Homework Set #1 Method of types, Sanov's Theorem, Strong typicality

1. Sanov's theorem:

Prove the simple version of Sanov's theorem for the binary random variables, i.e., let X_1, X_2, \ldots, X_n be a sequence of binary random variables, drawn i.i.d. according to the distribution:

$$Pr(X = 1) = q, \quad Pr(X = 0) = 1 - q.$$
 (1)

Let the proportion of 1's in the sequence X_1, X_2, \ldots, X_n be $p_{\mathbf{X}}$, i.e.,

$$p_{X^n} = \frac{1}{n} \sum_{i=1}^n X_i. (2)$$

By the law of large numbers, we would expect $p_{\mathbf{X}}$ to be close to q for large n. Sanov's theorem deals with the probability that p_{X^n} is far away from q. In particular, for concreteness, if we take $p > q > \frac{1}{2}$, Sanov's theorem states that

$$-\frac{1}{n}\log\Pr\left\{(X_1, X_2, \dots, X_n) : p_{X^n} \ge p\right\} \to p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$$
(3)

Justify the following steps:

•

$$\Pr\{(X_1, X_2, \dots, X_n) : p_{\mathbf{X}} \ge p\} \le \sum_{i=\lfloor np \rfloor}^n \binom{n}{i} q^i (1-q)^{n-i}$$
 (4)

- Argue that the term corresponding to $i = \lfloor np \rfloor$ is the largest term in the sum on the right hand side of the last equation.
- Show that this term is approximately 2^{-nD} .
- Prove an upper bound on the probability in Sanov's theorem using the above steps. Use similar arguments to prove a lower bound and complete the proof of Sanov's theorem.

2. Strong Typicality

Let X^n be drawn i.i.d.~ P(x). Prove that for each $x^n \in T_{\epsilon}^{(n)}(X)$,

$$2^{-n(H(X)+\delta')} \le P^n(x^n) \le 2^{-n(H(X)-\delta')}$$

for some $\delta' = \delta'(\delta)$ that vanishes as $\delta \to 0$.

3. Weak Typicality vs. Strong Typicality

In this problem, we compare the weakly typical set $A_{\epsilon}(P)$ and the strongly typical set $T_{\delta}(P)$. To recall, the definition of two sets are following.

$$A_{\epsilon}(P) = \left\{ x^n \in \mathcal{X}^n : \left| -\frac{1}{n} \log P^n(x^n) - H(P) \right| \le \epsilon \right\}$$
$$T_{\delta}(P) = \left\{ x^n \in \mathcal{X}^n : \|P_{x^n} - P\|_{\infty} \le \frac{\delta}{|\mathcal{X}|} \right\}$$

- (a) Suppose P is such that P(a) > 0 for all $a \in \mathcal{X}$. Then, there is an inclusion relationship between the weakly typical set $A_{\epsilon}(P)$ and the strongly typical set $T_{\delta}(P)$ for an appropriate choice of ϵ . Which of the statement is true: $A_{\epsilon}(P) \subseteq T_{\delta}(P)$ or $A_{\epsilon}(P) \supseteq T_{\delta}(P)$? What is the appropriate relation between δ and ϵ ?
- (b) Give a description of the sequences that belongs to $A_{\epsilon}(P)$, vs. the sequences that belongs to $T_{\delta}(P)$, when the source is uniformly distributed, i.e. $P(a) = \frac{1}{|\mathcal{X}|}, \forall a \in \mathcal{X}$. (Assume $|\mathcal{X}| < \infty$.)
- (c) Can you explain why $T_{\delta}(P)$ is called **strongly** typical set and $A_{\epsilon}(P)$ is called **weakly** typical set?

4. The probability of being jointly strongly when drawn dependently

Let Y^n be distributed according to the conditional distribution $p(y^n|x^n) = \prod_{i=1}^n P_{Y|X}(y_i|x_i)$. Then for every $x^n \in T_{\epsilon}^{(n)}(X)$, $\Pr(x^n, Y^n) \in T_{\epsilon'}^{(n)}(X, Y) \to 1$ as $n \to \infty$ and $\lim_{\epsilon \to 0} \epsilon'(\epsilon) = 0$.

5. The probability of being jointly strongly typical when drawn independently

Given $(x^n, y^n) \in T_{\epsilon}^{(n)}(X, Y)$. Let Z^n be distributed according to $\prod_{i=1}^n P_{Z|X}(z_i|x_i)$ (instead of $P_{Z|X,Y}$. Then,

$$\Pr\{(x^{n}, y^{n}, Z^{n}) \in T_{\epsilon}^{(n)}(X, Y, Z)\} \leq 2^{-n(I(Y; Z|X) - \delta(\epsilon))}$$

$$\Pr\{(x^{n}, y^{n}, Z^{n}) \in T_{\epsilon}^{(n)}(X, Y, Z)\} \geq (1 - \delta_{\epsilon, n}) 2^{-n(I(Y; Z|X) + \delta(\epsilon))},$$

where $\delta(\epsilon)$ goes to zero when ϵ goes to zero and $\delta_{\epsilon,n}$ goes to zero for any ϵ as n goes to infinity.

6. The size of the conditional type Prove that given $x^n \in T_{\epsilon}^{(n)}(X)$, then

$$(1 - \delta_{\epsilon,n}) 2^{nH(Y|X)(1+\epsilon)} \le |T_{\epsilon}^{(n)}(Y|x^n)| \le 2^{nH(Y|X)(1-\epsilon)}.$$

7. Simple version of Markov Lemma

Suppose X, Y, Z form a Markov chain X - Y - Z. Let $(x^n, y^n) \in T_{\epsilon}^{(n)}(X, Y)$ and Z^n is drawn i.i.d. according to P(z|y), i.e., $P(z^n|y^n) = \prod_{i=1}^n P(z_i|y_i)$. Show that

$$\Pr\{(x^n, y^n, Z^n) \in T_{\epsilon}^{(n)}(X, Y, Z)\} \to 1$$
 (5)

as $n \to \infty$.

- (a) Is it true that for any X-Y-Z and every sequence x^n,y^n,z^n such that if $(x^n,y^n)\in T^{(n)}_\epsilon(X,Y)$ and $(y^n,z^n)\in T^{(n)}_\epsilon(Y,Z)$, then $(x^n,y^n,z^n)\in T^{(n)}_\epsilon(X,Y,Z)$
- 8. Large deviations.

Let X_1, X_2, \ldots be i.i.d. random variables drawn according to the Bernoulli distribution

$$\Pr\{X_i = 1\} = \Pr\{X_i = -1\} = \frac{1}{2}.$$

Let S_n be the random walk defined by

$$S_n = \sum_{i=1}^n X_i.$$

Find the function $f(\alpha)$ such that, for all $\alpha > 0$,

$$\lim_{n \to \infty} -\frac{1}{n} \log \Pr\{S_n \ge n\alpha\} = f(\alpha).$$

9. Counting.

Let $\mathcal{X} = \{1, 2, ..., m\}$. Show that the number of sequences $x^n \in \mathcal{X}^n$ satisfying $\frac{1}{n} \sum_{i=1}^n g(x_i) \geq \alpha$ is approximately equal to 2^{nH^*} , to first order in the exponent, where

$$H^* = \max_{P: \sum P(i)g(i) \ge \alpha} H(P).$$