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Capacity Region of Finite State Multiple-Access
Channels With Delayed State Information

at the Transmitters
Uria Basher, Avihay Shirazi, and Haim H. Permuter, Member, IEEE

Abstract—A single-letter characterization is provided for the ca-
pacity region of finite-state multiple access channels. The channel
state is a Markov process, the transmitters have access to delayed
state information, and channel state information is available at the
receiver. The delays of the channel state information are assumed
to be asymmetric at the transmitters. We apply the result to obtain
the capacity region for a finite-state Gaussian MAC, and for a fi-
nite-state multiple-access fading channel. We derive power control
strategies that maximize the capacity region for these channels.

Index Terms—Capacity region, delayed feedback, directed in-
formation, finite-state channel, Gaussian multiple-access channel,
multiple-access channel, multiplexing coding scheme, successive
decoding.

I. INTRODUCTION

W IRELESS communication is an example of channels
where the channel characteristics are time-varying. In

a wireless setting, the user’s motion and the changes in the en-
vironment, as well as the interference, may lead to temporal
changes in the channel quality. Such channel variation models
can include fast fading due to multi-path and slow fading due
to shadowing. In fast fading, the channel state is assumed to
be changing for every channel use, while in slow fading, the
channel is assumed to be constant for each finite block length.
In such communication problems, the channel state informa-

tion (CSI) can be transmitted to the transmitters either explicitly,
or through output CSI feedback. Frequently, the CSI feedback
is not instantaneous; the transmitters have only delayed infor-
mation regarding the state of the channel. The availability of
the delayed CSI at the transmitters will possibly increase the ca-
pacity region. The increase in the capacity region due to CSI de-
pends on the CSI delays relative to the rate at which the channel
is time-varying. When a channel is slowly time-varying and the
delays are small, CSI may significantly increase the capacity re-
gion. However, if the channel is changing rapidly relative to the
CSI delays, the transmitters can no longer adapt to the channel
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variations. Hence, availability of delayed CSI may not result in
any significant capacity region improvement. Therefore, we are
motivated to study the effect of channel memory and delays on
the multiple access channel (MAC) capacity region.
Let us now present a brief literature review. We are modeling

a time-varying channel as a finite-stateMarkov channel (FSMC)
[1], [2]. The FSMC is a channel with a finite number of states.
During each symbol transmission, the channel’s state is fixed.
The channel transition probability function is determined by the
channel state. The time variation in the channel characteristics
is modeled by the statistics of the underlying state process.
Capacity of memoryless channels, with different cases of

state information being available in a causal or non causal
manner at the transmitter and at the receiver, has been studied
by Shannon [3] and by Gelfand and Pinsker [4]. In [5], Gold-
smith and Varaiya consider the fading channels with perfect
CSI at the transmitter and at the receiver. They proved that with
instantaneous and perfect state information, the transmitter
can adapt the data rates for each channel state to maximize
the average transmission rate. Viswanathan [6] loosened this
assumption of perfect instantaneous CSI, and gave a single
letter characterization of the capacity of Markov channels with
delayed CSI. Caire and Shamai [7] consider the case that the
channel state is independent identically distributed (i.i.d.), and
the CSI at the transmitter is a deterministic function of the CSI
at the receiver. They showed that optimal coding is particularly
simple. Chen and Berger in [8] found the capacity of an FSC
with inter-symbol interference (ISI), where current CSI is avail-
able at the transmitter and the receiver. For a comprehensive
survey on channel coding with state information see [9].
The MAC with state has received much attention in recent

years due to its importance in wireless communication systems.
On the one hand, complete knowledge of the CSI at the trans-
mitters is an unrealistic assumption in wireless communications.
On the other hand, it is reasonable to assume that the receiver
does possess full knowledge of the CSI. This practical consid-
eration has motivated the investigation of a MAC where each
transmitter is informed with its own CSI, while the receiver is
informed with the full CSI.
Our work is also related to [10], [11], and [12]. In [10]

the authors found the capacity region of FS-MAC, where the
channel state process is i.i.d., the transmitters have access to
partial (quantized) CSI, and complete CSI is available at the
receiver. In [11] the capacity of general FS-MAC with varying
degrees of causal CSI at the transmitters is characterized in
non-single-letter formulas. In [12] the capacity region of the
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Fig. 1. FSM-MAC with CSI at the decoder and delayed CSI at the encoders
with delays and - The state process has memory and is assumed to be FSM.
The CSI is fed back to the encoders through a noiseless feedback channel. CSI
from the decoder is received at Encoder 1 and Encoder 2 after time delays of
and symbol durations, respectively. We are considering the above problem
setting in the cases where , , and .

FS-MAC with feedback that may be an arbitrary time-invariant
function of the channel output has been derived. Recent related
works also include [13], [14], and [15]. In [13], the state-de-
pendent MAC with causal and strictly causal side information
at the transmitters has been studied. In [14], [15] the authors
considered a MISO broadcast channels with delayed feedback.
They established the optimal sum-degrees of freedom (DoF),
which shows that even when the state process is i.i.d., or in the
presence of arbitrary large delay, the CSI can still significantly
increase the DoF.
In this work, we consider the capacity region of a finite state

Markov Multiple-access channel (FSM-MAC) with CSI at the
decoder (receiver) and delayed CSI at the encoders (transmit-
ters) with delays and as illustrated in Fig. 1. The channel
probability function at each time instant depends on the state of
an underlying finite-state Markov process. The decoder, in ad-
dition to the channel output, also receives the channel state at
each time instant (perfect CSI). The channel state is fed back to
the encoders through a noiseless feedback channel. CSI from the
decoder is received at Encoder 1 and Encoder 2 after time delays
of and symbol durations, respectively. The time delays
and are assumed to be known at both Encoder 1 and Encoder
2. Each encoder, at each time instant, chooses the channel input
based on the message to be transmitted and the CSI that he pos-
sesses. A formal description of the system model is presented in
Section II. The main result of this paper is a computable char-
acterization of the capacity region for this channel model.
The remainder of the paper is organized as follows: In

Section II, we concretely describe the communication model.
In Section III, we state our main results, which are the capacity
regions for different cases of time delays. Section IV provides
the outer bound on the capacity region of FSM-MAC with CSI
at the decoder and asymmetrical delayed CSI at the encoders.
In Section V, we complete the proof of the capacity region,
by providing the proof of the achievability. In Section VI, we
provide alternative proof for capacity region. The alternative
proof is based on a multi-letter expression for the capacity
region of FS-MAC with time-invariant feedback [12]. In
Section VII, we apply the general results of Section III to
obtain the capacity region for a finite-state Gaussian MAC,
and for a finite-state multiple-access fading channel. We derive
optimization problems on the power allocation that maximize

the capacity region for these channels. This power allocation
would be the optimal power control policy for maximizing
throughput in the presence of delayed CSI. We conclude in
Section VIII with a summary of this work.

II. CHANNEL MODEL AND NOTATION

A. Channel Model

In this paper, we consider the communication system of
FSM-MAC with CSI at the decoder and delayed CSI at the
encoders with delays and , respectively, as illustrated
in Fig. 1. The MAC setting consists of two senders and one
receiver. Each sender chooses an index uni-
formly from the set and independent of the
other sender. The input to the channel from encoder
is denoted by , and the output of the
channel is denoted by . We use the notation
to denote the sequence , therefore, , denote
the sequences , , respectively.
A finite-state Markov channel is, at each time instant, in one
of a finite number of states . In each
state, the channel is a DMC with inputs alphabet , and
output alphabet . Let the random variables , denote
the channel state at times and , respectively. Similarly,
denote by , , and the inputs and the output of the
channel at time . The channel transition probability function
at time depends on the state , and the inputs , at
time , and is given by . The channel output
at any time is assumed to depend only on the channel inputs
and state at time . Hence

(1)

The state process is assumed to be an irreducible, aperi-
odic, finite-state homogeneous Markov chain and hence is er-
godic. The state process is independent of the channel inputs
and output when conditioned on the previous states, i.e.,

(2)

Furthermore, we assume that the state process is independent of
and ,

(3)

Now, let be the one step state transition probability matrix
of the Markov process, and let be the steady state probability
distribution of the Markov process. The joint distri-
bution is stationary and is given by

(4)

where is the element of the d-step transition
probability matrix of the Markov state process. Without
loss of generality, let us assume that . Furthermore,
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for simplicity, let us define the joint distribution of the vari-
ables as the joint distribution of the variables

, i.e.,

(5)

where .

B. Code Description

An code for FSM-MAC with CSI at
the decoder and delayed CSI at the encoders with delay and
consists of
1) Two sets of integers and

, called the message sets.
2) For each encoder, an encoding function ,
maps the set of messages to channel input words of block
length . Each works through a sequence of functions

that depend only on the message and the channel
states up to time . For encoder 1 :

(6)

Similarly for encoder 2 :

(7)

3) A decoding function that maps a received sequence of
channel outputs and channel states to the messages set

(8)

We define the average probability of error for the
code as follows:

(9)

We use standard definitions [16] of achievability and ca-
pacity region, namely, a pair rate is achievable for
FSM-MAC with CSI at the decoder and delayed CSI at the

encoders with delays and , if there exists a sequence of
codes with as goes to in-

finity. The capacity region is the closure of the set of achievable
rate pairs.

III. MAIN RESULTS

Here we present the main results of this paper. Recall, that
the joint distributions of , and is given in (5).
Without loss of generality, let us assume that .

Theorem 1 (Capacity Region of FSM-MACWith Delayed CSI
): The capacity region of FSM-MAC with CSI at the

decoder and asymmetrical delayed CSI at the encoders with de-
lays and as shown in Fig. 1 is given in (10) at the bottom
of the page. where is an auxiliary random variable with car-
dinality .
The proof of Theorem 1 is presented in Sections IV, and V.

In Section IV we prove the outer bound of the capacity region,
and Section V is devoted to the proof of the achievability. The
proof of the achievability is based on a multiplexing coding
scheme, and successive decoding. In addition, we provide al-
ternative proof of Theorem 1 in Section VI. The proof for the
cardinality bound of is presented in Appendix A.
Now, directly from Theorem 1 we can derive the capacity

region in the case of . Since we have ,
hence we denote . Using Theorem 1 we get,

Theorem 2 (Capacity Region of FSM-MACWith Symmetrical
Delayed CSI ): The capacity region of FSM-MACwith
CSI at the decoder and symmetrical delayed CSI at the encoders
with delay is given in (11) at the bottom of the page. where
is an auxiliary random variable with cardinality .
Now we consider the case that encoder 1 does not have state

information at all, i.e., .

Theorem 3 (Capacity Region of FSM-MACWith Delayed CSI
Only to one Encoder): The capacity region of FSM-MAC with
CSI at the decoder and delayed CSI only to one encoder is given
by (12) at the bottom of the next page. Where is an auxiliary
random variable with cardinality .
The proof of Theorem 3 is quite similar to the proof of The-

orem 1; the details are presented in Appendix B. In Appendix C,
we present the capacity region for the case where there are three
encoders. In addition, a sketch of the proof is provided.

(10)

(11)
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IV. CONVERSE

In this section, we provide the outer bound on the capacity
region of MAC with receiver CSI and asymmetrical delayed
CSI feedback, i.e., we give the converse proof for Theorem 1.
Without loss of generality let us assume that .

Proof: Given an achievable rate we need
to show that there exists joint distribution of the form

such that,

where is an auxiliary random variable with cardinality
. The proof for the cardinality bound is presented in

Appendix A. Since is an achievable pair-rate, there
exists an code with a probability of
error arbitrarily small. By Fano’s inequality

(13)

and it is clear that as . Then we have

(14)

(15)

We can now bound the rate as

where
a) follows from Fano’s inequality;
b) follows from chain rule;
c) follows from the fact that and are independent;
d) follows from the fact that is a deterministic function of

and the Markov chain
;

e) follows from the fact that and are indepen-
dent, and the fact that is a deterministic function of

. Therefore, and are independent given
;

f) (f) and (g) follow from the fact that conditioning reduces
entropy;

g) follows from the fact that the channel output at time
depends only on the state and the the inputs and

.
Hence, we have

(16)
Similarly, we have

(17)
To bound the sum of the rates, consider

(12)
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where
a) follows from Fano’s inequality;
b) follows from chain rule;
c) follows from the fact that , , and are indepen-
dent;

d) follows from the fact that , is a determin-
istic function of and the Markov chain

;
e) follows from the fact that the channel output at time
depends only on the state , and the inputs , and

;
f) follows from the fact that conditioning reduces entropy.

Hence, we have

(18)

The expressions in (16)–(18) are the average of the mutual in-
formations calculated at the empirical distribution in column
of the codebook. We can rewrite these equations with the new
variable , where with probability .
The equations become

(19)

Now let us denote , , , ,
, , and .

We have

To complete the converse proof we need to show the following
Markov relations hold:
1) ;
2) ;
3) ;
4) .
We prove the above using the following claims:
1) follows from the fact that
and so is ;

2) follows from the fact that and that
and are independent. Hence

Since this is true for all ,

Therefore we have

3) we assume that , since and are inde-
pendent, and the state process is Markov chain, we have

Therefore, we have the Markov chain
. Since

and
where are deterministic functions, we obtain the
following Markov chain:

(20)

which implies

Since this is true for all :

Therefore we have

(21)

4) follows from the fact that the channel output at any time
is assumed to depend only on the channel inputs and state
at time .

Hence, taking the limit as , , we have the fol-
lowing converse:
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for some choice of joint distribution
and for some choice

of auxiliary random variable defined on . This
completes the proof of the converse.

V. PROOF OF THE ACHIEVABILITY OF THEOREM 1

In the previous section we proved the converse of the capacity
region of Theorem 1. In this section we prove the achievability
part. The main idea of the proof is using multiplexing coding
(e.g., [5] and [6]), i.e., multiplexing the input of the channel at
each encoder (the multiplexer is controlled by the delayed CSI),
then, using the CSI known at the decoder, demultiplexing the
output at the decoder.

Proof: For simplicity, we present first the proof without
the auxiliary random variable . Then, we complete the achiev-
ability proof of Theorem 1 by using time sharing, where the time
sharing is a function of the delayed CSI. To prove the achiev-
ability of the capacity region, we need to show that for a fix

and that satisfy

there exists a sequence of codes where
as . Without loss of generality, we assume that

the finite-state space , and that the steady state
probability for all .
Encoder 1: Construct codebooks (where the sub-

script is for Encoder 1) for all , when in each
codebook there are codewords, where

, for . Every code-
word when has a length
of symbols. Each codeword from the code-
book is built i.i.d. (where the
subscript is for Encoder 1). A message is chosen ac-
cording to a uniform distribution ,

. Every message is mapped into
sub messages
(one message from each codecook). Hence, every message
is specified by a dimensional vector. For a fix block length ,
let be the number of times during the symbols for which
the feedback information at encoder 1 regarding the channel
state is . Every time that the delayed CSI is ,
encoder 1 sends the next symbol from the codebook. Since

is not necessarily equivalent to , an error is declared
if , and the code is zero-filled if .

Therefore, we can send a total of
messages. The codebook construction of encoder 1 is illustrated
in Fig. 2.
Encoder 2: Construct codebooks (where the sub-

script is for Encoder 2) for all , when in each
codebook there are codewords, where

, for . Every
codeword when
has a length of symbols. Each codeword from the

codebook is built i.i.d.

Fig. 2. Multiplexing coding: Encoder 1’s codebook is assembled from
sub codebooks , when in each codebook there are
codewords. Each codeword from the codebook is built i.i.d.

. In a similar way, we use multiplexing coding to assembled
the codebook of Encoder 2, where the multiplexer is controlled by both
and .

(where the subscript is for Encoder 2). A mes-
sage is chosen according to a uniform distribution

, .
Every message is mapped into sub messages

(one
message from each codecook). Hence, every message is
specified by a dimensional vector. For a fix block length
, let be the number of times during the symbols for
which the feedback information at encoder 2 regarding the
channel state is . Every time that the delayed
CSI is , encoder 2 sends the next symbol
from the codebook. Since is not necessarily equiv-
alent to , an error is declared if ,
and the code is zero-filled if . Therefore,

we can send a total of
messages.
Decoding: We use successive decoding; in this method,

instead of decoding the two messages simultaneously, the
decoder first decodes one of the messages by itself, where the
other user’s message is considered as noise. After decoding the
first user’s message, the decoder turns to decode the second
message. When decoding the second message, the decoder uses
the information about the first message as side information.
This decoding rule aims to achieve the two corner points of
the rate region, i.e.,

, and
. The rate region is illus-

trated in Fig. 3.
To achieve the first point, let us analyze the case where

the decoder first decodes . The information ,
used to multiplex the codewords at the encoder is also
available at the decoder. Hence, upon receiving a block
of channel outputs and states , the decoder first
demultiplexes it into outputs corresponding to the com-
ponent codebooks of encoder 2. Then, the decoder sep-
arately decodes each component codeword where

. For each codebook , the decoder has
and searches such that

are strongly jointly typical
sequences [16], i.e.,
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Fig. 3. Rate region.

given . The
decoder declares that is sent if it is a unique mes-
sage such that

given for
all , otherwise it declares an error. If
such is found, the decoder has , but now
the decoder is using the information to demultiplex

into outputs corresponding to the component
codebooks of encoder 1 (which have codebooks). The
decoder declares that is sent if it is a unique message
such that

given for all ,
otherwise it declares error.
Analysis of the probability of error: First, we analyze the

probability of error for the component codeword at
encoder 2, i.e., . Since that the
state process is stationary and ergodic

in probability. Therefore,
as . Now, we analyze the probability to decode

incorrectly the component codeword that was sent
from the codebook of encoder 2. Without loss of
generality, we can assume that the first codeword was sent
from the codebook of encoder 2, which we denote
by . Since is ergodic and by using the
Law of Large Numbers (L.L.N.) as we have

. By the construction

of the codebook , and are independent given
. Hence and are

strongly jointly typical sequences with probability 1. Finally
from the codebooks construction and the channel transition
probability we have that

Now using the fact that
, and the L.L.N. we have

as . A decoding error occurs only if either the
correct codeword , is not strongly jointly typical
with , or there is an incorrect codeword

, where , that is strongly jointly typical with
. Let us define these events:

(22)

(23)

In addition, we define the following event:

(24)

Then by the union of events bound:

(25)

Now let us find the probability of each event,
1) - As mentioned above as we have,

2) - for the probability of error,

(26)

where (a) follows from the fact that and
are independent given

for , so are
and . Hence, using [16, Lemma
10.6.2] the probability that and

are strongly jointly typical is
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. For as
, we need to choose

where (a) follows from the independence of and
given .

Similarly, we can analyze the probability of error to the rest of
the codebooks of encoder 2, i.e., for every

. Therefore, as

(27)

where .
Let us analyze the probability of error for the component

codeword . As mentioned above, since that the state process
is stationary and ergodic in proba-
bility. Therefore, the probability that an error is declared at en-
coder 1, as . Now, we analyze
the probability to decode incorrectly the component codeword

, that was sent from the codebook of encoder 1 after
was decoded correctly. Without loss of generality, we can

assume that the first codeword was sent from the codebook
of encoder 1, i.e., was sent. Again from the ergodicity of

, the construction of the codebooks, and channel transi-
tion probability we have that

as .
A decoding error occurs only if either

are not strongly jointly typical, or there is an incorrect codeword
, where , that is strongly jointly typical with

. Let us define these events:

(28)

(29)

In addition, we define the following event:

(30)

Then by the union of events bound,

(31)

Now let us find the probability of each event:
1) - As mentioned above as we have,

2) - for the probability of error,

where (a) follows from the fact that and
are independent given

. For as , we need to
choose,

where (a) follows from the independence of and
given , and (b) follows from the indepen-

dence of and given .
Similarly, we can analyze the probability of error to the rest
of the codbooks of encoder 1, i.e., for every .
Therefore, as

(32)
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where .
Thus the total average probability of decoding error

as if
. The achievability of the other corner point

follows by changing the decoding order. To show achievability
of other points in , we use time sharing between
corner points and points on the axes. Thus, the probability of
error, conditioned on a particular codeword being sent, goes to
zero if the conditions of the following are met:

(33)

To show that the region in Theorem 1 is achievable, we use
time sharing, where the time sharing is a function of . In the
analysis of the probability of error, we analyze the probability
to decode incorrectly the component codeword that was
sent from the codebook of encoder 2. We derived that in
order that the probability of error will be arbitrarily small, one
have to choose,

In addition, we analyze the probability to decode incorrectly the
component codeword that was sent from the codebook
of encoder 1. We obtained,

Now, since is fixed, and the fact that is known at the de-
coder and in both of the encoders, we can use time sharing,
where the time sharing is a function of ,

Similarly, for encoder 1

Similarly, we can analyze the probability of error to the rest of
the codebooks of encoder 1 and encoder 2. Hence, the proba-
bility of error, conditioned on a particular codeword being sent,
goes to zero if the following conditions are met:

(34)

The above bound shows that the average probability of error,
which by symmetry is equal to the probability for an individual
pair of codewords , averaged over all choices of

codebooks in the random code construction, is arbitrarily small.
Hence, there exists at least one code
with arbitrarily small probability of error. This completes the
proof of achivability proof.

VI. ALTERNATIVE PROOF

In this section, we provide an alternative proof for Theorem
1. The alternative proof is based on a multi-letter expression for
the capacity region of FS-MAC with time-invariant feedback
[12]. In order to use the capacity region of FS-MAC with time-
invariant feedback, we treat the knowledge of the state at the
encoders as being part of the feedback from the decoder to the
encoders.
Throughout this section we use the causal conditioning no-

tation . We denote the probability mass function (pmf) of
causally conditioned on , for some integer , as

which is defined as

(35)

(if then is set to null). The directed information
was defined by Massey in [17] as

(36)

Directed information has been widely used in the characteriza-
tion of capacity of point-to-point channels [8], [18]–[22], com-
pound channels [23], network capacity [24], rate distortion [25],
[26], and broadcast channel [27]. Directed information can also
be expressed in terms of causal conditioning as

(37)

where denotes expectation. Directed information between
to causally conditioned on is defined as

(38)

where .
Now let us present a result from [12] that we need for the

proof. Consider the FS-MAC with time-invariant feedback as
illustrated in Fig. 4. The channel is characterized by a condi-
tional probability that satisfies

(39)

In addition, we assume that the channel is stationary, indecom-
posable, and without ISI, i.e.,

(40)
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Fig. 4. Channel with feedback, where the channel feedbacks, and , are time-invariant deterministic functions of the output, .

and

(41)

where is the unique stationary distribution, i.e.,
.

Lemma 4 [12, Theorem 13]: The capacity of a stationary,
indecomposable FS-MAC without ISI and with time-invariant
feedback, as illustrated in Fig. 4, is , where

is given by

(42)

where is the set of joint distributions of the form
.

In [12], Theorem 13, only the case where was
considered, but the result extends straightforwardly to any delay
and . The following theorem provides an alternative proof

for Theorem 1 based on Lemma 4.

Theorem 5: Let us denote and to be the following
regions:

(43)

(44)

where and are the sets of joint distribu-
tions of the form and

, respectively. The capacity
region for the FSM-MAC with CSI at the decoder and
asymmetrical delayed CSI at the encoders with delays and
, as illustrated in Fig. 1, is .

Proof: In order to adapt the model in Fig. 4 to our model,
we can consider the state information at the decoder as a part of
the channel’s output. Therefore, the capacity region is

(45)

where . Now, by choosing
the deterministic function of the output

, (45) yields the capacity region for the
FSM-MAC with CSI at the decoder and asymmetrical de-
layed CSI at the encoders as shown in Fig. 1. Note that

, hence the capacity region is
. In order to complete the proof we need to show

that . First let us show that :

To bound , consider
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where (a) follows from the fact that the channel is without ISI,
and from the fact that the channel’s output at time depends
only on the state , and the inputs , . We can bound
and in a similar way. Hence we obtain

The fact that the sequence

determines uniquely the term
follows immediately from the definition of the
later. Now using [21, Lemma 3], we have that

determines uniquely

. Hence

where .
Let us assume that , furthermore, we restrict the
inputs of the channel by assuming that

, .
Therefore

where . Since
we assumed that , we have
the following equalities:

(46)

where (a) follows from the fact that the channel’s output at
time depends only on the state , and the inputs , ,
and from the fact that

. From (46) we get

Similarly

Therefore

Now, in order to obtain that , we need to show
that

Consider the region , an achievable region is
uniquely determined for every fixed joint distribution

. The rate is given by

(47)

In addition, we have

(48)

where (a) follows from the fact that the distribution
is stationary, therefore . For every
and , if is rational of the form

, where , then we can choose
terms from
such that

. If



BASHER et al.: CAPACITY REGION OF FINITE STATE MULTIPLE-ACCESS CHANNEL 3441

is irrational or rational but not of the form
, we can get arbitrarily close to

by using longer and longer block lengths. Therefore, using
(47) and (48) we have that when , for every given joint
distribution , we can
choose such that

By using the same argument for and for ,
we get that for every given joint distribution

, we can chose
such that the

following equalities hold simultaneously:

(49)

(50)

(51)

Using (49)–(51), we obtain

(52)

In order to complete the proof, we need to show that
. We have that

Consider the rate ,

We can bound and in a similar way. Hence we get

(53)

Now, consider the joint distribution

where (a) follows from the fact that

Note that the elements

and

are uniquely determined by the joint distribution
. Hence, , , and

in (53) are uniquely determined by the joint
distribution . In the joint
distribution , we control only

, since the distributions
and are determined by

the channel transition probability. Hence

where . In the
same way as we did in the proof of the converse (Section IV,
(19)), we can rewrite these equations with the new variable ,
where with probability . Furthermore,
we denote , , , ,

, , and . Hence
we derive that

where , which
completes the alternative proof of Theorem 1.

VII. EXAMPLES

In this section, we apply the general results of Section III
to obtain the capacity region for a finite-state Gaussian MAC,
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and for the finite-state multiple-access fading channel. We de-
rive optimization problems on the power allocation that maxi-
mizes the capacity region for these channels. This power alloca-
tion would be the optimal power control policy for maximizing
throughput in the presence of delayed channel state information.

A. Capacity Region for a Finite State Additive Gaussian MAC

We now apply Theorem 1 to compute the capacity region of
a power-constrained FS additive Gaussian noise (AGN) MAC,
and illustrate the effect of the delayed CSI on the capacity re-
gion. For a finite state AGNMAC the channel output at time
, given the channel inputs , is given by

(54)

where is a zero-mean Gaussian random variable with vari-
ance depending on the state of the channel at time . In addi-
tion to the channel output the receiver has accesses to the state
. The receiver feeds back the CSI to the transmitters through

a noiseless feedback channel. The CSI from the receiver is re-
ceived at transmitter 1 and transmitter 2 after time delays of

symbol durations, respectively. The state process is as-
sumed to be Markov with steady state distribution and one
step transition matrix . It is clear that the finite state AGN is an
FSMC.While the capacity region formula derived in Section III
(Theorem 1) was for finite inputs and output alphabets, the re-
sult can be generalized to continuous alphabets with inputs con-
straints. First, we apply only the sum rate formula to explicitly
determine the sum rate of the finite state Markov AGN MAC
with transmitters power constraints and .

(55)

subject to the power constraints

To compute the maximum sum rate explicitly, we have to
first determine the distributions and
for each , , and . Suppose , is the
power allocated to states and . In addition, we denote

to be the differential entropy of the continuous random
variable . We can bound the sum rate:

(56)

where
a) follows from the fact that is independent of
given ;

b) follows from the fact that Gaussian distribution has the
largest entropy for a given variance;

c) follows from the fact that , are independent of
and independent of each other given , and

. Furthermore, we denote , and
;

d) follows from Jensen’s inequality.
Furthermore, we can achieve (56) if we choose , to be
zero-mean Gaussian with variance , and to
be zero-mean Gaussian with variance , both indepen-
dent of and independent of each other. We now have the
following result, for an FSM AGN MAC with average power
constraints and and CSI at the transmitters with delays
and :

(57)

subject to the power constraints:

(58)

(59)

Similarly, we can derive maximization on and , for :

(60)

subject to the power constraint:

(61)
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and for :

(62)

subject to the power constraint:

(63)

It is important to mention that in the general case the three equa-
tions (57), (60), and (62) do not achieve their maximum in the
same distribution, i.e., not in the same power allocation. In the
same way we can derive the maximization problem for two spe-
cial cases. The first case is , since the delays are
the same we denote , hence we have,

(64)

(65)

(66)

subject to the power constraints:

(67)

(68)

The second case is , let us denote and
, therefore we have

(69)

(70)

(71)

subject to the power constraints:

(72)

Now to gain some intuition on the capacity region, we consider
the case when there are only two states. At any given time the
channel is in one of two possible states or . In the good state
, the channel is “good” and the noise variance is , and in the

bad state , the channel is “bad” and the noise variance is ,

Fig. 5. Two-state AGN channel.

where . The state process is specified by the transition
probabilities given by

The state process is illustrated in Fig. 5, the steady state distri-
bution of the Markov chain is given by

By solving the optimization problems (57), (66), and (71) for
the two state example, we present the maximum sum rate versus
delay plot in Figs. 6, 7, and 8 which shows the effect of the CSI
delay on the sum rate for

. The details on solving the optimization
problem for the two state example are presented in Appendix D.
Perhaps it seems that the improvement in the sum rate due

to CSI is small, however, we should remember that when we
encode large blocks, this small improvement in the sum rate
can be of great importance. In addition, this improvement in
the sum rate due to CSI is for the specific example of two states
AGN-MAC. In Figs. 9, 10, and 11 Now, we present the capacity
rate region for the two states AGN-MAC in the asymmetrical
case by solving numerically the following optimization
problem for different values of ,

(73)

subject to the constraints:

(74)

(75)

(76)
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Fig. 6. Sum rate versus delay for the two state channel where transmitter 1 does
not have the CSI . The dashed line corresponds with the case
where CSI is not available at the encoders.

Fig. 7. Sum rate versus delay for the two state channel where (sym-
metrical delay). The dashed line corresponds with the case where CSI is not
available at the encoders.

Fig. 8. Sum rate versus delay for the two state channel where
(asymmetrical delay). The dashed line corresponds with the case where CSI is
not available at the encoders.

(77)

(78)

Fig. 9. Power control policy versus delay that achieves the maximum sum rate
where .

Fig. 10. Power control policy versus delay that achieves the maximum sum
rate where (symmetrical delay).

Fig. 11. Power control policy versus delay that achieves the maximum sum
rate where (asymmetrical).

In order to solve the optimization problem (73) we used , a
package for specifying and solving convex optimization prob-
lems [28]. The capacity rate region for and different
values of are presented in Fig. 12.
Similarly, we solve the optimization problem for the symmet-

rical case , and for the case that transmitter 1 does not
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Fig. 12. Capacity rate region for the two states AGN-MAC—asymmetrical
case .

Fig. 13. Capacity rate region for the two states AGN-MAC—symmetrical case
.

Fig. 14. Capacity rate region for the two states AGN-MAC—Transmitter 1
does not have the CSI .

have any CSI, i.e., . The rate regions are illus-
trated in Figs. 13 and 14, respectively.

Fig. 15. Fading channel.

Fig. 16. Channel behaves like a switch, at any given time the channel is in one
of two possible states or , where . The state process is illustrated
in Fig. 5.

B. Capacity Region for a Finite State Multiple-Access Fading
Channel

We apply Theorem 1 to compute the capacity region of a
power constrained FS Multiple-Access fading channel, and il-
lustrate the effect of the delayed CSI on the capacity region.
Consider the discrete-time multiple-access Gaussian channel:

(79)

where are the transmitted waveform, and
are the fading process of the users. The terms
are deterministic functions of . The noise

is a zero-mean Gaussian random variable with variance
depending on the state of the channel at time . Furthermore, the
users are subject to the average transmitter power constraints
of , and . The state process is assumed to be Markov
with steady state distribution and one step transition
matrix , as described in Section II. The FS Multiple-Access
fading channel is illustrated in Fig. 15. We apply the capacity
region formula to explicitly determine the capacity region of
the multiple-access Gaussian fading channel with transmitters
power constraints and . In a similar way to the FSM
Additive Gaussian MAC, it can be shown that the capacity
achieving distributions are zero-mean Gaussian with
variance , and zero-mean Gaussian with
variance , both independent of and independent
of each other. We derive the optimization problem given in
(80)–(82) subject to the power constraints (83) and (84), shown
at the bottom of the next page. In the same way, we can derive
the optimization problem for the symmetrical case ,
and for the case that transmitter 1 does not have any CSI, i.e.,

. Let us solve the optimization problems for the
following FSM multiple-access fading channel examples:

Example 1 (AGN Switch Channel): Consider the dis-
crete-time multiple-access Gaussian two state switch channel
as described in Fig. 16. We solve the optimization problem:
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Fig. 17. Capacity rate region for the two states switch channel—asymmetrical
case .

, for different values of in the same way we
did in the FS additive Gaussian noise (AGN) MAC example.
In Figs. 17, 18, and 19 we present the capacity rate region for

, , , , , ,
, , , in the

following cases: asymmetrical, symmetrical, and the case that
transmitter 1 does not have any CSI.
As one can see from Figs. 17, 18, and 19 the capacity rate re-

gion shape indicates that the users do not interrupt each other, so
each of them can transmit at its ownmaximal rate independently
of the other user. This makes perfect sense, since the transmis-
sion of each one of them is dependent only on the switch and
not on the other’s transmission.

Example 2 (Multiple-Access Fading Channel): Consider the
power constrained FS Multiple-Access fading channel as illus-
trated in Fig. 15 with only two states: , . The state
process is Markov and illustrated in Fig. 5, with a slight change,
instead of denoting the states ”good” and ”bad” we use ,

.We solve the optimization problem: , for
different values of in the same way we did before. In Figs. 20,

Fig. 18. Capacity rate region for the two states switch channel—symmetrical
case .

Fig. 19. Capacity rate region for the two states switch channel—Transmitter 1
does not have the CSI .

21, and 22 we present the capacity rate region for ,
, , , , ,

, , .

(80)

(81)

(82)

(83)

(84)
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Fig. 20. Capacity rate region for the two states fading channel—asymmetrical
case .

Fig. 21. Capacity rate region for the two states fading channel—symmetrical
case .

Fig. 22. Capacity rate region for the two states fading channel—Transmitter 1
does not have the CSI .

VIII. SUMMARY

The requirement for high rates multi-user communications
systems is constantly increasing, so it becomes essential to

achieve capacity by deriving the benefit from the channel struc-
ture. Motivated by this we studied the problem of finite-state
MAC, where the channel state is a Markov process, the trans-
mitters have access to delayed state information, and channel
state information is available at the receiver. The delays of
the channel state information is assumed to be asymmetric at
the transmitters. We obtained a computable characterization
of the capacity region for this channel. We provide the outer
bound on the capacity region and the proof of the achievability,
which is based on multiplexing coding. In addition, we provide
alternative proof for the capacity region. The alternative proof
is based on a multi-letter expression for the capacity region
of FS-MAC with time-invariant feedback. Then we apply
the result to derive power control strategies to maximize the
capacity region for finite-state additive Gaussian MAC, and for
the multiple-access fading channel. The results and the insight
in this paper are an intermediate step toward understanding
network communication with delayed state information.

APPENDIX A
CARDINALITY BOUND OF THE AUXILIARY

RANDOM VARIABLE

Let us prove now the cardinality bound for Theorem
1, which is derived directly from the Fenchel–Eggle-
ston–Carathéodry theory [29]. Let us denote the set to
be , let be the set of PMFs
on , and let be a collection of PMFs
on indexed by . Let be continues
functions on . Then, for any , there exists
a finite random variable taking at most values in
such that

(85)

(86)

Let us denote

(87)

(88)

(89)

then, by using the given technique, we can see that .
By utilizing the same technique, and similar considerations, we
can bound the cardinality of the auxiliary variable in Theorem
2 to be and the cardinality of the auxiliary variable in
Theorem 3 to be .

APPENDIX B
PROOF OF THEOREM 3

The proof of Theorem 3 is similar to the case where the CSI is
available at the decoder and asymmetrical delayed CSI is avail-
able at the encoders with delays and , only
now . We give here the proof of the converse, and only
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a brief outline of the achievability proof. Since only encoder 2
has the CSI we denote and .

A) Converse Theorem 3: Given an achievable rate
we need to show that there exists joint distribution

of the form such
that,

where is an random variable with a cardinality bound
. The proof of the cardinality bound is similar to the proof in
Appendix A. Since is an achievable pair-rate, there ex-
ists an code with a probability of error
arbitrarily small. By Fano’s inequality:

(90)

and it is clear that as . Then we have

(91)

(92)

We can now bound the rate as

where
a) follows from Fano’s inequality;
b) follows from chain rule;
c) follows from the fact that and are independent;
d) follows from the fact that is a deterministic function of

and the Markov chain
;

e) follows from the fact that and are indepen-
dent, and the fact that is a deterministic function of

. Therefore, and are independent given
;

f) (f) and (g) follow from the fact that conditioning reduces
entropy;

g) follows from the fact that the channel output at time
depends only on the state and the the inputs and

.
Hence, we have

(93)

Similarly, we have

(94)

and the sum rate:

(95)

The expressions in (93)–(95) are the average of the mutual in-
formations calculated at the empirical distribution in column
of the codebook. We can rewrite these equations with the new
variable Q, where with probability .
The equations become

(96)

Now let us denote , , , ,
and .
We have

Now we need to show the following Markov relations hold:
1) .
2) .
3)
4) .
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We prove the above using the following claims:
1) follows from the fact that and the state process are
independent.

2) follows from the fact that and that
and are independent.

3) follows from the fact that and are indepen-
dent, and the fact that state process is a Markov chain,
hence

Therefore, we have the Markov chain
. Since and

, where are determin-
istic functions, we get the following Markov chain:

(97)

Therefore

Since this is true for all ,

We have .
4) follows from the fact that the channel output at time de-
pends only on the state and the the inputs and .

Hence, taking the limit as , , we have the fol-
lowing converse:

for some choice of joint distribution

and for some choice of random variable defined on .
This completes the proof of the converse.

A. Achievability Theorem 3

To prove the achievability of the capacity region, we need to
show that for a fixed and that satisfy,

there exists a sequence of codes where
as . Without loss of generality we assume

that the finite-state space , and that the steady
state probability for all .

Encoder 1: construct independent codewords
where of length , generate each symbol
i.i.d., .
Encoder 2: construct codebooks (where the sub-

script is for Encoder 2) for all , when in each
codebook there are codewords, where

, for . Every code-
word where has a length
of symbols. Each codeword from the codebook
is built i.i.d. (where the subscript
is for Encoder 2). A message is chosen according
to a uniform distribution ,

. Every message is mapped into
sub messages
(one message from each codebook). Hence, every message
is specified by a dimensional vector. For a fix block length ,
let be the number of times during the symbols for which
the feedback information at encoder 2 regarding the channel
state is . Every time that the delayed CSI is ,
encoder 2 sends the next symbol from codebook. Since
is not necessarily equivalent to , an error is declared if

, and the code is zero-filled if . There-

fore we can send total of messages.
Decoding: we use successive decoding, similar to the de-

coding in Section V. It can be shown that the probability of error,
conditioned on a particular codeword being sent, goes to zero if
the conditions of the following are met:

The above bound shows that the average probability of error,
which by symmetry is equal to the probability for an individual
pair of codewords , averaged over all choices of
codebooks in the random code construction, is arbitrarily small.
Hence there exists at least one code with an
arbitrarily small probability of error. To complete the proof we
use time-sharing to allow any in the convex hull to
be achieved.

APPENDIX C
THREE USERS MULTIPLE-ACCESS CHANNELS

WITH DELAYED STATE INFORMATION

In this section, we generalize the result derived for two
senders to three senders. The FSM-MAC with Delayed CSI in
this case is shown in Fig. 23. We send independent messages
, and over the channel from the senders. The codes,

rates, and achievability are all defined in exactly the same way
as in the two-sender case. In addition, without loss of generality,
we assume that .

Theorem 6 (Capacity Region of 3-User FSM-MAC With
Delayed CSI ): The capacity region of 3-user
FSM-MAC with CSI at the decoder and asymmetrical delayed
CSI at the encoders with delays , and , as shown in
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Fig. 23. Three users FSM-MAC with CSI at the decoder and delayed CSI at
the encoders with delays , , .

Fig. 23 is given in (98), shown at the bottom of the page,
where

(99)

and , are auxiliary random variables with cardinality
.

The proof of Theorem 6 contains similar ideas to the proof
for the two user case. In the converse proof, instead of three
inequalities, there are seven inequalities. For example, we can
bound the rate as

We can rewrite this equation with the new variable , where
with probability . Hence

Now let us denote , , ,
, , , , ,

, and . Therefore

The other inequalities are derived in a similar way.

In the achievability proof, we use multiplexing coding
and successive decoding. The multiplexers of encoder 1, 2,
and 3 are controlled by the delayed CSI , , and

, respectively. In successive decoding scheme,
instead of decoding the three messages simultaneously, the
decoder first decodes one of the messages by itself, where the
other users messages are considered as noise. After decoding
the first user’s message, the decoder turns to decode the second
message. When decoding the second message, the decoder uses
the information about the first message as side information, etc.
This decoding rule aims to achieve the six corner points of the
rate region, for example, one of the corner points is

(100)

The analysis of the probability of error, is done in similar way
to the two-user case. It is worth noting that from the three users
case, it is quite simple to see how to extend the result to -users
FSM-MAC.

APPENDIX D
DETERMINATION OF THE TWO-STATE MAC CAPACITY REGION

For simplicity we give here the solution to the constrained
optimization only for the symmetrical case, i.e., both CSI delays
are the same , the solution of the other cases are
obtained in a similar way. The optimization problem is

(101)

subject to the power constraints:

(102)

(103)

(104)

(105)

(98)
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The solution can be obtained by the Lagrange multiplier
method. Since the objective function is monotonically in-
creasing with respect to , and , it follows that the
maximum is achieved when

(106)

(107)

Since is a concave function, and . We get
that objective function is concave in both variables , and

. Also the constraints functions (106), and (107) are affine.
So we can use the Kuhn–Tucker conditions [30, Ch. 5.3.3] as
sufficient conditions to solve the optimization problem. Appli-
cation of the Kuhn–Tucker conditions gives the following con-
ditions of optimality:

(108)

(109)

(110)

(111)

with equality in (108) whenever , and equality in
(109) whenever . For the two state Gaussian MAC
example in Section VII-A we have

Now the solution to the constrained optimization problem is
obtained by finding , and that satisfy the Kuhn-
Tucker conditions. For simplicity, in order to solve the opti-
mization problem we used CVX, a package for specifying and
solving convex optimization problems [28].
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