Homework Set #3

Gaussian Random variables and the Gaussian Relay

- 1. Scaling. Let $h(\mathbf{X}) = -\int f(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x}$. Show $h(A\mathbf{X}) = \log | \det(A) | + h(\mathbf{X})$.
- 2. Concavity of determinants. Let K_1 and K_2 be two symmetric nonnegative definite $n \times n$ matrices. Prove the result of Ky Fan [?]:

$$|\lambda K_1 + \overline{\lambda} K_2| \ge |K_1|^{\lambda} |K_2|^{\overline{\lambda}}, \text{ for } 0 \le \lambda \le 1, \overline{\lambda} = 1 - \lambda,$$

where |K| denotes the determinant of K.

Hint: Let $\mathbf{Z} = \mathbf{X}_{\theta}$, where $\mathbf{X}_1 \sim N(0, K_1)$, $\mathbf{X}_2 \sim N(0, K_2)$ and $\theta = \text{Bernoulli}(\lambda)$. Then use $h(\mathbf{Z} \mid \theta) \leq h(\mathbf{Z})$.

3. Bound on MMSE

Given side information Y and estimator $\hat{X}(Y)$, show that

$$E[(X - \hat{X}(Y))^2] \ge \frac{1}{2\pi e} e^{2h(X|Y)}.$$

4. Gaussian mutual information. Suppose that (X, Y, Z) are jointly Gaussian and that $X \to Y \to Z$ forms a Markov chain. Let X and Y have correlation coefficient ρ_1 and let Y and Z have correlation coefficient ρ_2 . Find I(X; Z).

5. Gaussian Relay, decode and forward

- (a) For the Gaussian Relay that we have seen in class, derive the expression of the achievable region one one use the decode and forward coding scheme.
- (b) Draw the rate as a function of the parameters of the channel (each time draw as a function of one parameter), and compare it to the cut-set bound.