Homework Set \#1

Method of types, Sanov's Theorem, Strong typicality

1. Sanov's theorem:

Prove the simple version of Sanov's theorem for the binary random variables, i.e., let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of binary random variables, drawn i.i.d. according to the distribution:

$$
\begin{equation*}
\operatorname{Pr}(X=1)=q, \quad \operatorname{Pr}(X=0)=1-q . \tag{1}
\end{equation*}
$$

Let the proportion of 1's in the sequence $X_{1}, X_{2}, \ldots, X_{n}$ be $p_{\mathbf{X}}$, i.e.,

$$
\begin{equation*}
p_{X^{n}}=\frac{1}{n} \sum_{i=1}^{n} X_{i} . \tag{2}
\end{equation*}
$$

By the law of large numbers, we would expect $p_{\mathbf{X}}$ to be close to q for large n. Sanov's theorem deals with the probability that $p_{X^{n}}$ is far away from q. In particular, for concreteness, if we take $p>q>\frac{1}{2}$, Sanov's theorem states that

$$
\begin{equation*}
-\frac{1}{n} \log \operatorname{Pr}\left\{\left(X_{1}, X_{2}, \ldots, X_{n}\right): p_{X^{n}} \geq p\right\} \rightarrow p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} \tag{3}
\end{equation*}
$$

Justify the following steps:

$$
\begin{equation*}
\operatorname{Pr}\left\{\left(X_{1}, X_{2}, \ldots, X_{n}\right): p_{\mathbf{X}} \geq p\right\} \leq \sum_{i=\lfloor n p\rfloor}^{n}\binom{n}{i} q^{i}(1-q)^{n-i} \tag{4}
\end{equation*}
$$

- Argue that the term corresponding to $i=\lfloor n p\rfloor$ is the largest term in the sum on the right hand side of the last equation.
- Show that this term is approximately $2^{-n D}$.
- Prove an upper bound on the probability in Sanov's theorem using the above steps. Use similar arguments to prove a lower bound and complete the proof of Sanov's theorem.

2. Strong Typicality

Let X^{n} be drawn i.i.d. $\sim P(x)$. Prove that for each $x^{n} \in T_{\epsilon}^{(n)}(X)$,

$$
2^{-n\left(H(X)+\delta^{\prime}\right)} \leq P^{n}\left(x^{n}\right) \leq 2^{-n\left(H(X)-\delta^{\prime}\right)}
$$

for some $\delta^{\prime}=\delta^{\prime}(\delta)$ that vanishes as $\delta \rightarrow 0$.
3. Weak Typicality vs. Strong Typicality

In this problem, we compare the weakly typical set $A_{\epsilon}(P)$ and the strongly typical set $T_{\delta}(P)$. To recall, the definition of two sets are following.

$$
\begin{aligned}
& A_{\epsilon}(P)=\left\{x^{n} \in \mathcal{X}^{n}:\left|-\frac{1}{n} \log P^{n}\left(x^{n}\right)-H(P)\right| \leq \epsilon\right\} \\
& T_{\delta}(P)=\left\{x^{n} \in \mathcal{X}^{n}:\left\|P_{x^{n}}-P\right\|_{\infty} \leq \frac{\delta}{|\mathcal{X}|}\right\}
\end{aligned}
$$

(a) Suppose P is such that $P(a)>0$ for all $a \in \mathcal{X}$. Then, there is an inclusion relationship between the weakly typical set $A_{\epsilon}(P)$ and the strongly typical set $T_{\delta}(P)$ for an appropriate choice of ϵ. Which of the statement is true: $A_{\epsilon}(P) \subseteq T_{\delta}(P)$ or $A_{\epsilon}(P) \supseteq$ $T_{\delta}(P)$? What is the appropriate relation between δ and ϵ ?
(b) Give a description of the sequences that belongs to $A_{\epsilon}(P)$, vs. the sequences that belongs to $T_{\delta}(P)$, when the source is uniformly distributed, i.e. $P(a)=\frac{1}{|\mathcal{X}|}, \forall a \in \mathcal{X}$. (Assume $|\mathcal{X}|<\infty$.)
(c) Can you explain why $T_{\delta}(P)$ is called strongly typical set and $A_{\epsilon}(P)$ is called weakly typical set?
4. The probability of being jointly strongly when drawn dependently
Let Y^{n} be distributed according to the conditional distribution $p\left(y^{n} \mid x^{n}\right)=$ $\prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid x_{i}\right)$. Then for every $x^{n} \in T_{\epsilon}^{(n)}(X), \operatorname{Pr}\left(x^{n}, Y^{n}\right) \in T_{\epsilon^{\prime}}^{(n)}(X, Y) \rightarrow$ 1 as $n \rightarrow \infty$ and $\lim _{\epsilon=0} \epsilon^{\prime}(\epsilon)=0$.
5. The probability of being jointly strongly typical when drawn independently

Given $\left(x^{n}, y^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)$. Let Z^{n} be distributed according to $\prod_{i=1}^{n} P_{Z \mid X}\left(z_{i} \mid x_{i}\right)$ (instead of $P_{Z \mid X, Y}$. Then,

$$
\begin{aligned}
& \operatorname{Pr}\left\{\left(x^{n}, y^{n}, Z^{n}\right) \in T_{\epsilon}^{(n)}(X, Y, Z)\right\} \leq 2^{-n(I(Y ; Z \mid X)-\delta(\epsilon))} \\
& \operatorname{Pr}\left\{\left(x^{n}, y^{n}, Z^{n}\right) \in T_{\epsilon}^{(n)}(X, Y, Z)\right\} \geq\left(1-\delta_{\epsilon, n}\right) 2^{-n(I(Y ; Z \mid X)+\delta(\epsilon))},
\end{aligned}
$$

where $\delta(\epsilon)$ goes to zero when ϵ goes to zero and $\delta_{\epsilon, n}$ goes to zero for any ϵ as n goes to infinity.
6. The size of the conditional type Prove that given $x^{n} \in T_{\epsilon}^{(n)}(X)$, then

$$
\left(1-\delta_{\epsilon, n}\right) 2^{n H(Y \mid X)(1+\epsilon)} \leq\left|T_{\epsilon}^{(n)}\left(Y \mid x^{n}\right)\right| \leq 2^{n H(Y \mid X)(1-\epsilon)} .
$$

7. Simple version of Markov Lemma

Suppose X, Y, Z form a Markov chain $X-Y-Z$. Let $\left(x^{n}, y^{n}\right) \in$ $T_{\epsilon}^{(n)}(X, Y)$ and Z^{n} is drawn i.i.d. according to $P(z \mid y)$, i.e., $P\left(z^{n} \mid y^{n}\right)=$ $\prod_{i=1}^{n} P\left(z_{i} \mid y_{i}\right)$. Show that

$$
\begin{equation*}
\operatorname{Pr}\left\{\left(x^{n}, y^{n}, Z^{n}\right) \in T_{\epsilon}^{(n)}(X, Y, Z)\right\} \rightarrow 1 \tag{5}
\end{equation*}
$$

as $n \rightarrow \infty$.
(a) Is it true that for any $X-Y-Z$ and every sequence x^{n}, y^{n}, z^{n} such that if $\left(x^{n}, y^{n}\right) \in T_{\epsilon}^{(n)}(X, Y)$ and $\left(y^{n}, z^{n}\right) \in T_{\epsilon}^{(n)}(Y, Z)$, then $\left(x^{n}, y^{n}, z^{n}\right) \in T_{\epsilon}^{(n)}(X, Y, Z)$

8. Large deviations.

Let X_{1}, X_{2}, \ldots be i.i.d. random variables drawn according to the Bernoulli distribution

$$
\operatorname{Pr}\left\{X_{i}=1\right\}=\operatorname{Pr}\left\{X_{i}=-1\right\}=\frac{1}{2} .
$$

Let S_{n} be the random walk defined by

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

Find the function $f(\alpha)$ such that, for all $\alpha>0$,

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log \operatorname{Pr}\left\{S_{n} \geq n \alpha\right\}=f(\alpha)
$$

9. Counting.

Let $\mathcal{X}=\{1,2, \ldots, m\}$. Show that the number of sequences $x^{n} \in \mathcal{X}^{n}$ satisfying $\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right) \geq \alpha$ is approximately equal to $2^{n H^{*}}$, to first order in the exponent, where

$$
H^{*}=\max _{P: \sum P(i) g(i) \geq \alpha} H(P) .
$$

