Mathematical methods in communication 2nd Semester 2010

Homework Set #1
Properties of Entropy and Mutual Information

1. Entropy of functions of a random variable.
Let X be a discrete random variable. Show that the entropy of a
function of X is less than or equal to the entropy of X by justifying
the following steps:

H(X,9(X)) Y H(X) + H(g(X)|X)
© H7x).

H(X,9(X)) 2 H(g(X)) + H(X|g(X))

< Hg(x)).

Thus H(g(X)) < H(X).

Solution: Entropy of functions of a random variable.

(a) H(X,g9(X))=H(X)+H(g(X)|X) by the chain rule for entropies.
(b) H(g(X)|X) = 0 since for any particular value of X, g(X) is fixed,
and hence H(g(X)|X) = 5, p() H(g(X)|X = 1) = 3,0 = 0.

(¢c) H(X,9(X))=H(g(X))+ H(X|g(X)) again by the chain rule.
(d) H(X|g(X)) > 0, with equality iff X is a function of g(X), i.e.,
g(.) is one-to-one. Hence H (X, g(X)) > H(g(X)).

Combining parts (b) and (d), we obtain H(X) > H(g(X)).

2. Example of joint entropy.
Let p(x,y) be given by
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3. “True or False” questions
Copy each relation and write true or false. Then, if it’s true, prove it.
If it is false give a counterexample or prove that the opposite is true.
(a) H(X) = H(X[Y)
(b) H(X)+H(Y) < H(X,Y)
(c) Let X,Y be two independent random variables. Then
H(X-Y)>H(X).
4. Solution to “True or False” questions e.
(a) H(X) > H(X|Y) is true. Proof: In the class we showed that

I(X;Y) >0, hence H(X) — H(X|Y) > 0.

(b) H(X)+ H(Y) < H(X,Y) is false. Actually the opposite is true,
le, HX)+ HY) > H(X,Y) since I(X;Y)=H(X)+ H(Y) —
H(X,Y) > 0.

(c) Let X,Y be two independent random variables. Then
H(X —Y) > H(X).
True (@) ®)
HX-v) 2 H(x - YY) 2 HX)

(a) follows from the fact that conditioning reduces entropy.
(b) Follows from the fact that given Y, X —Y is a Bijective Func-
tion.



5. Bytes.
The entropy, H,(X)

— Y p(z)log, p(x) is expressed in bits if the

logarithm is to the base 2 and in bytes if the logarithm is to the base
256. What is the relationship of Ho(X) to Hose(X)?

Solution: Bytes.

Hy(X)
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—> ()

B . logys6 p(2)
Zp( ) log20(2)
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) log, p(x

log, P( ) 10%256(2)
l0g256(2)

) logasg p(x
10%256 29 )

Has(X )
10%256(2) 7

where (a) comes from the property of logarithms and (b) follows from
the definition of Has6(X ). Hence we get

HQ(X) = 8H256(X).

Solution: Example of joint entropy

(X)=4%
(XJY) =
(X,
(Y)

6. Two looks.

log 2 + +log3 = 918 bits = H(Y).
TH(X|Y =0)+2H(X|Y =1) =
X,Y) =3 x 3log3 = 1.585 bits.

H(Y|X) =
= H(Y) -

667 bits = H(Y|X).

.251 bits.
H(Y|X) =

.251 bits.

Here is a statement about pairwise independence and joint indepen-
dence. Let X, Y7, and Y5 be binary random variables. If I(X;Y;) =0
and I(X;Ys) =0, does it follow that I(X;Y),Ys) = 07
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(a)
(b)
(c)

Yes or no?
Prove or provide a counterexample.

If I(X;Y1) =0 and I(X;Y;) = 0 in the above problem, does it
follow that I(Yy;Ys) = 07 In other words, if Y] is independent of
X, and if Y5 is independent of X, is it true that Y; and Y5 are
independent?

Solution: Two looks.

(a)
(b)

The answer is “no”.

Although at first the conjecture seems reasonable enough-after
all, if Y7 gives you no information about X, and if Y5 gives you no
information about X, then why should the two of them together
give any information? But remember, it is NOT the case that
I(X;Y1,Ys) = I(X; Y1)+ I(X;Y3). The chain rule for information
says instead that I(X;Y3,Ys) = I(X; Y1)+ 1(X; Ys|Y7). The chain
rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probabil-
ity that pair-wise independence of three random variables is not
sufficient to guarantee that all three are mutually independent.
I(X;Y7) = 0 is equivalent to saying that X and Y; are indepen-
dent. Similarly for X and Y5. But just because X is pairwise
independent with each of Y7 and Y3, it does not follow that X is
independent of the vector (Y7, Y5).

Here is a simple counterexample. Let Y; and Y, be independent
fair coin flips. And let X = Y] XOR Y;. X is pairwise independent
of both Y] and Y5, but obviously not independent of the vector
(Y71,Y5), since X is uniquely determined once you know (Y3, Y5).

Again the answer is “no”. Y; and Y5 can be arbitrarily dependent
with each other and both still be independent of X. For example,
let Y7 = Y5 be two observations of the same fair coin flip, and
X an independent fair coin flip. Then I(X;Y7) = I(X;Y2) =0
because X is independent of both Y] and Y,. However, I(Y7;Ys) =
HY) - HM|Yz2) = H(Y1) = 1.



7. A measure of correlation.

Let X; and X5 be identically distributed, but not necessarily indepen-
dent. Let

_ o H(XX)

p=1-—250

H(Xy)

1(X1;Xo

(a) e

(b) Show 0 < p < 1.

(¢) When is p = 07

(d) When is p =17

a) Show p =

Solution: A measure of correlation.
X1 and X are identically distributed and

_ H(X|1XH)

= TE)

(a)

H(X,) — H(X,| X))
H(X,)
H(Xy) — H(X,| X))
H(Xy)

1(X1; Xo)
H(Xy)
(b) Since 0 < H(X3|X1) < H(X,) = H(X}), we have
HUGIX) _
H(Xy)
0<p<1
(c) p=0iff I(Xy; Xy) = 0iff X7 and X, are independent.

(d) p=1iff H(X,|X;) =0 iff X, is a function of X;. By symmetry,
X is a function of X5, i.e., X7 and X, have a one-to-one correspon-
dence. For example, if X; = X5 with probability 1 then p = 1.
Similarly, if the distribution of X; is symmetric then X; = —Xj
with probability 1 would also give p = 1.

(since H(Xy) = H(X3))
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