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Source Coding When the Side Information
May Be Delayed
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Abstract—For memoryless sources, delayed side information at
the decoder does not improve the rate-distortion function. How-
ever, this is not the case for sources with memory, as demonstrated
by a number of works focusing on the special case of (delayed) feed-
forward. In this paper, a setting is studied in which the encoder is
potentially uncertain about the delay with which measurements of
the side information, which is available at the encoder, are acquired
at the decoder. Assuming a hidden Markov model for the source
sequences, at first, a single-letter characterization is given for the
setup where the side information delay is arbitrary and known at
the encoder, and the reconstruction at the destination is required
to be asymptotically lossless. Then, with delay equal to zero or one
source symbol, a single-letter characterization of the rate-distor-
tion region is given for the case where, unbeknownst to the encoder,
the side information may be delayed or not. Finally, examples for
binary and Gaussian sources are provided.

Index Terms—Causal conditioning, hidden Markov model,
Markov Gaussian process, multiplexing, rate-distortion function,
strictly causal side information.

I. INTRODUCTION

C ONSIDER a sensor network in which a sensor measures
a certain physical quantity over time .

The aim of the sensor is communicating a symbol-by-symbol
processed version of the measured se-
quence to a receiver. As an example, each
element can be obtained by quantizing or denoising , for

. To this end, based on the observation of and
, the sensor communicates a message of bits to the

receiver ( is the message rate in bits per source symbol). The
receiver is endowed with sensing capabilities, and hence, it can
measure the physical quantity as well. However, as the re-
ceiver is located further away from the physical source, such
measure may come with some delay, say for some .
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Fig. 1. Source coding with delayed side information at the decoder. The side
information is fully available at the encoder.

Fig. 2. Source coding where side information at the decoder may be delayed
and additional information can be delivered when side information is not de-
layed. The side information is fully available at the encoder.

Assuming that at time the decoder must put out an estimate
of the th source symbol by design constraints, it follows

that the estimate can be made to be a function of the message
and of the delayed side information

(see [1] for an illustration). Following related literature (see,
e.g., [2]), we will refer to as the delay for simplicity. Delay
may or may not be known at the sensor.
The situation described above can be illustrated schemati-

cally as in Fig. 1 for the case in which the delay is known at the
encoder. In Fig. 1, the encoder (”Enc”) represents the sensor and
the decoder (”Dec”) the receiver. The decoder at time (more
precisely, ) has access to delayed side information
with delay . Fig. 2 accounts for a setting where the side in-
formation at the decoder, unbeknownst to the encoder, may be
delayed by or not delayed, where the first case is modeled by
Decoder 1 and the second by Decoder 2. Note that, in the latter
case, the receiver has available the sequence
at time . For added generality, in the setting in Fig. 2, we further
assume that the encoder is allowed to send additional informa-
tion in the form of a message of bits when the side
information is not delayed. This can be justified in the sensor ex-
ample mentioned above, as a nondelayed side information may
entails that the receiver is closer to the transmitter and is thus
able to decode an additional message of rate (bits/source
symbol).

A. Preliminary Considerations and Related Work

To start, let us first assume that sequences and are
memoryless sources so that the entries are arbitrarily
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correlated for a given index but independent identically dis-
tributed (i.i.d.) for different . To streamline the dis-
cussion, the following lemma summarizes the optimal tradeoff
between rate and distortion , as measured by a distortion
metric , for the point-to-point setting of Fig. 1 with mem-
oryless sources.
Lemma 1 [3]–[5]: For memoryless sources, and zero delay,

i.e., , the rate-distortion function for the point-to-point
system in Fig. 1 is given by t

(1)

This result remains unchanged even if the decoder has access
to noncausal side information, i.e., if the reconstruction can
be based on the entire sequence , rather than only . In-
stead, for strictly positive delay , the rate-distortion func-
tion is the same as without side information, namely

.1

Similar conclusions can be easily shown to apply also for
the more general model of Fig. 2, as it will be discussed in the
paper (see Section IV). Specifically, if and the sources
are memoryless, the rate-distortion function for the system of
Fig. 2 with reduces to the one obtained by Kaspi in [6]
for a model in which decoder 1 has no side information, and,
for general , the rate-distortion region coincides with
the one obtained in [7] for a model with no side information at
decoder 1.
We have seen in Lemma 1 that, for memoryless sources, no

advantages can be accrued by leveraging a (strictly) delayed
side information, i.e., with . However, this conclusion
does not generally hold if the sources have memory. In this con-
text, a number of works have focused on the special case of the
scenario of Fig. 1 where for . This en-
tails that the decoder observes sequence itself, but with a
delay of symbols. This setting is typically referred to as source
coding with feedforward, and was introduced in [8]. Venkatara-
manan and Pradhan [1] derived the rate-distortion function for
this problem (i.e., Fig. 1 with ) for ergodic and sta-
tionary sources in terms of multiletter mutual informations. The
result was also extended to arbitrary sources using informa-
tion-spectrum methods. Achievability was obtained via the use
of a codebook of codetrees. The function was explicitly evalu-
ated for some special cases in [9] and [11] (see also [10]), and
[9] proposed an algorithm for its numerical calculation.
The general set-up of Fig. 1 with was studied in [2]

assuming stationary and ergodic sources and . The rate-
distortion function was expressed in terms of multiletter mutual
informations. No specific examples were provided for which
the function is explicitly computable. We finally remark that,
for more complex networks than the ones studied here, strictly
delayed side information may be useful even in the presence of
memoryless sources. This was illustrated in [12] for a multiple
description problem with feedforward.

1The first part of the Lemma is due to [3] and [4], while the second can be
derived as in [5, Observation 2].

Fig. 3. Graphical illustration of the assumed hidden Markov model for the
sources.

B. Contributions

The goal of this study is to characterize the rate-distortion
tradeoffs for the setting in Fig. 1 and the more general setup in
Fig. 2 for a specific class of sources and . Specifically,
we assume that is a Markov chain, and is such that
is obtained by passing through a channel for

, as illustrated in Fig. 3. The process is thus a hidden
Markov model. This model complies with the type of sensor
network scenarios described above, where is the physical
quantity of interest, modeled as a Markov chain, and is a
symbol-by-symbol processed version of .
The main contributions and the paper organization are as

follows. The system model in described Section II. Then, the
source statistics described above:
1) We derive a single-letter characterization of the minimal
rate (bits/source symbol) required for asymptotically loss-
less compression in the point-to-point model of Fig. 1 for
any delay (see Section III-A). Achievability is
based on a novel scheme that consists of simple multi-
plexing/demultiplexing operations along with standard en-
tropy coding techniques;

2) We derive a single-letter characterization of the minimal
rate (bits/source symbol) required for lossy compression
for the point-to-point model of Fig. 1 and, more generally,
for the model of Fig. 2 in which the side information may
be delayed, for delays and (see Section IV);

3) We solve a number of specific examples, namely binary-
alphabet sources with Hamming distortion and Gaussian
sources with minimum mean square error distortion, and
present related numerical results (see Section V).

II. SYSTEM MODEL

We present the system model for the scenario of Fig. 2. As
detailed below, the scenarios of Fig. 1 is obtained as a special
case. The system is characterized by a delay ; finite al-
phabets , , , ; conditional probabilities , with

, and , with and (i.e., we have
and for all );

and distortion metrics : ,
such that for all

for . As explained below, the subscript
“1” in indicates that denotes one-step transi-
tion probabilities.
The random process ,

is a stationary and ergodic Markov chain with transition
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probability . We define
the probability and also the -step tran-
sition probability , which
are both independent of by the stationarity of . These
quantities can be calculated using standard Markov chain
theory from the transition matrix associated with
(see, e.g., [22]). We also set, for notational convenience,

. Sequence is thus dis-
tributed as for any integer

.
The random process is such

that vector , for any integer ,
is jointly distributed with so that

(2)

In other words, process cor-
responds to a hidden Markov model with underlying Markov
process given by . We now define encoder and decoders for
the setting of Fig. 2. Specifically, a code
is defined by: 1) an encoder function

(3)

which maps sequences and into messages
and ; 2) a sequence of decoding functions for
decoder 1

(4)

for , which, at each time , map message , or rate
[bits/source symbol], and the delayed side information

into the estimate ; and 3) a sequence of decoding function
for decoder 2

(5)

for , which, at each time , map messages , or rate
, and , of rate or rate , and the nondelayed side infor-

mation into the estimate . In (3)–(5), for integer with
, we have defined as the interval

with if .2 Encoding/decoding functions (3)–(5)
must satisfy the distortion constraints

(6)

Note that these constraints are fairly general in that they allow
us to impose not only requirements on the lossy reconstruction
of or (obtained by setting independent of
or , respectively), but also on some function of both and
(by setting to be dependent on such a function of

).

2As it is standard practice, and are implicitly considered to be
rounded up to the nearest larger integer.

Given a delay , for a distortion pair , we say
that rate pair is achievable if, for every and
sufficiently large , there exists a
code. We refer to the closure of the set of all achievable rates
for a given distortion pair and delay as the rate-
distortion region .
From the general description above for the setting of

Fig. 2, the special case of Fig. 1 is produced by ne-
glecting the presence of decoder 2, or equivalently by
choosing . In this case, the rate-distortion re-
gion is fully characterized by a function
as .
Function hence characterizes the infimum of rates
for which the pair is achievable, and is referred to
as the rate-distortion function for the setting of Fig. 1. For the
special case of the model in Fig. 2 in which , we define
the rate-distortion function in a similar way.
Notation: For integer with , we define

; if instead , we set . We
will also write as for simplicity of notation. Given a se-
quence and a set ,
we define sequence as where

. Random variables are denoted with capital
letters and corresponding values with lowercase letters. Given
random variables, or more generally vectors, and we will
use the notation or for , and
or for , where the latter notations are
used when the meaning is clear from the context. Given set ,
we define as the -fold Cartesian product of . We denote
any function of that tends to zero as as . When
refer to -typical sequences using the notion of strong typicality
as in [14].

III. POINT-TO-POINT MODEL

In this section, we study the point-to-point model in Fig. 1.

A. Lossless Compression

We start by characterizing the rate-distortion function
for any delay under the Hamming distortion

metric for . The Hamming distortion metric is defined
as , where if is true and

otherwise. This implies that the distortion constraint
(6) for becomes

(7)

In other words, from the definition of achievability given above,
we impose that the sequence be recovered with vanishingly
small average symbol error probability as . We refer to
this scenario as asymptotically lossless, or lossless for short.
We have the following characterization of .
Proposition 1: For any delay , the rate-distortion func-

tion for the setup in Fig. 1 under Hamming distortion at
is given by

(8)
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where the conditional entropy is calculated with respect to the
distribution

(9)

(10)

The proof of converse of the proposition above is based on
an appropriate use of the Fano inequality and is reported in
Appendix A. To prove the direct part of the proposition, we pro-
pose a simple achievable scheme, which, to the best of the au-
thors’ knowledge, has not appeared before, in Section III-B.
Remark 1: Expression (8) consists of a conditional entropy of
random variables, namely . These vari-

ables are distributed as the corresponding entries in the random
vectors and , as per (9)–(10) [cf. (2)].We have, therefore,
used the same notation for the involved random variables as in
Section II. Proposition 1 provides a “single-letter” characteriza-
tion of for the setting of Fig. 1, since it only involves a
finite number of variables.3 This contrasts with the general char-
acterization for stationary ergodic processes of given in
[2], which is a “multiletter” expression, whose computation can
generally only attempted numerically using approaches such as
the ones proposed in [9]. Note that a multiletter expression is
also given in [11] to characterize for i.i.d. sources with
negative delays . Finally, it should be emphasized that
the simple characterization (8) for the scenario of interest here
hinges on the assumed statistics of the sources .
Remark 2: By setting in (8), we obtain

. This result generalizes [11, Remark 3, p. 5227] from
i.i.d. sources to the hidden Markov model (2) con-
sidered here. Note that, for , we instead obtain

. As another notable special case, if side informa-
tion is absent, or equivalently , in accordance with
well-known results, we obtain that equals the entropy
rate (see, e.g., [13])

(11)

In fact, we have

(12)

by [13, Th. 4.5.1].
Remark 3: Is delayed side information useful (when known

also at the encoder)? That this may be the case follows from the
inequality

(13)

since is the required rate without side information. This
result is proved by the chain of inequalities

, where the first inequality follows by
the data processing inequality and the second by conditioning

3It might be more accurately referred to as a “finite-letter” characterization.

reduces entropy. However, inequality (13) may not be strict,
and thus, side information may not be useful. A first example
is the case where is an i.i.d. process, which is obtained by
making independent of . As another example, consider
the setting of source coding with feedforward [1], [8], i.e.,
. In this case, our assumption (2) entails that is a Markov

chain, and we have
for . Therefore, delayed feedforward (with )

is not useful for the lossless compression of Markov chains, as
already shown in [8]. This conclusion need not hold for lossy
compression (i.e., for ) [8] (see also Section V-A).
Remark 4: If , are general jointly stationary and er-

godic processes (and not necessarily stationary ergodic hidden
Markov models), one can adapt in a straightforward way the
proofs of Appendix A and Section III-B, and conclude that the
rate distortion function can be written as

(14)

where is the causally conditioned entropy
(see, e.g., [24]).4

Comparing (14) with the rate necessary in the
absence of any side information, we conclude that the reduction
in the compression rate obtained by leveraging delayed side
information at the decoder, when side information is known at
the encoder, is given for stationary and ergodic processes by

(15)

In (15), we have used the definition of directed mutual infor-
mation (see, e.g.,
[24]). Note that the rate gain (15) complements the results given
in [24] on the interpretation of the directed mutual information
(see also next remark).
Remark 5: Consider a variable-length (strictly) lossless

source code that operates symbol by symbol such that, for every
symbol , it outputs a string of bits ,
which is a function of and . Encoding is constrained so
that the code for each is prefix-free.
The decoder, based on delayed side information, can then
uniquely decode each codeword as soon as it is
received. Following the considerations in [24, Sec. IV], it is
easy to verify that rate [and, more generally, (14)] is also
the infimum of the average rate in bits/source symbol required
by such code. Moreover, it is possible to construct universal
context-based compression strategies by adapting the approach
in [25].
We refer to Section V for some examples that further illustrate

some implications of Proposition 1.

B. Proof of Achievability for Proposition 1

Proof: (Achievability) Here, we propose a coding scheme
that achieves rate (8). The basic idea is a nontrivial extension
of the approach discussed in [11, Remark 3, p. 5227] and is
described as follows. A block diagram is shown in Fig. 4 for
encoder [see Fig. 4(a)] and decoder [see Fig. 4(b)]. We first de-
scribe the encoder, which is illustrated in Fig. 4(a). To encode

4The limit exists because the sequence is nonincreasing and bounded below.
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Fig. 4. Block diagram for encoder (a) and decoder (b) used in the proof of
achievability of Proposition 1.

Fig. 5. Example that illustrates the operations of the “Demux” block of the
encoder used for the achievability proof of Proposition 1, as shown in Fig. 4,
for (symbols corresponding to out-of-range indices are set to zero).

sequences , we first partition the in-
terval into subintervals, which we denote as

, for all and . Every
such subinterval is defined as

(16)
In words, the subinterval contains all symbol
indices such that the corresponding delayed side informa-
tion available at the decoder is and the previous

samples in are . We refer to the
value of the tuple as the context of sample
.5 For the out-of-range indices , one can

assume arbitrary values for and , which
are also shared with the decoder once and for all. Note that

. Fig. 5 illustrates the
definitions at hand for .
As a result of the partition described above, the encoder “de-

multiplexes” sequence into sequences ,
one for each possible context ( . This
demultiplexing operation, which is controlled by the previous

5For the feedforward case , this definition of context is consistent
with the conventional one given in [20] when specialized to Markov processes.
See also Remark 5.

values of source and side information, is performed in Fig. 4(a)
by the block labeled as “Demux,” and an example of its
operation is shown in Fig. 5. By the ergodicity of process

and , for every and all sufficiently large , the
length of any sequence is guaranteed to be less
than symbols with probability
arbitrarily close to one. This because the length
of the sequence equals the number of occurrences
of the context and by Birkhoff’s
ergodic theorem (see [13, Sec. 16.8]). In particular, for any

, we can find an such that

(17)

where we have defined the “error” event

(18)
Each sequence is encoded by a separate encoder,

labeled as “Enc” in Fig. 4(a). In case the cardinality
does not exceed (i.e., the “error”
event does not occur), the encoder compresses
sequence using an entropy encoder, as explained
below. If the cardinality condition is instead not satisfied (i.e.,

is realized), then an arbitrary bit sequence of length
, to be specified below, is selected by the encoder

“Enc.”
The entropy encoder can be implemented in different ways,

e.g., using typicality or Huffman coding (see, e.g., [13]).
Here, we consider a typicality-based encoder. Note that the
entries of each sequence are i.i.d. with dis-
tribution , since conditioning on
the context makes the random
variables independent. As is standard practice, the entropy
encoder assigns a distinct label to all -typical sequences

with respect to such distri-
bution, and an arbitrary label to nontypical sequences. From
the asymptotic equipartion property (AEP), we can choose
sufficiently large so that (see, e.g., [14])

(19)

where we have defined the “error” event

(20)

Moreover, by the AEP, a rate in bits per source symbol of
is sufficient for the entropy

encoder to label all -typical sequences.
From the discussion above, it follows that the pro-

posed scheme encodes each sequence with

bits. By concatenating the descriptions
of all the sequences , we thus obtain that
the overall rate of message for the scheme at hand is

. The concatenation of the labels
output by each entropy encoder is represented in Fig. 4(a) by
the block “Mux.” We emphasize that encoder and decoder
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agree a priori on the order in which the descriptions of the
different subsequences are concatenated. For instance, with
reference to the example in Fig. 5 (with ), message
can contain first the description of the sequence corresponding
to , then , etc.
We now describe the decoder, which is illustrated in

Fig. 4(b). By undoing the multiplexing operation just de-
scribed, the decoder, from the message , can recover the
individual sequences through a simple demulti-
plexing operation for all contexts . This
operation is represented by block “Demux” in Fig. 4(b). To be
precise, this demultiplexing is possible, unless the encoding
“error” event

(21)

takes place. In fact, occurrence of the “error” event implies
that some of the sequences was not correctly encoded
and hence cannot be recovered at the decoder. The effect of such
errors will be accounted for below.
Assume now that no error has taken place in the encoding.

While the individual sequences can be recovered
through the discussed demultiplexing operation, this does not
imply that the decoder is also able to recover the original
sequence . In fact, that decoder does not know a priori
the partition : and of
the interval and thus cannot reorder the elements of
sequences to produce . Recall, moreover, that
such reordering operation should be done in a causal fashion
following the decoding rule (4).
We now argue that the reordering mentioned above is in fact

possible using a decoding rule that complies with (4) via a multi-
plexing block controlled by the previous estimates of the source
samples [block “Mux” in Fig. 4(b)]. In fact, note that at time ,
the decoder knows and the previously decoded and
can thus identify the subinterval to which the cur-
rent symbol belongs. This symbol can be then immediately
read as the next yet-to-be-read symbol from the corresponding
sequence . For the first symbols, the decoder uses
the values for and at the out-of-range indices that were
agreed upon with the encoder (see above). In conclusion, we
remark that the scheme described above, by choosing small
enough and large enough, is able to satisfy the constraint (7)
to any desired accuracy. We also note that the controlled multi-
plexing/demultiplexing operation used in the proof is reminis-
cent of the scheme proposed in [27] for transmission on fading
channels with side information at the transmitter and receiver.
We finally need to study the effect of errors. Given the choices

made above, we have that the probability of an encoding error
is

(22)

where the first inequality follows from the union bound and the
second from (17) and (19). This implies that the distortion in
(7) is upper bounded by as desired. In fact, from the defini-
tion of encoder and decoder given above, we can conclude that

, where we recall that is the

sequence reconstructed at the decoder. Moreover, the following
inequality holds in general:

(23)

Therefore, we have , which con-
cludes the proof.
Remark 6: An alternative proof of achievability can be given

by using the idea of codetrees and extending the notions of typ-
icality introduced in [1]. The proof discussed above is based
on a conceptually and algorithmically simpler approach, albeit
its applicability is limited to lossless compression (see Section
III-C).
Remark 7: From inequality (23), it follows that the optimality

of the scheme above can be proved also under the more stringent
block error probability constraint (see also [14, Sec. 3.6.4]).

C. Lossy Compression

Here, we obtain a characterization of the rate-distortion func-
tion , for and . The proof follows as a
special case of that of Proposition 4 to be discussed in the next
section, and is based on similar arguments as for Proposition 1.
Proposition 2: For any delay and distortion , the

following rate is achievable for the setting of Fig. 1:

(24)

with mutual informations evaluated with respect to the joint
distribution

(25)

and where minimization is done over all conditional distribu-
tions such that

(26)

Moreover, rate (24)–(26) is the rate-distortion function, i.e.,
, for and .

Remark 8: The optimality of the conditional codebook
strategy for lossless compression shown in Proposition 1
hinges on the following fact: conditioned on the context

, the samples are independent of
the past samples by the hidden Markov model assump-
tion. Recall the fact that the decoder has available the past
source samples since its estimates are
correct with high probability. Due to this independence prop-
erty, and to the availability of the side information also at the
encoder, the latter need not use “multiletter” compression codes
and can instead use simple “single-letter” entropy codes con-
ditioned on the values of without
loss of optimality. In the lossy case considered in Proposition
2, instead, even for the point-to-point model, the independence
condition discussed above does not hold for delays strictly
larger than 1. In fact, at each time , the decoder has available
the delayed side information only, conditioned on which
the source samples are not independent of the past samples

. But, for , the independence condition at hand does
apply and thus the optimality of “single-letter” codes can be
proved as done in Proposition 2.
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IV. WHEN THE SIDE INFORMATION MAY BE DELAYED

In this section, we consider the problem of lossy compres-
sion for the setup of Fig. 2. Note that the asymptotically loss-
less case follows from Proposition 1, since, in order to guarantee
lossless reconstruction also at the decoder with delayed side
information, rate must satisfy the conditions in Proposition
1. Here, we obtain an achievable rate region

for all delays for the model in Fig. 2, and
show that such region coincides with the rate-distortion region,
i.e., , for and .
To streamline the discussion, we start by consider the special

case where and obtain a characterization of the rate-
distortion function for and .
Proposition 3: For any delay and distortion pair

, the following rate is achievable for the setup of
Fig. 2 with

(27)

(28)

with mutual informations evaluated with respect to the joint
distribution

(29)

and where minimization is done over all conditional distribu-
tions such that

(30)

Moreover, rate (27)–(28) is the rate-distortion function, i.e.,
, for and .

Remark 9: Rate (27) can be easily interpreted in terms of
achievability. To this end, we remark that variable plays the
role of the delayed side information at decoder 1. The
coding scheme achieving rate (27) operates in two successive
phases. In the first phase, the encoder encodes the reconstruc-
tion sequence for decoder 1. Since decoder 1 has available
delayed side information, using a strategy similar to the one dis-
cussed in Section III-B, this operation requires
bits per source sample, as further detailed in Section IV-A. Note
that decoder 2 is able to recover as well, since decoder 2
has available side information , and thus also the delayed
side information . In the second phase, the reconstruc-
tion sequence for decoder 2 is encoded. Given the side in-
formation available at decoder 2, this operation requires rate

, using again an approach similar to the one
discussed in Section III-B. The converse proof is in Appendix B.
Remark 10: For memoryless sources and , obtained

by setting the transition probability to be indepen-
dent of , it can be seen that the achievable rate (27)–(28)
is the rate-distortion function for the scenario of Fig. 2 with

for all delays . This observation extends Lemma
1 to the more general setup of Fig. 2 with . To see this,
note that for , rate (27)–(28) is given by

(31)

with mutual informations evaluated with respect to the joint
distribution

(32)

and where minimization is done over all conditional distribu-
tions such that the distortion constraints (30)
are satisfied. Rate (31) recovers the rate-distortion function de-
rived by [6] for the case where decoder 1 has no side informa-
tion. Therefore, rate (31) is achievable even without any side
information at decoder 1. We then conclude that delayed side
information is not useful for memoryless sources. Note also that
[6] assumes noncausal availability of the side information at de-
coder 2. The equality of the rate derived in [6] and the one in
Proposition 3 thus demonstrates that causal and noncausal side
information lead to the same performance in terms of rate-dis-
tortion function.
Remark 11: While (27) is easier to interpret in terms of

achievability as done in Remark 9, the equivalent expression
(28) highlights the rate loss due to the possible delay of the side
information. In fact, the mutual information
accounts for the rate that would be needed to convey both

and only to decoder 2, which has nondelayed side
information. Therefore, the additional term can be
interpreted as the extra rate that needs to be expended to enable
transmission of also to decoder 1, which has delayed side
information.
We now consider the general model in Fig. 2.
Proposition 4: For any delay and any distortion pair

, define as the union of all rate pairs
that satisfy

(33)

(34)

for some joint distribution

(35)

where minimization is done over all conditional distributions
such that

(36)

We have that
(37)

for any . Moreover, (37) holds with equality, and thus,
is the rate-distortion region, for and .

Remark 12: Let us interpret the rate region
in terms of achievability. First, from Remark 9, we ob-
serve that (33) is the rate necessary to convey to both
decoders 1 and 2, and an auxiliary codeword only to
decoder 2. This auxiliary codeword carries informa-
tion to decoder 2 that is then refined via message .
In particular, rewriting (34) as

, by comparison with
(33), we see that the extra rate is needed to
transmit sequence to decoder 2, thus refining the informa-
tion available therein due to message .6

Remark 13: The considerations in Remark 10 can be also
easily extended to the scenario of Proposition 4 with .

6Note that such rate can be encoded in both messages and , which
leads to the sum-rate constraint (34).
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A. Proof of Achievability of Proposition 3 and Proposition 4

Proof: (Achievability) We first prove achievability of rate
(27) in Proposition 3. The proof extends the ideas discussed
in Section III-B, to which we refer for details. In particular,
here we do not detail the calculations of the encoding “error”
events and distortion levels, as they follow in the same way as
in Section III-B. To encode sequence , the encoder par-
titions the interval into subintervals, namely for
each , so that [cf., (16)]

(38)

Similar to Section III-B, a different compression codebook
is used for each such interval , and thus for each pair of
“demultiplexed” subsequences . The compres-
sion of each pair of sequences is based on a test
channel . Specifically, the corresponding
codewords are generated i.i.d. according to the marginal
distribution
and compression is done based on standard joint typicality
arguments. By the covering lemma [14], compression of se-
quences into the corresponding reconstruction
sequence requires rate bits
per source symbol in each interval , and thus an overall
rate following the same considerations as
in Section III-B. In particular, the encoder multiplexes the
compression indices corresponding to the intervals to
produce message . Therefore, the latter only carries infor-
mation about the individual sequences , but not about the
ordering of each entry within the overall sequence .
Based on the sequence produced in the first encoding

phase described above, the encoder then performs also a finer
partition of the interval into intervals ,
with , so that

(39)

Compression of sequence into the corresponding
reconstruction is carried out according to a test
channel as per the discussion
above, requiring an overall rate of . The
compression indices for all sets are concatenated in
message following the compression indices obtained from
the sets .
Upon reception of message , decoders 1 and 2 can both re-

cover the sequences and for all ,
and via simple demultiplexing. Moreover, following
the same reasoning as in Section III-B, decoder 1 can recon-
struct sequence in the correct order in a causal fashion,
using a decoder (4), which depends on message and delayed
side information, since the value of can be obtained from
sequences by knowing the value of . Similarly, de-
coder 2 can reorder sequence in a causal fashion using a de-
coder of the form (5). This concludes the proof of achievability
for Proposition 3.
We now turn to the proof of achievability Proposition 4. For

a fixed distribution (35), we need to prove that the rate region
in Fig. 6 is achievable. To do this, it is enough, by standard
time-sharing arguments, to prove that corner points A and B
are achievable. Corner point B corresponds to rate pair

Fig. 6. Achievable rate region used in the proof of Proposition 4.

and . But achiev-
ability of this point follows immediately from Proposition 3 by
noting that we have .
Instead, corner point A corresponds to the rate pair

(40)

(41)

This rate pair can be achieved by using a strategy similar to
the one discussed above. In this strategy, when encoding the
message , which is received only at decoder 2, the encoder
leverages the fact that the latter knows , , , and by
appropriately partitioning the interval and using different
test channels in each subinterval.

V. EXAMPLES

In this section, we consider two specific examples relative to
the scenario in Fig. 1. The first example consists of binary-al-
phabet sources, while the second applies the results derived
above to (continuous-alphabet) Gaussian sources.We focus on a
distortion metric of the form that does
not depend on . In other words, the decoder is interested in re-
constructing within some distortion .We note that, under
this assumption, the rate (24) equals the simpler expression

(42)

with mutual informations evaluated with respect to the joint
distribution

(43)
where minimization is done over all distributions
such that . Note that this simplification is
without loss of optimality because the distortion constraint does
not depend on the correlation between and . Therefore,
we can impose the Markov condition as in
(42) without changing the distortion, while reducing the mutual
information in (24).

A. Binary Hidden Markov Model

In the first example, we assume that is a binary
Markov chain with symmetric transition probabilities

. Therefore, we have
and -step transition probabilities ,
which can be obtained recursively as and
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Fig. 7. Minimum required rate for lossless reconstruction for the setup
of Fig. 1 with binary sources versus delay .

for .7 Note that this is
a logistic map such that for large . We also set

, consistently with the convention adopted in the rest
of the paper. Finally, we assume that

(44)

with “ ” being the modulo-2 sum and being i.i.d. binary
variables, independent of , with , . We
adopt the Hamming distortion .
We start by showing in Fig. 7 the rate obtained from

Proposition 1 corresponding to zero distortion versus
the delay for different values of and for . Note that
the value of measure the “memory” of the process : For
small, the process tends to keep its current value, while for

, the values of are i.i.d. For , we have
, irrespective of the value of ,

where we have defined the binary entropy function
. Instead, for increasingly large,

the rate tends to the entropy rate . This
can be calculated numerically to arbitrary precision following
[13, Sec. 4.5]. Note that a larger memory, i.e., a smaller leads
to smaller required rate for all values of .
Fig. 8 shows the rate for versus for different

values of . For reference, we also show the performance with
no side information, i.e., . For , the
source is i.i.d. and delayed side information is useless in
the sense that (Remark 3).
Moreover, for , we have , so that is a Markov
chain and the problem becomes one of lossless source coding
with feedforward. From Remark 3, we know that delayed side
information is useless also in this case, as

. For intermediate values of , side
information is generally useful, unless the delay is too large.

7This follows from the standard relationship

, well known from Markov chain theory (see, e.g., [22]).

Fig. 8. Minimum required rate for lossless reconstruction for the setup
of Fig. 1 with binary sources versus parameter .

We now turn to the case where the distortion is generally
nonzero. To this end, we evaluate the achievable rate (42) in
Appendix C obtaining

(45)

for
(46)

and otherwise. In (45) and (46), we have de-
fined . Recall that rate
has been proved to coincide with the rate-distortion function

only for and (Corollary 2).
As a final remark, we use the result derived above to discuss

the advantages of delayed side information. To this end, set
so that and the problem becomes one of source

coding with feedforward. For , result (45)–(46) recovers
the calculation in [8, Example 2] (see also [9]), which states that
the rate-distortion function for the Markov source at hand
with feedforward is

(47)

for and otherwise. From
[19] (see also [21]), it is known that the rate-distortion function
of a Markov source without feedforward, i.e., , is
equal to (47) only for smaller than a critical value, but is
otherwise larger. This demonstrates that feedforward, unlike in
the lossless setting discussed above, can be useful in the lossy
case for distortion levels sufficiently large, as first discussed
in [8].

B. Hidden Gauss–Markov Model

We now assume that is a Gauss–Markov process with
zero-mean, power , and correlation
(so that ). Moreover, is related to as

(48)

where samples are i.i.d. zero-mean Gaussian with variance
and independent of . We concentrate on the mean square

error distortion metric . Using standard
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arguments, we can apply the achievable rate (42) to the setting
at hand, although the result was derived for discrete alphabet
(see [14, Ch. 3.8]). By doing so, as shown in Appendix D, we
get that the following rate is achievable for :

(49)

if and otherwise. As
also discussed above, this rate coincides with the rate-distortion
function for and .
Similar to the discussion in the previous section for a bi-

nary hidden Markov model, we remark that for , the
problem becomes one of lossy source coding with feedforward
of a Gauss–Markov process . In this case, it is known that the
rate-distortion function without feedforward, , equals

only for distortions smaller than a critical
value and is otherwise larger [19]. By comparison with (49), it
then follows that feedforward, for sufficiently large distortion
levels, can be useful in decreasing the rate-distortion function.

VI. CONCLUDING REMARKS

The problem of compressing information sources in the pres-
ence of delayed side information finds application in a number
of scenarios including sensor networks and prediction/de-
noising. A general information-theoretic characterization of
the tradeoff between rate and distortion for this problem can
be generally given in terms of multiletter expressions, as
done in [2]. Such expressions are proved by resorting to com-
plex achievability schemes that operate in increasingly large
blocks, and generally require involved numerical evaluations.
In this study, we have instead focused on a specific class of
sources, which evolve according to hidden Markov models,
and derived single-letter characterizations of the rate-distortion
tradeoff. Such characterizations are established based on simple
achievable scheme that are based on standard “off-the-shelf”
compression techniques. Moreover, the analysis has focused
not only for the conventional point-to-point setting of [2], but
also on a more general setup in which side information may or
may not be delayed. The value of the derived characterization is
demonstrated by elaborating on two examples, namely binary
sources with Hamming distortion and Gaussian sources with
minimum mean square error distortion.
Various extensions of the results presented here are possible.

For instance, the optimal strategy for a cascade model with three
nodes, in which the intermediate node has causal side informa-
tion and the end decoder has delayed side information ,
can be identified by applying the result in Proposition 3 in a
manner similar to [28].

APPENDIX A
PROOF OF CONVERSE FOR PROPOSITION 1

For , fix a code as defined in
Section II. Using the definition of encoder (3), we have the
equalities

(50)

The first term in (50) can be written, using the chain rule for
entropy, as

(51)

where is
a finite constant that does not increase with . Moreover, in the
last line, we have used the Markov chain

, which follows from (2). The last term in (50) can
be similarly written as

(52)

where
is a finite constant that does not increase with . Inequality in
(52) follows from conditioning reduces entropy. Note also that
we have the inequality by conditioning reduces entropy.
By definition, a code must satisfy [cf.,

(7)]

(53)

where we have defined . It follows that

(54)

(55)

(56)

(57)

The first inequality (54) follows from the fact that is a func-
tion of and by (4) and by conditioning reduces entropy;
the second inequality (55) follows from Fano’s inequality and
the third from (53).
Finally, from (50)–(52) and (57), we obtain
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which concludes the proof.

APPENDIX B
PROOF OF CONVERSE FOR PROPOSITION 3 AND PROPOSITION 4

We prove the converse for Proposition 4, since Proposition 3
follows as a special case. We focus on , since the proof
for can be obtained in a similar fashion. To this end, fix
a code as defined in Section II.
Using the definition of encoder (3) and decoder (4), we have

(58)

(59)

where we have defined . All equalities
above follow from standard properties of the entropy and mu-
tual information, while inequality (58) follows by conditioning
reduces entropy. Following the similar steps, we obtain

(60)

The proof is concluded by introducing a time-sharing variable
uniformly distributed in and defining random variables

, , , and , and by
leveraging the convexity of the mutual informations in (59) and
(60) with respect to the distribution .

APPENDIX C
PROOF OF (45)–(46)

Here, we prove that (45)–(46) equals (42) for the bi-
nary hidden Markov model of Section V-A. First, for

, we
can simply set to obtain and

, which, from (45) and the nonnegativity
of mutual information, leads to . Similarly, for

, we can set
to prove that . For the remaining

distortion levels , under
the constraint that , we have the following
inequalities:

(61)

(62)

(63)

(64)

where the third line follows by conditioning decreases entropy
and the last line from the fact that is increasing in for

. This lower bound can be achieved in (42) by choosing
the test channel so that can be written as

(65)

where is binary with and independent of
and , and is also independent of . To obtain , we
need to impose that the joint distribution is preserved
by the given choice of . To this end, note that the
joint distribution is such that we can write ,
where is binary and independent of , with .
Therefore, preservation of is guaranteed if the equality

holds. This leads to

(66)

We remark that , due to the inequality (46) on
the distortion . This concludes the proof.

APPENDIX D
PROOF OF (49)

Here, we prove that (49) equals (42) for the hidden
Gauss–Markov model of Section V-B. This follows by using
analogous arguments as done above for the binary hidden
Markov model. The only nontrivial adaptation of the proof
given above is the choice of the test channel for the case where

. This must be selected so that can be
written as

(67)
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where is zero-mean Gaussian with and inde-
pendent of and , and is also zero-mean Gaussian and
independent of . To obtain , we need to impose that the
joint distribution of and is preserved by the given choice
of the test channel. To this end, note that the joint distribution of
and is such that we can write , where
is zero-mean Gaussian and independent of and , with

. Therefore, preservation of the joint distribu-
tion of and is guaranteed if the equality

holds. This leads to

(68)

We remark that , due to the assumed inequality
on the distortion .
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