Homework Set \#2

Entropy, Mutual Information, Divergence and Jensen's Inequality

1. The value of a question.

Let $X \sim p(x), \quad x=1,2, \ldots, m$.
We are given a set $S \subseteq\{1,2, \ldots, m\}$. We ask whether $X \in S$ and receive the answer

$$
Y= \begin{cases}1, & \text { if } X \in S \\ 0, & \text { if } X \notin S\end{cases}
$$

Suppose $\operatorname{Pr}\{X \in S\}=\alpha$.
(a) Find the decrease in uncertainty $H(X)-H(X \mid Y)$.
(b) Is the set S with a given probability α is as good as any other.

2. Relative entropy is not symmetric

Let the random variable X have three possible outcomes $\{a, b, c\}$. Consider two distributions on this random variable

Symbol	$p(x)$	$q(x)$
a	$1 / 2$	$1 / 3$
b	$1 / 4$	$1 / 3$
c	$1 / 4$	$1 / 3$

Calculate $H(p), H(q), D(p \| q)$ and $D(q \| p)$.
Verify that in this case $D(p \| q) \neq D(q \| p)$.

3. True or False

Let X, Y, Z be discrete random variable. Copy each relation and write true or false. If it's true, prove it. If it is false give a counterexample or prove that the opposite is true.

For instance:

- $H(X) \geq H(X \mid Y)$ is true. Proof: In the class we showed that $I(X ; Y)>0$, hence $H(X)-H(X \mid Y)>0$.
- $H(X)+H(Y) \leq H(X, Y)$ is false. Actually the opposite is true, i.e., $H(X)+H(Y) \geq H(X, Y)$ since $I(X ; Y)=H(X)+H(Y)-$ $H(X, Y) \geq 0$.
(a) If $H(X \mid Y)=H(X)$ then X and Y are independent.
(b) For any two probability mass functions (pmf) P, Q,

$$
D\left(\frac{P+Q}{2} \| Q\right) \leq \frac{1}{2} D(P \| Q)
$$

where $D(\|)$ is a divergence between two pmfs.
(c) Let X and Y be two independent random variables. Then

$$
H(X+Y) \geq H(X)
$$

(d) $I(X ; Y)-I(X ; Y \mid Z) \leq H(Z)$
(e) If $f(x, y)$ is a convex function in the pair (x, y), then for a fixed $y, f(x, y)$ is convex in x, and for a fixed $x, f(x, y)$ is convex in y.
(f) If for a fixed y the function $f(x, y)$ is a convex function in x, and for a fixed $x, f(x, y)$ is convex function in y, then $f(x, y)$ is convex in the pair (x, y). (Examples of such functions are $f(x, y)=f_{1}(x)+f_{2}(y)$ or $f(x, y)=f_{1}(x) f_{2}(y)$ where $f_{1}(x)$ and $f_{2}(y)$ are convex.)

4. Random questions.

One wishes to identify a random object $X \sim p(x)$. A question $Q \sim r(q)$ is asked at random according to $r(q)$. This results in a deterministic answer $A=A(x, q) \in\left\{a_{1}, a_{2}, \ldots\right\}$. Suppose the object X and the question Q are independent. Then $I(X ; Q, A)$ is the uncertainty in X removed by the question-answer (Q, A).
(a) Show $I(X ; Q, A)=H(A \mid Q)$. Interpret.
(b) Now suppose that two i.i.d. questions $Q_{1}, Q_{2} \sim r(q)$ are asked, eliciting answers A_{1} and A_{2}. Show that two questions are less valuable than twice the value of a single question in the sense that $I\left(X ; Q_{1}, A_{1}, Q_{2}, A_{2}\right) \leq 2 I\left(X ; Q_{1}, A_{1}\right)$.

5. Entropy bounds.

Let $X \sim p(x)$, where x takes values in an alphabet \mathcal{X} of size m. The entropy $H(X)$ is given by

$$
\begin{aligned}
H(X) & \equiv-\sum_{x \in \mathcal{X}} p(x) \log p(x) \\
& =E_{p} \log \frac{1}{p(X)} .
\end{aligned}
$$

Use Jensen's inequality ($E f(X) \leq f(E X)$, if f is concave) to show
(a) $H(X) \leq \log E_{p} \frac{1}{p(X)}$

$$
=\log m
$$

(b) $-H(X) \leq \log \left(\sum_{x \in \mathcal{X}} p^{2}(x)\right)$, thus establishing a lower bound on $H(X)$.
(c) Evaluate the upper and lower bounds on $H(X)$ when $p(x)$ is uniform.
(d) Let X_{1}, X_{2} be two independent drawings of X. Find $\operatorname{Pr}\left\{X_{1}=X_{2}\right\}$ and show $\operatorname{Pr}\left\{X_{1}=X_{2}\right\} \geq 2^{-H}$.

6. Bottleneck.

Suppose a (non-stationary) Markov chain starts in one of n states, necks down to $k<n$ states, and then fans back to $m>k$ states. Thus $X_{1} \rightarrow$ $X_{2} \rightarrow X_{3}, X_{1} \in\{1,2, \ldots, n\}, X_{2} \in\{1,2, \ldots, k\}, X_{3} \in\{1,2, \ldots, m\}$, and $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right)$.
(a) Show that the dependence of X_{1} and X_{3} is limited by the bottleneck by proving that $I\left(X_{1} ; X_{3}\right) \leq \log k$.
(b) Evaluate $I\left(X_{1} ; X_{3}\right)$ for $k=1$, and conclude that no dependence can survive such a bottleneck.

