
Mathematical methods in communication 2nd Semester 2010

Homework Set #1

Properties of Entropy and Mutual Information

1. Entropy of functions of a random variable.

Let X be a discrete random variable. Show that the entropy of a
function of X is less than or equal to the entropy of X by justifying
the following steps:

H(X, g(X))
(a)
= H(X) +H(g(X)|X)

(b)
= H(X).

H(X, g(X))
(c)
= H(g(X)) +H(X|g(X))
(d)

≥ H(g(X)).

Thus H(g(X)) ≤ H(X).

Solution: Entropy of functions of a random variable.

(a) H(X, g(X)) = H(X)+H(g(X)|X) by the chain rule for entropies.

(b) H(g(X)|X) = 0 since for any particular value of X, g(X) is fixed,
and hence H(g(X)|X) =

∑
x p(x)H(g(X)|X = x) =

∑
x 0 = 0.

(c) H(X, g(X)) = H(g(X)) +H(X|g(X)) again by the chain rule.

(d) H(X|g(X)) ≥ 0, with equality iff X is a function of g(X), i.e.,
g(.) is one-to-one. Hence H(X, g(X)) ≥ H(g(X)).

Combining parts (b) and (d), we obtain H(X) ≥ H(g(X)).

2. Example of joint entropy.

Let p(x, y) be given by
Y

X 0 1

0 1
3

1
3

1 0 1
3
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Find

(a) H(X), H(Y ).

(b) H(X|Y ), H(Y |X).

(c) H(X, Y ).

(d) H(Y )−H(Y |X).

(e) I(X ; Y ).

3. “True or False” questions

Copy each relation and write true or false. Then, if it’s true, prove it.
If it is false give a counterexample or prove that the opposite is true.

(a) H(X) ≥ H(X|Y )

(b) H(X) +H(Y ) ≤ H(X, Y )

(c) Let X, Y be two independent random variables. Then

H(X − Y ) ≥ H(X).

4. Solution to “True or False” questions e.

(a) H(X) ≥ H(X|Y ) is true. Proof: In the class we showed that
I(X ; Y ) > 0, hence H(X)−H(X|Y ) > 0.

(b) H(X) +H(Y ) ≤ H(X, Y ) is false. Actually the opposite is true,
i.e., H(X) +H(Y ) ≥ H(X, Y ) since I(X ; Y ) = H(X) +H(Y )−
H(X, Y ) ≥ 0.

(c) Let X, Y be two independent random variables. Then

H(X − Y ) ≥ H(X).

True

H(X − Y )
(a)

≥ H(X − Y |Y ))
(b)

≥ H(X)

(a) follows from the fact that conditioning reduces entropy.
(b) Follows from the fact that given Y , X−Y is a Bijective Func-
tion.
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5. Bytes.

The entropy, Ha(X) = −
∑

p(x) log
a
p(x) is expressed in bits if the

logarithm is to the base 2 and in bytes if the logarithm is to the base
256. What is the relationship of H2(X) to H256(X)?

Solution: Bytes.

H2(X) = −
∑

p(x) log2 p(x)

= −
∑

p(x)
log2 p(x) log256(2)

log256(2)

(a)
= −

∑
p(x)

log256 p(x)

log256(2)

=
−1

log256(2)

∑
p(x) log256 p(x)

(b)
=

H256(X)

log256(2)
,

where (a) comes from the property of logarithms and (b) follows from
the definition of H256(X). Hence we get

H2(X) = 8H256(X).

Solution: Example of joint entropy

(a) H(X) = 2
3
log 3

2
+ 1

3
log 3 = .918 bits = H(Y ).

(b) H(X|Y ) = 1
3
H(X|Y = 0)+ 2

3
H(X|Y = 1) = .667 bits = H(Y |X).

(c) H(X, Y ) = 3× 1
3
log 3 = 1.585 bits.

(d) H(Y )−H(Y |X) = .251 bits.

(e) I(X ; Y ) = H(Y )−H(Y |X) = .251 bits.

6. Two looks.

Here is a statement about pairwise independence and joint indepen-
dence. Let X, Y1, and Y2 be binary random variables. If I(X ; Y1) = 0
and I(X ; Y2) = 0, does it follow that I(X ; Y1, Y2) = 0?
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(a) Yes or no?

(b) Prove or provide a counterexample.

(c) If I(X ; Y1) = 0 and I(X ; Y2) = 0 in the above problem, does it
follow that I(Y1; Y2) = 0? In other words, if Y1 is independent of
X , and if Y2 is independent of X , is it true that Y1 and Y2 are
independent?

Solution: Two looks.

(a) The answer is “no”.

(b) Although at first the conjecture seems reasonable enough–after
all, if Y1 gives you no information about X , and if Y2 gives you no
information about X , then why should the two of them together
give any information? But remember, it is NOT the case that
I(X ; Y1, Y2) = I(X ; Y1)+I(X ; Y2). The chain rule for information
says instead that I(X ; Y1, Y2) = I(X ; Y1)+I(X ; Y2|Y1). The chain
rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probabil-
ity that pair-wise independence of three random variables is not
sufficient to guarantee that all three are mutually independent.
I(X ; Y1) = 0 is equivalent to saying that X and Y1 are indepen-
dent. Similarly for X and Y2. But just because X is pairwise
independent with each of Y1 and Y2, it does not follow that X is
independent of the vector (Y1, Y2).

Here is a simple counterexample. Let Y1 and Y2 be independent
fair coin flips. And letX = Y1 XOR Y2. X is pairwise independent
of both Y1 and Y2, but obviously not independent of the vector
(Y1, Y2), since X is uniquely determined once you know (Y1, Y2).

(c) Again the answer is “no”. Y1 and Y2 can be arbitrarily dependent
with each other and both still be independent of X . For example,
let Y1 = Y2 be two observations of the same fair coin flip, and
X an independent fair coin flip. Then I(X ; Y1) = I(X ; Y2) = 0
because X is independent of both Y1 and Y2. However, I(Y1; Y2) =
H(Y1)−H(Y1|Y2) = H(Y1) = 1.
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7. A measure of correlation.

Let X1 and X2 be identically distributed, but not necessarily indepen-
dent. Let

ρ = 1−
H(X2|X1)

H(X1)
.

(a) Show ρ = I(X1;X2)
H(X1)

.

(b) Show 0 ≤ ρ ≤ 1.

(c) When is ρ = 0?

(d) When is ρ = 1?

Solution: A measure of correlation.

X1 and X2 are identically distributed and

ρ = 1−
H(X2|X1)

H(X1)

(a)

ρ =
H(X1)−H(X2|X1)

H(X1)

=
H(X2)−H(X2|X1)

H(X1)
(since H(X1) = H(X2))

=
I(X1;X2)

H(X1)
.

(b) Since 0 ≤ H(X2|X1) ≤ H(X2) = H(X1), we have

0 ≤
H(X2|X1)

H(X1)
≤ 1

0 ≤ ρ ≤ 1.

(c) ρ = 0 iff I(X1;X2) = 0 iff X1 and X2 are independent.

(d) ρ = 1 iff H(X2|X1) = 0 iff X2 is a function of X1. By symmetry,
X1 is a function ofX2, i.e.,X1 andX2 have a one-to-one correspon-
dence. For example, if X1 = X2 with probability 1 then ρ = 1.
Similarly, if the distribution of Xi is symmetric then X1 = −X2

with probability 1 would also give ρ = 1.
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