0.11 0.24
21 x4 0.04 0.04
222 x5 0.04 0.09
221 x6 0.03
220 x7 0.02

1



This code has an expected length 1.33 ternary symbols. (H3(X) =
1.25 ternary symbols).

2. Codes.

Let X1, X2, . . . , i.i.d. with

X =







1, with probability 1/2
2, with probability 1/4
3, with probability 1/4.

Consider the code assignment

C(x) =







0, if x = 1
01, if x = 2
11, if x = 3.

(a) Is this code nonsingular?

(b) Uniquely decodable?

(c) Instantaneous?

(d) Entropy Rate is defined as

H(X ) , lim
n→∞

H(Xn)

n
. (1)

What is the entropy rate of the process

Z1Z2Z3 . . . = C(X1)C(X2)C(X3) . . .?

Solution: Codes.

(a) Yes, this code is nonsingular because C(x) is different for every
x.

(b) Yes, this code is uniquely decodable. Reversing the codewords

C ′(x) =







0, if x = 1
10, if x = 2
11, if x = 3

gives an instantaneous code, and thus a uniquely decodable code.
Therefore the reversed extension is uniquely decodable, and so the
extension itself is also uniquely decodable.
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(c) No, this code is not instantaneous because C(1) is a prefix of
C(2).

(d) The expected codeword length is

L(C(x)) = 0.5× 1 + 0.25× 2 + 0.25× 2 =
3

2
.

Further, the entropy rate of the i.i.d. Xn is

H(X ) = H(X) = H(.5, .25, .25) =
3

2
.

So the code is a uniquely decodable code with L = H(X ), and
therefore the sequence is maximally compressed with H(Z) =
1 bit. If H(Z) were less than its maximum of 1 bit then the Zn

sequence could be further compressed to its entropy rate, and Xm

could also be compressed further by blockcoding. However, this
would result in Lm < H(X ) which contradicts theorem 5.4.2 of
the text. So H(Z) = 1 bit.

Note that the Zn sequence is not i.i.d. ∼ Br(1
2
), even though

H(Z) = 1 bit. For example, P{Z1 = 1} = 1
4
, and a sequence

starting 10 . . . is not allowed. However, once Zi = 0 for some i then
Zk is Bernoulli(1

2
) for k > i, so Zn is asymptotically Bernoulli(1

2
)

and gives the entropy rate of 1 bit.

3. Compression

(a) Give a Huffman encoding into an alphabet of size D = 2 of the
following probability mass function:

(

1

2
,
1

8
,
1

8
,
1

16
,
1

16
,
1

16
,
1

16

)

(b) Assume you have a file of size 1,000 symbols where the symbols are
distributed i.i.d. according to the pmf above. After applying the
Huffman code, what would be the pmf of the compressed binary
file and what would be the expected length?

4. Solution:

The code is presented in Fig 1.
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Figure 1: Huffman

(a) Huffman code is optimal code and achieves the entropy for dyadic
distribution. If the distribution of the digits is not Bernoulli(1

2
)

you can compress it further. The binary digits of the data would
be equally distributed after applying the Huffman code and there-
fore p0 = p1 =

1
2
.

The expected length would be:

E[l] =
1

2
· 1 +

1

8
· 3 +

1

8
· 3 +

1

16
· 4 +

1

16
· 4 +

1

16
· 4 +

1

16
· 4 = 2.25

Therefore, the expected length of 1000 symbols would be 2250
bits.

5. Entropy and source coding of a source with infinite alphabet

(15 points)

Let X be an i.i.d. random variable with an infinite alphabet, X =
{1, 2, 3, ...}. In addition let P (X = i) = 2−i.

(a) What is the entropy of the random variable?

(b) Find an optimal variable length code, and show that it is indeed
optimal.
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Solution

(a)

H(X) = −
∑

x∈X

p(x) log p(x)

= −
∞
∑

i=1

2−ilog2(2
−i)

= −
∞
∑

i=1

−i

2i
= 2

(b) Coding Scheme:
1 0
2 10
3 110
4 1110
5 11110
. .
. .
. .

Average Length:

L∗ =
∞
∑

i=1

p(x = i)L(i) =
∞
∑

i=1

i

2i
= 2 = H(X)

Hence it is the Optimal Code.

6. Bad wine.

One is given 6 bottles of wine. It is known that precisely one bottle
has gone bad (tastes terrible). From inspection of the bottles it is
determined that the probability pi that the i

th bottle is bad is given by
(p1, p2, . . . , p6) = ( 7

26
, 5
26
, 4
26
, 4
26
, 3
26
, 3
26
). Tasting will determine the bad

wine.

Suppose you taste the wines one at a time. Choose the order of tasting
to minimize the expected number of tastings required to determine the
bad bottle. Remember, if the first 5 wines pass the test you don’t have
to taste the last.
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(a) What is the expected number of tastings required?

(b) Which bottle should be tasted first?

Now you get smart. For the first sample, you mix some of the wines in
a fresh glass and sample the mixture. You proceed, mixing and tasting,
stopping when the bad bottle has been determined.

(c) What is the minimum expected number of tastings required to
determine the bad wine?

(d) What mixture should be tasted first?

Solution: Bad wine.

(a) If we taste one bottle at a time, the corresponding number of tast-
ings are {1, 2, 3, 4, 5, 5} with some order. By the same argument
as in Lemma 5.8.1, to minimize the expected length

∑

pilk we
should have lj ≤ lk if pj > pk. Hence, the best order of tasting
should be from the most likely wine to be bad to the least.

The expected number of tastings required is

6
∑

i=1

pili = 1×
7

26
+ 2×

5

26
+ 3×

4

26
+ 4×

4

26
+ 5×

3

26
+ 5×

3

26

=
75

26
= 2.88

(b) The first bottle to be tasted should be the one with probability
7
26
.

(c) The idea is to use Huffman coding.

(01) 7 7 8 11 15 26
(11) 5 6 7 8 11
(000) 4 5 6 7
(001) 4 4 5
(100) 3 4
(101) 3
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The expected number of tastings required is

6
∑

i=1

pili = 2×
7

26
+ 2×

5

26
+ 3×

4

26
+ 3×

4

26
+ 3×

3

26
+ 3×

3

26

=
66

26
= 2.54

Note that H(p) = 2.52 bits.

(d) The mixture of the first, third, and forth bottles should be tasted
first, (or equivalently the mixture of the second, fifth and sixth).

7. Relative entropy is cost of miscoding.

Let the random variable X have five possible outcomes {1, 2, 3, 4, 5}.
Consider two distributions on this random variable

Symbol p(x) q(x) C1(x) C2(x)
1 1/2 1/2 0 0
2 1/4 1/8 10 100
3 1/8 1/8 110 101
4 1/16 1/8 1110 110
5 1/16 1/8 1111 111

(a) Calculate H(p), H(q), D(p||q) and D(q||p).

(b) The last two columns above represent codes for the random vari-
able. Verify that the average length of C1 under p is equal to the
entropy H(p). Thus C1 is optimal for p. Verify that C2 is optimal
for q.

(c) Now assume that we use code C2 when the distribution is p. What
is the average length of the codewords. By how much does it
exceed the entropy H(p)?

(d) What is the loss if we use code C1 when the distribution is q?

Solution: Relative entropy is cost of miscoding.
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(a)

H(p) =
∑

i

−pi log pi

= −
1

2
log

1

2
−

1

4
log

1

4
−

1

8
log

1

8
− 2 ·

1

16
log

1

16

=
15

8
.

Similarly, H(q) = 2.

D(p||q) =
∑

i

pi log
pi
qi

=
1

2
log

1/2

1/2
+

1

4
log

1/4

1/8
+

1

8
log

1/8

1/8
+ 2 ·

1

16
log

1/16

1/8

=
1

8
.

Similarly, D(q||p) = 1
8
.

(b) The average codeword length for C1 is

El1 =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 + 2 ·

1

16
· 4 =

15

8
.

Similarly, the average codeword length for C2 is 2.

(c)

Epl2 =
1

2
· 1 +

1

4
· 3 +

1

8
· 3 + 2 ·

1

16
· 3 = 2,

which exceeds H(p) by D(p||q) = 1
8
.

(d) Similarly, Eql1 =
17
8
, which exceeds H(q) by D(q||p) = 1

8
.

8. Shannon code. Consider the following method for generating a code
for a random variable X which takes on m values {1, 2, . . . , m} with
probabilities p1, p2, . . . , pm. Assume that the probabilities are ordered
so that p1 ≥ p2 ≥ · · · ≥ pm. Define

Fi =
i−1
∑

k=1

pi, (2)

the sum of the probabilities of all symbols less than i. Then the code-
word for i is the number Fi ∈ [0, 1] rounded off to li bits, where
li = ⌈log 1

pi
⌉.
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(a) Show that the code constructed by this process is prefix-free and
the average length satisfies

H(X) ≤ L < H(X) + 1. (3)

(b) Construct the code for the probability distribution (0.5, 0.25, 0.125, 0.125).

Solution to Shannon code.

(a) Since li = ⌈log 1
pi
⌉, we have

log
1

pi
≤ li < log

1

pi
+ 1 (4)

which implies that

H(X) ≤ L =
∑

pili < H(X) + 1. (5)

The difficult part is to prove that the code is a prefix code. By
the choice of li, we have

2−li ≤ pi < 2−(li−1). (6)

Thus Fj, j > i differs from Fi by at least 2−li, and will therefore
differ from Fi is at least one place in the first li bits of the binary
expansion of Fi. Thus the codeword for Fj , j > i, which has length
lj ≥ li, differs from the codeword for Fi at least once in the first
li places. Thus no codeword is a prefix of any other codeword.

(b) We build the following table

Symbol Probability Fi in decimal Fi in binary li Codeword
1 0.5 0.0 0.0 1 0
2 0.25 0.5 0.10 2 10
3 0.125 0.75 0.110 3 110
4 0.125 0.875 0.111 3 111

The Shannon code in this case achieves the entropy bound (1.75
bits) and is optimal.
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