Homework Set \#1
 Properties of Entropy and Mutual Information

1. Entropy of functions of a random variable.

Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

$$
\begin{aligned}
& H(X, g(X)) \stackrel{(a)}{=} H(X)+H(g(X) \mid X) \\
& \stackrel{(b)}{=} H(X) . \\
& H(X, g(X)) \stackrel{(c)}{=} H(g(X))+H(X \mid g(X)) \\
& \stackrel{(d)}{\geq} H(g(X)) .
\end{aligned}
$$

Thus $H(g(X)) \leq H(X)$.
Solution: Entropy of functions of a random variable.
(a) $H(X, g(X))=H(X)+H(g(X) \mid X)$ by the chain rule for entropies.
(b) $H(g(X) \mid X)=0$ since for any particular value of $\mathrm{X}, \mathrm{g}(\mathrm{X})$ is fixed, and hence $H(g(X) \mid X)=\sum_{x} p(x) H(g(X) \mid X=x)=\sum_{x} 0=0$.
(c) $H(X, g(X))=H(g(X))+H(X \mid g(X))$ again by the chain rule.
(d) $H(X \mid g(X)) \geq 0$, with equality iff X is a function of $g(X)$, i.e., $g($.$) is one-to-one. Hence H(X, g(X)) \geq H(g(X))$.

Combining parts (b) and (d), we obtain $H(X) \geq H(g(X))$.
2. Example of joint entropy.

Let $p(x, y)$ be given by

Y		
X		0
	1	
	0	$\frac{1}{3}$
	$\frac{1}{3}$	
	1	0

Find
(a) $H(X), H(Y)$.
(b) $H(X \mid Y), H(Y \mid X)$.
(c) $H(X, Y)$.
(d) $H(Y)-H(Y \mid X)$.
(e) $I(X ; Y)$.

3. "True or False" questions

Copy each relation and write true or false. Then, if it's true, prove it. If it is false give a counterexample or prove that the opposite is true.
(a) $H(X) \geq H(X \mid Y)$
(b) $H(X)+H(Y) \leq H(X, Y)$
(c) Let X, Y be two independent random variables. Then

$$
H(X-Y) \geq H(X)
$$

4. Solution to "True or False" questions e.
(a) $H(X) \geq H(X \mid Y)$ is true. Proof: In the class we showed that $I(X ; Y)>0$, hence $H(X)-H(X \mid Y)>0$.
(b) $H(X)+H(Y) \leq H(X, Y)$ is false. Actually the opposite is true, i.e., $H(X)+H(Y) \geq H(X, Y)$ since $I(X ; Y)=H(X)+H(Y)-$ $H(X, Y) \geq 0$.
(c) Let X, Y be two independent random variables. Then

$$
H(X-Y) \geq H(X)
$$

True

$$
H(X-Y) \stackrel{(a)}{\geq} H(X-Y \mid Y)) \stackrel{(b)}{\geq} H(X)
$$

(a) follows from the fact that conditioning reduces entropy.
(b) Follows from the fact that given $Y, X-Y$ is a Bijective Function.

5. Bytes.

The entropy, $H_{a}(X)=-\sum p(x) \log _{a} p(x)$ is expressed in bits if the logarithm is to the base 2 and in bytes if the logarithm is to the base 256. What is the relationship of $H_{2}(X)$ to $H_{256}(X)$?

Solution: Bytes.

$$
\begin{aligned}
H_{2}(X) & =-\sum p(x) \log _{2} p(x) \\
& =-\sum p(x) \frac{\log _{2} p(x) \log _{256}(2)}{\log _{256}(2)} \\
& \stackrel{(a)}{=}-\sum p(x) \frac{\log _{256} p(x)}{\log _{256}(2)} \\
& =\frac{-1}{\log _{256}(2)} \sum p(x) \log _{256} p(x) \\
& \stackrel{(b)}{=} \frac{H_{256}(X)}{\log _{256}(2)}
\end{aligned}
$$

where (a) comes from the property of logarithms and (b) follows from the definition of $H_{256}(X)$. Hence we get

$$
H_{2}(X)=8 H_{256}(X)
$$

Solution: Example of joint entropy

(a) $H(X)=\frac{2}{3} \log \frac{3}{2}+\frac{1}{3} \log 3=.918$ bits $=H(Y)$.
(b) $H(X \mid Y)=\frac{1}{3} H(X \mid Y=0)+\frac{2}{3} H(X \mid Y=1)=.667$ bits $=H(Y \mid X)$.
(c) $H(X, Y)=3 \times \frac{1}{3} \log 3=1.585$ bits.
(d) $H(Y)-H(Y \mid X)=.251$ bits.
(e) $I(X ; Y)=H(Y)-H(Y \mid X)=.251$ bits.

6. Two looks.

Here is a statement about pairwise independence and joint independence. Let X, Y_{1}, and Y_{2} be binary random variables. If $I\left(X ; Y_{1}\right)=0$ and $I\left(X ; Y_{2}\right)=0$, does it follow that $I\left(X ; Y_{1}, Y_{2}\right)=0$?
(a) Yes or no?
(b) Prove or provide a counterexample.
(c) If $I\left(X ; Y_{1}\right)=0$ and $I\left(X ; Y_{2}\right)=0$ in the above problem, does it follow that $I\left(Y_{1} ; Y_{2}\right)=0$? In other words, if Y_{1} is independent of X, and if Y_{2} is independent of X, is it true that Y_{1} and Y_{2} are independent?

Solution: Two looks.

(a) The answer is "no".
(b) Although at first the conjecture seems reasonable enough-after all, if Y_{1} gives you no information about X, and if Y_{2} gives you no information about X, then why should the two of them together give any information? But remember, it is NOT the case that $I\left(X ; Y_{1}, Y_{2}\right)=I\left(X ; Y_{1}\right)+I\left(X ; Y_{2}\right)$. The chain rule for information says instead that $I\left(X ; Y_{1}, Y_{2}\right)=I\left(X ; Y_{1}\right)+I\left(X ; Y_{2} \mid Y_{1}\right)$. The chain rule gives us reason to be skeptical about the conjecture.
This problem is reminiscent of the well-known fact in probability that pair-wise independence of three random variables is not sufficient to guarantee that all three are mutually independent. $I\left(X ; Y_{1}\right)=0$ is equivalent to saying that X and Y_{1} are independent. Similarly for X and Y_{2}. But just because X is pairwise independent with each of Y_{1} and Y_{2}, it does not follow that X is independent of the vector $\left(Y_{1}, Y_{2}\right)$.
Here is a simple counterexample. Let Y_{1} and Y_{2} be independent fair coin flips. And let $X=Y_{1}$ XOR $Y_{2} . X$ is pairwise independent of both Y_{1} and Y_{2}, but obviously not independent of the vector $\left(Y_{1}, Y_{2}\right)$, since X is uniquely determined once you know $\left(Y_{1}, Y_{2}\right)$.
(c) Again the answer is "no". Y_{1} and Y_{2} can be arbitrarily dependent with each other and both still be independent of X. For example, let $Y_{1}=Y_{2}$ be two observations of the same fair coin flip, and X an independent fair coin flip. Then $I\left(X ; Y_{1}\right)=I\left(X ; Y_{2}\right)=0$ because X is independent of both Y_{1} and Y_{2}. However, $I\left(Y_{1} ; Y_{2}\right)=$ $H\left(Y_{1}\right)-H\left(Y_{1} \mid Y_{2}\right)=H\left(Y_{1}\right)=1$.

7. A measure of correlation.

Let X_{1} and X_{2} be identically distributed, but not necessarily independent. Let

$$
\rho=1-\frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}
$$

(a) Show $\rho=\frac{I\left(X_{1} ; X_{2}\right)}{H\left(X_{1}\right)}$.
(b) Show $0 \leq \rho \leq 1$.
(c) When is $\rho=0$?
(d) When is $\rho=1$?

Solution: A measure of correlation.
X_{1} and X_{2} are identically distributed and

$$
\rho=1-\frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}
$$

(a)

$$
\begin{aligned}
\rho & =\frac{H\left(X_{1}\right)-H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)} \\
& =\frac{H\left(X_{2}\right)-H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}\left(\text { since } H\left(X_{1}\right)=H\left(X_{2}\right)\right) \\
& =\frac{I\left(X_{1} ; X_{2}\right)}{H\left(X_{1}\right)} .
\end{aligned}
$$

(b) Since $0 \leq H\left(X_{2} \mid X_{1}\right) \leq H\left(X_{2}\right)=H\left(X_{1}\right)$, we have

$$
\begin{gathered}
0 \leq \frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)} \leq 1 \\
0 \leq \rho \leq 1
\end{gathered}
$$

(c) $\rho=0$ iff $I\left(X_{1} ; X_{2}\right)=0$ iff X_{1} and X_{2} are independent.
(d) $\rho=1$ iff $H\left(X_{2} \mid X_{1}\right)=0$ iff X_{2} is a function of X_{1}. By symmetry, X_{1} is a function of X_{2}, i.e., X_{1} and X_{2} have a one-to-one correspondence. For example, if $X_{1}=X_{2}$ with probability 1 then $\rho=1$. Similarly, if the distribution of X_{i} is symmetric then $X_{1}=-X_{2}$ with probability 1 would also give $\rho=1$.

