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Parametric Estimation of the Orientation of Textured
Planar Surfaces

Joseph M. Francos, Senior Member, IEEE,and Haim H. Permuter

Abstract—This paper presents a parametric solution to the
problem of estimating the orientation in space of a planar textured
surface, from a single, noisy, observed image of it. The coordinate
transformation from surface to image coordinates, due to the
perspective projection, transforms each homogeneous sinusoidal
component of the surface texture into a sinusoid whose frequency
is a function of location. The functional dependence of the sinusoid
phase in location is uniquely determined by the tilt and slant an-
gles of the surface. Using the phase differencing algorithm we fit a
polynomial phase model to a sinusoidal component of the observed
texture. Assuming the estimated polynomial coefficients are the
coefficients of a Taylor series expansion of the phase, we establish
a linear recursive relation between the model parameters and
the unknown slant and tilt. A linear least squares solution of the
resulting system provides the slant and tilt estimates. To improve
accuracy, an iterative refinement procedure is applied in a small
neighborhood of these estimates. The performance of the proposed
algorithms is evaluated by applying them to images of different
planar surfaces, and by comparing their statistical performance
with the Cramer–Rao bound. The combined two-stage algorithm
is shown to produce estimates that are close to the bound.

Index Terms—Nonhomogeneous two-dimensional signals, para-
metric texture modeling, perspective estimation, two-dimensional
polynomial phase models.

I. INTRODUCTION

T HE perspective projection has a dominant and funda-
mental role in any imaging process, whether by the

human visual system, or by some type of a camera. Hence,
perspective is one of the prominent clues in image interpretation
and understanding. This makes perspective estimation a key
problem in many image modeling and analysis applications.
A closely related problem is the estimation of the shape of a
three-dimensional (3-D) rigid body from one, or more, images
of that body. One of the possible approaches toward a solution
of this problem is known as “shape from texture,” where
estimation of the shape of the rigid body is based on its surface
texture information. In general, recovery of 3-D shape from
texture is possible if some prior knowledge about the surface
texture, in the surface coordinate system, is available. Due to
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the perspective projection the observed texture has properties
different from those of the surface texture. Thus, 3-D shape
information can be computed such that the discrepancy is
accounted for. For example, if the true texture is known to
be an array of elements with a known shape, say circular, the
surface gradient can be inferred from the observed distorted
shape, elliptical in this case, of the elements. In this paper we
address a special case of the general problem of estimating
shape from texture: We consider the problem of estimating the
orientation in space of a planar textured surface, from a single,
noisy, observed image of it.

A solution to this problem is an essential component in many
image processing and multimedia data processing applications.
For example, the segmentation of two-dimensional (2-D) or 3-D
images and video for content-based coding and representation
is considerably simplified if the effects of the perspective pro-
jection are eliminated first, thus reducing the nonhomogeneity
of the image. By estimating and then canceling the effect of the
perspective projection on a given image, we avoid the difficulty
of segmenting and coding an image where each of its patches
is nonhomogeneous. Furthermore, to enable content-based in-
dexing for retrieval from multimedia data bases, the effect of the
specific perspective projection in each image has to be nulled in
order to “normalize” all images with respect to some “common
basis.” In particular, in indexing and retrieval systems of multi-
media data that employ the textural information in the imagery
components of the data, e.g., [12], the identification of similar
textured surfaces as being such, is impossible unless the effects
of the different perspective projections involved in the process
of taking each of the images are estimated and then removed. We
therefore conclude that all the foregoing applications require an
accurate estimate of the perspective transformation to become
available at a moderate computational complexity, so that per-
spective estimation could be conveniently integrated into the
higher level applications.

Existing solutions to problems where perspective estimation
is involved attempt to extract the projection parameters based
on the observed variations in the image, generated by the
perspective projection. The structure-based approaches attempt
to recognize the structure of the surface texture (the “true”
texture) from the observed projected image of that surface. In
other words, in order to estimate the projection parameters,
these methods must first (or jointly with estimating the projec-
tion parameters as proposed by [5]) obtain the characterizing
properties of the surface texture such as regularity, periodicity,
symmetry, collinearity, etc. (see, e.g., [6] and the references
therein). This task is very difficult in general, and more so in
the presence of noise, since due to the projection distortion and

1057–7149/01$10.00 © 2001 IEEE



404 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 3, MARCH 2001

the noise contribution the observed surface does not exhibit
the expected “regularities,” and texture elements (“texels”)
are difficult to identify [5]. An alternative approach, that
does not require the initial recognition of the structure of the
surface texture is based on statistical assumptions regarding the
distribution of textural properties of the surface texture. Typical
assumptions are isotropy, [1], [2], [8], [13] and homogeneity,
[3], [6], [14]. Thus, an observed preferred orientation of an
isotropic surface texture, or an observed inhomogeneity of a
homogeneous surface texture, is employed to estimate the sur-
face orientation. We note that many of the foregoing methods
(see, e.g., [6], [11], [3], [4]) are derived for binary images, or
are based on an initial local analysis of the image, using its
edge information. Hence, their usefulness in the presence of
noise is limited.

In [5] a two-step procedure for texel identification and sur-
face estimation is proposed. Anad-hocprocedure based on a
multiscale region detector and some simplifying assumptions is
used to construct a set of candidate texels. In a second stage,
perspective viewing constraints are employed to select the true
texels from the candidates, while simultaneously constructing
an approximation of the surface orientation. The algorithm pro-
posed in [14] evaluates the dominant frequency at each image
point using the wavelet transform, and then employs the spatial
dependence of this frequency component to estimate the surface
orientation. A different method for estimating and canceling, the
effects of perspective based on the 1-D Chirplet transform was
suggested in [15]. More recently, an algorithm for estimating the
surface orientation by first evaluating the ridge surface of a con-
tinuous wavelet transform of the observed textured image was
derived in [17]. This approach employs the fact that the dom-
inant spatial frequencies of a textured image are characterized
by ridge points of the wavelet transform, to evaluate the surface
tilt and slant angles from the parameters of these ridge points.

Generally speaking, these algorithms address the problem of
estimating theinstantaneous frequencyat every image point (or
a related quantity) as a first step in a procedure for estimating
the tilt and slant of the observed surface, based on the variations
of the instantaneous frequency. This approach is further pur-
sued with the introduction of novel space-frequency methods,
see e.g., [14], [7]. However, given a nonhomogeneous signal

, the question of the unique determination of its in-
stantaneous phase, frequency and amplitude, is not a straight
forward one, as even in the one dimensional case incoherent
definitions of instantaneous phase and amplitude are common.
We refer the interested reader to [22] for a detailed discussion
on the one-dimensional problem. Following, [22] it is clear that
starting from a given signal , it is possible to introduce
an infinite number of pairs such that

(1)

Nevertheless, in order to be able to interpret as the
instantaneous amplitude of the signal, and as its
instantaneous phase, the instantaneous phase and amplitude
should be defined in such a way that only asingle, well defined,
pair will correspond to any given signal

, so that the representation (1) is unique. We shall
further elaborate on this point in Section IV.

A maximum likelihood estimator for the tilt and slant param-
eters is proposed in [9]. In this framework the homogeneous
surface texture is modeled by a Gauss–Markov random field.
A probability distribution function for the observed textured
image, assuming a “linear” projection model (instead of the
nonlinear perspective projection transformation) is derived. The
joint problem of estimating the surface orientation parameters,
and the texture model is then solved by a ML estimator. How-
ever, due to the linear approximation of the projection transfor-
mation, the method was found to be sensitive to the nonhomo-
geneities of the observed texture which are especially significant
for low slant angles.

In this paper we elaborate on the problem of estimating the
orientation in space of a planar textured surface from a single,
noisy, observed image of it, such that, in its own coordinate
system the surface texture ishomogeneous. By employing a gen-
eral texture model which is based on the 2-D Wold-like decom-
position of homogeneous random fields, and substituting the
physical model of the perspective projection, we derive an ac-
curate and physically meaningful model for the observed image
of the planar surface. Using the derived model of the observed
nonhomogeneous image, two algorithms are rigorously devel-
oped. The performance of the proposed algorithms is evaluated
through Monte-Carlo simulations. The error variance in esti-
mating the tilt and slant parameters in the presence of noise is
compared with the Cramer–Rao bound for this problem, derived
in [29]. To the best of our knowledge the derivation of estimation
algorithms in the presence of noise, and the evaluation of their
performance relative to a universal performance bound, were
never considered in the existing literature. Furthermore, since
the model of the homogeneous surface texture is based on the
2-D Wold decomposition of homogeneous random fields, the
proposed algorithms provide a unifying framework for both the
structural and statistical methods. In addition, the extremely dif-
ficult task of identifying the texture elements from the perspec-
tive projected noisy image, as required by the structure-based
approaches, is avoided.

More specifically, the 2-D Wold decomposition implies that
the deterministic component of any homogeneous texture field
can be approximated by a sum of 2-D sinusoids, [23]. Thus, an
approximate model of the surface texture deterministic compo-
nent is given by

(2)

where denote the surface coordinates. The coordinate
transformation from surface to image coordinates, due to the
perspective projection, transforms each homogeneous sinu-
soidal component to a sinusoid whose frequency is a function
of location. In the Appendix it is proved that in the case of
a planar surface, the functional dependence of the sinusoid
phase in location is uniquely determined by the tilt and slant
angles of the surface. Hence, the surface tilt and slant angles
can be recovered from the phase of the sinusoidal component,
measured in the image plane.

The perspective projection results in a continuous coordi-
nate transformation from the surface coordinate system to the
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Fig. 1. Perspective projection.

image coordinate system. Hence, the phase function of each si-
nusoidal component of the surface texture is transformed by the
perspective projection into a nonlinear, continuous function of
the image coordinates. Since continuous functions can be ap-
proximated by polynomials, a natural choice for modeling the
continuous phase function of each sinusoidal component is by a
polynomial function of the image coordinates. Hence, the model
of the harmonic component of a homogeneous surface texture
projected onto the image plane by the perspective projection is a
multicomponent model, where each component is of a constant
amplitude times a sine of a polynomial function of the image
coordinates.

The paper is organized as follows. In Section II we present
the viewing geometry we use and the resulting functional de-
pendence of the observed phase on the image coordinates, for
each sinusoidal component of the surface texture. In Section III
we briefly present the polynomial phase model and a corre-
sponding algorithm for estimating its parameters. However, this
estimation algorithm is designed to work with complex valued
constant amplitude polynomial phase monocomponent signals.
In our application the 2-D signal is real, and in general it has
more than a single component. Therefore, in Section IV we de-
rive an algorithm that isolates a single component from the ob-
served signal and converts it into a complex form through the
2-D Hilbert transform, such that the concepts of 2-D instanta-
neous phase, frequency, and amplitude are well defined. In Sec-
tion V we derive a computationally efficient algorithm for esti-
mating the slant and the tilt of the planar surface directly from
the estimated polynomial model of the phase. In order to do so
it is assumed that the estimated polynomial phase coefficients
are in fact, the coefficients of a Taylor series expansion of the
phase. In Section VI we present an iterative algorithm to im-
prove the accuracy of the obtained tilt and slant estimates. In
Section VII we illustrate the performance of the proposed algo-
rithms using synthetic and photographed images. In particular,
we investigate the performance of the algorithms in the presence

of noise and analyze their performance through Monte-Carlo
simulations and by comparing the Monte-Carlo results with the
Cramer–Rao lower bound (CRLB). Finally, in Section VIII we
make some concluding remarks.

II. THE PERSPECTIVETRANSFORMATION

This section defines the viewing geometry we use. In the fol-
lowing we adopt the notations used by Super and Bovik in [14]
and assume a pinhole perspective projection model, since it pro-
vides a good approximation to a lens-type imaging system.

Assign a world coordinate system to
the imaging system such that its origin is at the focal point and
the axis is the optical axis (see Fig. 1). The image plane
is located at where is the focal length. Define
the image plane coordinate system such that

and .
We use the slant-tilt system for representing the orientation of

the planar surface. The slant,, is the angle between the surface
normal and the optical axis . The tilt, , is the angle between
the -axis and the projection of the surface normal onto the
image plane. To describe a texture on the surface, we must de-
fine a coordinate system on the surface. This
coordinate system is formed by

1) setting the -axis to be the surface normal;
2) setting the -axis to be the back-projection onto the sur-

face of the image tilt vector ;
3) setting the -axis so as to form right-handed orthogonal

coordinate system;
4) setting the origin at the intersection of the surface with the

-axis.
Thus, the coordinate transformation from the surface coordinate
system to the world coordinate system is given by

(3)
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where is the -coordinate of the surface where it crosses the
optical axis.

The coordinate transformation of a point in the world coordi-
nate system to image coordinates due to the perspective projec-
tion is given by

(4)

Since for any surface point we have by definition that
, let us define to be the coordinate vector

of a surface point. Therefore, the surface to world coordinate
transformation of a pointon the surface is given using (3) by

(5)

For any point of the surface we have that itscoordinate is
given by

(6)

Substituting (5) and (6) into (4) we obtain the surface to image
coordinate transformation of a pointon the surface to a point on
the image plane due to the perspective projection

(7)

The matrix is a rotation matrix, and the matrix
provides the projection of to for a zero tilt.

The term is a scaling factor due to the distance
of the surface from the pinhole.

The inverse of the relation (7) is given by

(8)

where substitution of (8) into (6) yields

(9)

A. Projection of the Texture

Next, we derive a model for the harmonic component of a
texture field, undergoing a perspective projection.

Substituting the inverse coordinate transformation expression
(8) into the texture model (2), we obtain the model of the har-
monic component, projected onto the image plane, i.e.,

(10)

where is given in the image
coordinate system by

(11)

and

Following the definition in the 1-D case, we call real 2-D signals
with constant instantaneous amplitude,2-D phase signals.

Since the origin of the observed surface is projected onto the
origin of the image, we conclude that for each harmonic com-
ponent of the surface texture, its projection on the image has
the same initial phase as on the surface. This is because the
initial value of each cosine function, i.e., its value at , re-
mains unchanged under a projection that keeps the origin.

III. T HE PARAMETRIC PHASE MODEL AND ITS ESTIMATION

In the previous section it is concluded that the phase func-
tion of any sinusoidal component of the homogeneous surface
texture is transformed by the perspective projection into a non-
linear function of the image coordinates. As shown in the Ap-
pendix, for a given focal length, the transformation is a unique
function of the surface tilt and slant angles. Hence, in principle,
the surface tilt and slant can be recovered from the phase of the
projected sinusoidal component, measured on the image plane.
However, due to its periodicity the phase wraps around, and
only its principle value is observable. Therefore, any use of the
phase information is limited by the need to first unwrap the
phase of the observed signal.

In this paper we propose to use a parametric model as an
alternative to the need to employ phase unwrapping methods.
(For an overview of 2-D phase unwrapping algorithms, see, e.g.,
[24] and the references therein.) Since continuous functions can
be approximated by polynomials, a natural choice for modeling
any continuous2-D phase function is by a 2-D polynomial of
the coordinates. Since the assumption of phase smoothness is
implicit to this model, noexplicitphase unwrapping is required
in estimating the observed phase.

In this section we briefly study the model of a single compo-
nent, constant amplitude exponential of a polynomial function
of the field coordinates. This model belongs to the general class
of AM-FM signals, [25], [26]. The model, as well as the proper-
ties of the parametric phase estimation algorithm, described in
this section, are studied in detail in [18] and [19]. More specif-
ically, let be a discrete 2-D constant amplitude poly-
nomial phase signal, i.e.,

(12)

where

(13)

We call 2-D polynomial oftotal-degree . The
amplitude is a real valued positive constant. To simplify the
presentation we assume there is no observation noise and
. Hence, .
The proposed phase estimation algorithm is suboptimal (rel-

ative to the maximum likelihood estimator), but computation-
ally efficient (since no multidimensional search in the parameter
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space is required). The algorithm is based on the properties of
a 2-D phase difference operator. First we give a brief heuristic
explanation of the idea behind the operator.

Consider the observed signal which is given by (12), and as-
sume for the moment thatand are continuous variables. By
differentiating the phase of the observed signaltimes along
the axis and times along the axis, (in any order, as
long as the total number of differentiation operations in both
axes is ), we obtain a 2-D complex exponential signal. It can
be shown that the spatial frequency of this complex ex-
ponential is a function of two of the coefficients of the highest
“layer,” , of the phase polynomial, and other known quanti-
ties. The exact functional relation of the exponential spatial fre-
quency and the phase parameters is given later in this section.
By estimating the frequency of the complex exponential we ob-
tain estimates of two of the coefficients of the highest “layer”
of the phase polynomial model. Repeating this procedure for all

, all the coefficients of the highest “layer,” ,
of the phase polynomial model are estimated.

Having completed the estimation of the phase parameters in
the highest “layer,” their contribution to the signal phase can be
eliminated, thus resulting in a polynomial phase signal of total-
degree . By repeating this entire process for all the “layers” in
the phase model, all the phase parameters are estimated.

Since in our problem the variablesand are discrete, phase
differentiating will be replaced by phase differencing. In prin-
ciple, this could be accomplished by computing the phase of
the 2-D signal and then performing the differencing operation.
However, extraction of the phase function is difficult, and espe-
cially in the presence of noise, because of the need to perform
phase unwrapping. As we will show next, phase differencing
can be accomplishedwithoutphase unwrapping, by performing
a certain nonlinear operation on the 2-D signal, using what we
call “the phase differencing (PD) operator.” We next define the
basic polynomial phase differencing operators.

Definition 1: Let and be some positive constants. De-
fine

(14)

and in general

(15)

where the resulting 2-D signal exists for
, . The phase dif-

ferencing operator along the-axis, is defined
in a similar way.

Assume we have sequentially applied the phase differ-
ence operator times, and the phase difference
operator times, to some complex-valued
2-D signal . We will denote the resulting signal by

.

Theorem 1: Let be given by (12) and (13). Then, the
signal is a 2-D exponential given by

(16)

where

(17)

(18)

and is not a function of nor .
Theorem 1 implies that applying in some arbitrary se-

quence, times the operator , and times
the operator , to the observed signal (12), the re-
sulting signal is the 2-D exponential

where and are
given by (17) and (18), respectively. We can thus reduce any
2-D nonhomogeneous, polynomial phase signal, ,
whose phase is of total-degree , to a 2-D single tone
signal whose frequency is .

Hence, estimating using any standard frequency es-
timation technique, results in an estimate of ,
and . In this paper we estimate the frequency of
the exponential using a search for the maximum of the absolute
value of the signal 2-D Discrete Fourier Transform (2-D DFT).
Repeating the procedure which was described above assuming
some arbitrary , for all such that , we obtain
estimates of all the parameters of the highest order layer,

of the phase model. Multiplying by
results in a new polynomial phase

signal whose total-degree is. By applying to the resulting
signal a procedure similar to the one used to estimate the pa-
rameters for , we obtain an estimate of
the parameters in the “layer.”

In general, let denote the 2-D signal, where
denotes thecurrent total-degree of its phase polynomial. By
repeating for all , the two basic steps of esti-
mating the parameters of “layer” through finding
the maxima of

for all , followed by multiplying the already re-
duced order 2-D polynomial phase signal by

in the next step, we obtain estimates
for all the phase parameters except . The resulting signal
after this processing, , is a constant phase 2-D signal.
Taking now the average of the imaginary part of the logarithm
of this signal we obtain an estimate for . We have thus
completed the estimation of all the coefficients of the 2-D phase
polynomial of total-degree . In the following we refer to the
algorithm as thephase differencing algorithm(PD algorithm).
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So far we described the parameter estimation algorithm for
the case in which no observation noise exists. However, in many
practical situations the signal is observed in the presence of ad-
ditive noise. Thus, a straightforward but computationally pro-
hibitive alternative to the PD Algorithm is to develop a max-
imum likelihood estimator for the polynomial phase parameters.
This estimator involves a multidimensional search in the param-
eter space and is not practical except for very low order models.
It turns out, [18] that although the PD algorithm is suboptimal
(relative to the ML algorithm), its performance in the presence
of additive white noise, is close to the Cramer–Rao lower bound
(CRLB) on the error variance in estimating the parameters of the
polynomial phase model, for moderate to high signal to noise ra-
tios.

IV. EXTRACTION OF A MONOCOMPONENTCOMPLEX VALUED

SIGNAL

As already indicated in Section I, most of the existing algo-
rithms attempt to estimate theinstantaneous frequencyat every
image point (or some related quantity) and to estimate the tilt
and slant of the observed surface by analyzing the variations
of the instantaneous frequency, e.g., [7], [10], [14], [15], [17].
However, it seems that the problem of how to rigorously define
the instantaneous frequency of a 2-D nonhomogeneous signal is
overlooked. Hence, there is no guarantee that the instantaneous
frequency is being correctly estimated.

Starting from the physical model of the observed nonhomo-
geneous signal (10), (11), one would like to obtain a coherent
definition of the instantaneous frequency of the signal, or of its
individual components. Yet, to keep the physical interpretation
of the model meaningful, it is clear form (10) that we would like
the instantaneous amplitude of each component to be a constant.
Let us consider a single component of the sum in (10), and let

(19)

denote this component. The question then is what are the condi-
tions that ensure that can indeed be interpreted as the instan-
taneous amplitude of and as its phase.

Clearly, starting from a given signal , it is possible
to introduce an infinite number of pairs
such that . Nev-
ertheless, in order to be able to interpret as the
instantaneous amplitude of the signal, and as its
instantaneous phase, the instantaneous phase and amplitude
should be defined in such a way that only asingle, well defined,
pair will correspond to the given signal

. Similarly to the 1-D case, [22], the way to define
without ambiguity the instantaneous amplitude and phase of a
real signal is to associate it with itsanalytic signal

(20)

through the 2-D Hilbert transform [20], [21]. However, the 2-D
Hilbert transform, [20], is uniquely defined only in cases where
the signal energy is concentrated in the first and third quadrants
of the spectral domain. More specifically, let denote

the Fourier transform of . Then, it can be easily ver-
ified that a consistent definition of the 2-D Hilbert transform
(that results in a nonnegative instantaneous amplitude) is pos-
sible only if

and
(21)

Thus, in case the energy of is concentrated in the
second and fourth quadrants, the image must first be rotated by
90 degrees, so that its energy is concentrated in the first and
third quadrants. We therefore conclude that it is required that

has its energy in two of the four quadrants only, either
the first and third, or the second and fourth. Two-dimensional
sinusoids have this property, and in most cases signals obtained
by geometric distortions of sinusoids still possess this property.

Let denote the 2-D Hilbert transform operator. The ana-
lytic signal of a real signal whose energy
is concentrated in the first and third quadrants of the frequency
plane is obtained by applying the operator

(22)

to . Conversely, it is clear that
. In terms of spectral characterization, the

analytic signal , is obtained from by
filtering it using a filter with frequency response equal to 2
for and zero elsewhere. Hence is
an analytic signal if its Fourier transform is nonzero only for

and . Thus cannot be a real function, and
therefore it has a unique amplitude-phase representation in the
form (20), where the instantaneous amplitude is nonnegative.
In conclusion, using the analytic signal we can associate with
any real signal , satisfying the foregoing constraints,
a unique pair of functions , such that

is its instantaneous amplitude, and is its
instantaneous phase.

The estimation algorithm summarized in Section III is de-
signed to work with complex valued constant amplitude polyno-
mial phase monocomponent signals. In our application the 2-D
signal is real, and in general it has more than a single component.
Thus the proposed algorithm for estimating the tilt and slant an-
gles first isolates a single component from the observed signal
and converts it into a complex form through the 2-D Hilbert
transform. The problem then is how to best choose this com-
ponent.

The component selection procedure is based on the results
of [29] on the Cramer–Rao lower bound on the error variance
in estimating the tilt and slant of the observed surface. Based
on these results we conclude that the bounds are nearly linear
functions of , where SNR denotes the signal to noise
ratio of the selected sinusoidal component of the surface tex-
ture. (See also Fig. 7.) It is further shown in [29] that the bounds
on both the tilt and slant parameters are high when the center
frequencies of the observed nonhomogeneous components are
low. The bounds rapidly decrease as the spatial frequencies be-
come higher. Hence, the selection rule selects the highest energy
component among those components whose spatial frequency
is away from DC. In other words, it may very well be, that a
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higher frequency component will be chosen even if its amplitude
is lower than that of a lower frequency component. Moreover,
the filtering associated with the 2-D Hilbert transform can cause
significant distortions if there is large energy in the low frequen-
cies (near the DC). Hence, usage of a low frequency component
should be avoided.

The selection result is verified using the CRLB by substi-
tuting the estimates obtained based on the alternative choices
into the CRLB equations. The estimate that provides the lowest
CRLB is chosen.

Once the definition of the analytic signal and the associated
instantaneous amplitude and phase are given, we can return
to the basic question posed at the beginning of this section,
i.e., whether in (11) satisfies the conditions so
that is an analytic signal, or in other words
whether the Fourier transform of vanishes
for and for . This condition guarantees that
the selected component indeed admits the representation of
the form (19). In practice, the process of isolating a single
component of (10), such that its frequency is away from DC
implies that all low frequency components are filtered out in the
conversion process. As a consequence, the Fourier transform
of the resulting complex valued monocomponent signal is
guaranteed to vanish for and for .

V. TILT AND SLANT ESTIMATION BASED ON A TAYLOR SERIES

EXPANSION OF THEPHASE

In Section II it is shown that the perspective transformation
transforms the homogeneous surface texture into a nonhomo-
geneous texture in the image plane. Thus under the perspec-
tive transformation the phase of a harmonic component whose
phase function is given, in surface coordinates, by

becomes after expressing and in terms
of and using (8)

(23)

in the coordinate system of the observed image.
In this section we present a computationally efficient algo-

rithm for estimating the slant and the tilt of the planar surface
directly from the estimated polynomial model of the phase func-
tion . In order to do so we assume that the estimated
polynomial of total degree is in fact, the th order Taylor
series expansion of the phase.

Let us assume for a moment that and are continuous
variables. Since the phase function (23) is infinitely differen-
tiable it can be expanded into a Taylor series about .
Hence

(24)

where is a point on the line that connects with
. The th order differential about is

defined by

(25)
Let denote the numerator of the phase function ex-

pression in (23), and let

(26)

We therefore have that

(27)

where we define

(28)

and

(29)

Lemma 1: The general term of the Taylor series expansion
of is given by

(30)

Proof: Using equation (27) we have that

(31)

Expanding (26) into a Taylor series about , while
keeping terms up to the th order, we obtain

(32)

Since the numerator is a polynomial of total-degree 1, its
Taylor series expansion is given by

(33)
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where we define

(34)

(35)

and

(36)

Let denote the th order Taylor series expansion
of the phase function (23). Since the expansion of into
a Taylor series form about is unique, an expression for

can now be found by multiplying the Taylor series
expansion of the phase numerator, , by ,
and adding to it the constant phase term. (Note that the mul-
tiplication produces an additional term of order which is
omitted.) Using (31) and (33) we conclude that has
the general form

(37)

where

and (38)

The coefficients are a result of collecting all the compo-
nents that include after the multiplication
of and . More specifically, as shown in
(39) at the bottom of the page.

Our goal in this section is to find the slant and the tilt of the ob-
served planar surface using only the estimated expansion coeffi-
cients . Substituting the estimated coefficients ,

, into (39) we obtain a system of equations which is
highly nonlinear in the tilt and slant parameters. Note however
that in order to find the tilt and slant angles it is sufficient to
evaluate and , as and are functions of the unknown
tilt and slant angles, and other known quantities. (Observe that

and are functions of the unknown tilt and slant, as well as
of the unknown frequency parameters . These parameters,
however, are not part of the problem of finding the orientation
of a planar surface.)

The next theorem establishes alinear and recursiverelation
between the coefficients of the Taylor series expansion of the
phase and the unknown quantitiesand . This linear relation
enables us to derive a computationally efficient algorithm for
estimating the tilt and the slant from the expansion coefficients.

Theorem 2: Let be some positive integer, and let ,
be the coefficients of the th order Taylor series

expansion of the phase function, . Then,

and (40)

where when or .
Proof: By induction. We first consider the case where

and . Evaluating the right hand-side of (40) using (39)
we have

(41)
For the case where and , a similar substitution
yields

(42)

For the general case, i.e., and , we have

(43)

where the last equality is due to the identity

(44)

Since in practice the coefficients of the Taylor series expan-
sion are unknown, they have to be replaced by their estimates.
In order to do so we assume that the estimated polynomial of
total degree is in fact, the th order Taylor series expansion
of the phase. Hence, in this case (40) holds only approximately.
Thus, rewriting (40) we have

and (45)

(39)
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where when or . Here,
denotes the approximation error.

Let . Also, let

...
...

...

(46)

We thus obtain the followinglinear system of equations

(47)

where is the approximation error vector. The desired parame-
ters and can now be found by minimizing the sum of the
squared approximation error. The solution to this linear least
squares problem is given by

(48)

where is an optional weighting matrix.
Having estimated there are four possible pairs of slant and

tilt angles that satisfy (28) and (29)

(49)

where and are given by

(50)

and

arccot (51)

However, only asinglesolution out of the four possible ones sat-
isfies the condition . This solution is the required
one.

We have thus established a computationally efficient algo-
rithm for estimating the tilt and the slant angles of the observed
planar surface. Having estimated the 2-D polynomial model of
the observed signal phase using the PD algorithm, the original,
highly nonlinear, slant and tilt estimation problem is reduced to
the linear least-squares problem (48). The computational attrac-
tiveness of the proposed algorithm is due to the fact that estima-
tion of the phase model parameters is accomplished using FFTs.
The estimation of the tilt and slant in the second stage requires
only the solution of a linear system of equations, whose coeffi-
cients are the estimated coefficients of the polynomial phase. In
particular, there is no need for an iterative solution. However, as
we show in Section VII, the algorithm though computationally
efficient, has a relatively high error variance.

VI. I MPROVING THE ACCURACY OF THETAYLOR SERIES

BASED ALGORITHM

The inaccuracy of the estimation algorithm that employs the
Taylor series expansion of the phase function, is due to the im-
plicit assumption that the 2-D polynomial phase estimated using
the PD algorithm is, in fact, the th order Taylor series expan-
sion of the phase. Improved estimation algorithms are required
in cases where the performance of the Taylor series expansion
based algorithm is not acceptable. This algorithm can then serve
to initialize a computationally more complex algorithm.

In the case of continuous index fields, the local spatial fre-
quencies are the partial derivatives of the local phase function.
In [14] the relation between the local spatial frequency in the
image coordinate system, , and the local spatial
frequency in the surface coordinate system, , is
derived. This relation is given by

(52)

where the operator is defined by

(53)

Inverting (52) we have

(54)

where

(55)

Thus, assuming for a momentand to be continuous vari-
ables the estimated local spatial frequencies of the signal are the
partial derivatives of its estimated local phase function of
total-degree , i.e.,

(56)

and

(57)

Having estimated the polynomial phase model coefficients,
, we obtain by substituting the estimated parameters
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into (56) and (57) an estimate of the spatial frequencies of the
selected harmonic component.

By assumption, in the surface coordinate system, the spa-
tial frequencies and of the selected harmonic component
are constants. Thus the improvement algorithm searches for the

and values that result in a minimal variation of . More
specifically, for any hypothesized value of the surface orienta-
tion , we back-project the estimated spatial frequency
of the selected image component onto the hypothesized planar
surface using (54) and compute the variance ofon the entire
planar surface. The values ofand that minimize the variance
provide the estimate of the surface orientation. The cost func-
tion which is to be minimized is given by

(58)

where and are the results of back-projecting
the estimated spatial frequencies and of
(56) and (57), evaluated at some image coordinate , onto
the hypothesized planar surface using (54). Here,denotes the
number of samples of the observed image, used to evaluate the
mean. (Clearly, the mean can be evaluated using the entire image
of the observed surface.)

To reduce the computational load required by such an exhaus-
tive multidimensional grid search we apply the Taylor series
based estimation procedure to obtain an initial approximated es-
timate of the problem parameters. The minimization procedure
is then applied only in a small neighborhood of the estimated
parameters to refine these estimates.

VII. N UMERICAL EXAMPLES

In this section we illustrate the performance of the proposed
parametric methods for estimating the tilt and slant of a textured
planar surface by applying the algorithms to synthetic as well
as to photographed images. Monte-Carlo simulations are per-
formed to analyze the statistical properties of the algorithms.

A. Application of the Algorithms of Synthetic Data

Fig. 2 shows an image of a planar surface slanted into the
page such that and . The observation noise is
a zero mean, additive white Gaussian noise. The surface texture
has six harmonic components and is given by

(59)

where cycles/cm. To generate the
image of the planar surface, the intensity of each pixel in the
image plane was evaluated by projecting the intensity levels of
the surface texture using (8). More specifically, the intensity
of each image pixel is that of the surface coordinate

which is mapped by the perspective projection to . The
focal length of the camera is mm, m, and the
image plane dimensions are , with the origin
being located at the center of the image plane.

Define

SNR (60)

where is the amplitude of the selected harmonic component
(the dominant one in this example) andis the variance of the
observation noise. In this example we demonstrate the operation
of the proposed algorithms on a image taken from the
center of the image in Fig. 2, where SNR dB.

Fig. 3 depicts the discrete Fourier transform (DFT) of the
image taken from the center of the image in Fig. 2.

It is clear that the harmonic structure of the Fourier transform
of the homogeneous surface texture does not exist anymore in
the Fourier transform of the observed nonhomogeneous image.

In the initial step of the proposed algorithms the selected har-
monic component is separated from the other components of the
signal, and transformed into an analytic signal. To isolate the se-
lected component of the signal and to convert it into the complex
form the image is filtered by the filter whose
design procedure is described in Section IV. In the absence of
noise, the root mean squared error between the complex valued
selected component of the signal calculated analytically and the
signal produced by the filtering procedure is 0.15% of the signal
magnitude.

To illustrate the operation of the phase estimation algorithm,
Fig. 4 depicts the observed and estimated phase of the selected
component of the nonhomogeneous signal. Note the continuity
of the estimated phase despite thediscontinuities of the ob-
served phase. The estimated polynomial, , is of total-
degree 3. The left hand-side of Fig. 5 shows a noise free image
of the selected component. The right hand-side image shows
the signal estimated using the PD algorithm, in
the presence of noise. The results indicate that the synthesized
image is indistinguishable from the original. Having estimated
the phase, we can apply the proposed algorithms to estimate the
tilt and the slant of the observed surface.

1) Algorithm 1—Tilt and Slant Estimation Based on a Taylor
Series Expansion:Using this algorithm, the orientation of the
planar surface is estimated directly from the estimated polyno-
mial phase coefficients , obtained by the PD algorithm.
In Table I, we compare the estimated coefficients with the Taylor
series expansion coefficients evaluated using (39). The expan-
sion coefficients are evaluated around the origin of the image
coordinate system since this is the coordinate used by the
PD algorithm, as well.

Comparing the estimated coefficients with the coefficients of
the Taylor series expansion it can be seen that the assumption
that the estimated polynomial approximates a third
order Taylor series expansion of the phase, holds better for coef-
ficients in lower layers of the phase model while larger errors are
found in higher layers. Substituting the estimated coefficients to
(48)–(51) we obtain and .

2) Algorithm 2—Improving the Accuracy of Algorithm 1
Through the Minimization of a Cost Function:This algorithm
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searches for the and pair that minimizes an estimate of the
variance of the local spatial frequency of the surface texture
using (58). To reduce the computational load required by such
an exhaustive multidimensional grid search we use the results
of the first algorithm as an initial estimate. Thus, the search is
performed only in a region of around the estimated
produced by the first algorithm. Fig. 6 depicts the cost function

in the region searched by the algorithm.
The algorithm performs the grid search in few iterations,

where in each iteration the resolution is divided by 4. In
the specific example shown here, the estimated values are

and .

B. Statistical Performance Analysis of the Estimation
Algorithms

In this subsection we illustrate the performance of the pro-
posed parameter estimation algorithms using Monte Carlo sim-
ulations. We compare the variance of the estimation errors of
the suggested algorithms with the CRLB derived in [29]. The
surface texture being considered in this example has three sinu-
soidal components and is given by

(61)

where cycles/cm. The surface orientation
parameters are and . The observation noise
is a zero mean, additive white Gaussian noise. We investigate
the performance of the algorithms as a function of the selected
component signal to noise ratio SNR, and as a function of the
dimensions of the observed image.

The experimental standard deviation results depicted in Fig. 7
are based on 500 independent realizations of the image for each
SNR and data dimensions. Since the CRLB is a lower bound
on the error variance of any unbiased estimator of the problem
parameters, the Monte Carlo results in Fig. 7 are depicted only
for cases where the experimental bias is much smaller than the
standard deviation. For smaller values of SNRand data dimen-
sions, both algorithms become biased. The results indicate that
the refined estimates obtained by applying the iterative mini-
mization procedure are considerably less biased and are of lower
error variance than the initial estimates obtained using the algo-
rithm based on the Taylor series expansion.

From Fig. 7 we conclude that even for low SNRs and mod-
erate dimensions of the observed image ( pixels), the
error variance of Algorithm 2 is about 6–7 dB away from the
CRLB. The Taylor series expansion based algorithm (Algorithm
1), is considerably less accurate and its error variance is around
20 dB away from the CRLB. We therefore recommend to use it
only to initialize Algorithm 2.

C. Experimental Results with Photographed Textured Surfaces

In this subsection we evaluate the performance of the al-
gorithms by applying them to photographed textured surfaces.
The images are those used in [14]. The prior knowledge re-
quired in order to apply the algorithms is the focal length of the
camera and the image coordinate system in common units. The

Fig. 2. Noisy image of a planar surface slanted into the page with� = 60 .
The algorithms are applied only to the pixels in the center square.

Fig. 3. Fourier transform of the image.

algorithms were applied to a segment of each original
image. Fig. 8 shows the images, the estimated orienta-

tion produced by each of the proposed algorithms, the measured
(“true”) orientation and an ellipse that illustrates the estimation
results of Algorithm 2. Note that the measured tiltand slant

are subject to a measurement error of 1–3 .
The experimental results suggest that both algorithms are

useful for estimating the orientation parameters of planar tex-
tured surfaces, for textures containing structural components.
Note however that as the tilt is loosing its physical
meaning. Moreover, analysis of the CRLB on estimating the
tilt and slant angles, [29], indicates that the lower bound on
estimating the tilt angle becomes very high as the slant tends
to zero. We therefore emphasize that estimated tilt values
should be considered meaningless when the corresponding
estimated slant values tend to zero. (Thus, in Fig. 8 such cases
are indicated by .) As previously concluded from the
statistical performance analysis of the algorithms, the accuracy
of the algorithm based on the Taylor series expansion is lower,
but it is computationally much more attractive than the iterative
procedure.
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Fig. 4. Observed and estimated phase functions of the selected component of
the image plane nonhomogeneous texture.

Fig. 5. (Left) Image of a planar surface where the surface texture comprises
only the selected harmonic component. (Right) Synthesized surface image
obtained from the phase estimated using the PD algorithm.

TABLE I
COMPARISONBETWEEN THEPOLYNOMIAL PHASE COEFFICIENTS AND THE

TAYLOR SERIESEXPANSION COEFFICIENTS

D. Orthogonalization of a Perspective Viewed Image

Once the tilt and slant angles of the observed surface have
been estimated it becomes possible to recover the homogeneous
surface texture form the perspective viewed image of that sur-
face, through nonuniform re-sampling of the observed image.
Applying this procedure to the entire image, which the textured
surface is part of, considerably simplifies further processing
such as content-based indexing and retrieval of images. In the
following we summarize the main steps of an algorithm for “or-
thogonalizing” the observed image so that the effect of the per-
spective projection is eliminated, and provide examples demon-
strating the applicability of the proposed procedure to complex
real-world colored images where the textured patch employed
by the algorithm is only a small part of the entire image. The
main steps of the orthogonalization procedure are as follows.

Fig. 6. Cost functionV shown with an inverted sign.

Fig. 7. Performance of the proposed algorithms as a function of SNR
and data dimensions in comparison with the corresponding CRLB. Solid
line denotes the CRLB, dotted line denotes the performance of the Taylor
series expansion based algorithm (Algorithm 1), while dashed line denotes the
performance after the iterative refinement stage (Algorithm 2).

• Estimate the orientation of the planar surface.
• Using the inverse coordinate transformation, (8), find the

coordinates of the image boundaries, expressed in surface
coordinates (at the desired scaling).

• Uniformly sample the surface coordinate system.
• Using (7) evaluate the image coordinate that corre-

sponds to each on the surface sampling grid.
• For each of the RGB planes, the gray level of each sample

in the surface coordinate system is set to the gray level of
the corresponding observed image sample(using inter-
polation since in general the resulting and are not
integers).
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Fig. 8. The images and the corresponding estimated tilt and slant parameters. Here,� and� denote the estimated tilt and slant produced by the Taylor series
expansion based algorithm, while� and� denote the estimated tilt and slant produced after the iterative refinement stage. The measured tilt� and slant� are
given in the first row. Based on the estimated tilt and slant we depict the orientation of the surface normal as seen in the image plane. The ellipse illustrates how a
circle drawn on the planar surface would appear in the image plane, based on the estimated tilt and slant.

Note that for the purpose of orthogonalizing the perspective
projected image, knowledge of the focal length is not required.
Hence,anarbitrary focal lengthcanbeassumed if the focal length
isunknown.This iseasilydeducedusing(8)asthefocal lengthhas
only a uniform scaling effect on the mapping between the image
coordinates and the surface coordinatesthat we would like
to recover. Hence, assuming an arbitrary focal lengthresults in
recovering the same surface, however in a different scale. Be-
cause thedecisionon thedimensionsof theorthogonalized image
isanywayanarbitraryuser’schoice, thisscalinghasnoeffect.On
the other hand, knowledge of the optical center of the image is re-
quired by the orthogonalization procedure.

The results of applying this procedure to three real-world im-
ages taken from the VisTex library are shown in Fig. 9. Note

that since the building image in the middle column of Fig. 9 is
composed of two planar surfaces, the image was manually seg-
mented and the orthogonalization procedure was independently
applied to each one of them in order to obtain the image in the
middle of the bottom row. It is easily seen that the recovered
textures are indeed nearly homogeneous.

Fig. 10, left column, depicts two aerial images taken from an
unknown angle. Both images contain homogeneous textured re-
gions that appear nonhomogeneous due to the perspective pro-
jection. Parts of these regions, marked using white squares, are
employed to estimate the orientation of the surfaces. In the case
of the stadium image the texture is that of cars parked in a
parking lot, while in the case of the pier image the texture is
composed of an array of rectangular structures. Since in these
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Fig. 9. Recovered homogeneous surface textures (bottom row) from the
observed perspective projected images (top row).

images the optical center is unknown, we have arbitrarily as-
sumed it to be in the middle of the image. To realize that the
proposed procedure indeed produce the desired results, note for
example that in the stadium image the cars get smaller at the
top of the real image but are in a uniform size in the orthogonal-
ized image. Also, in the orthogonalized image the stadium upper
contour is symmetric and oval; the white field lines are either
orthogonal or parallel to each other, contrary to their appear-
ance in the perspective projected original. Note however that
since our modeling assumption is that the observed surface is
flat and planar, objects of nonnegligible height relative to their
distance from the camera, cannot be perfectly orthogonalized by
the proposed procedure. For example consider the surface gen-
erated by the spectators seats. This surface is not in the plane
of the parking lot, nor in a parallel plane. Hence, in the orthog-
onalized image the surface of the spectators seats is not sym-
metrical as one would expect from a truly orthogonal image.
The pier images illustrates some additional features of the pro-
posed orthogonalization algorithm. Note in particular that the
rounded structures on the top right of the pier image are seen
in the real image as small oval structures while in the recovered
image they appear as circles. Also, the oval shaped tracks on the
top left part of the image, that can be hardly seen in the perspec-
tive viewed image, are clearly observed in the orthogonalized
image. Moreover, as an illustration of the accuracy of the tilt and
slant estimation procedure as well as that of the orthogonaliza-
tion procedure, observe that the field of rectangular structures
that is used for estimating the orientation of the surface indeed
became a field of rectangular structures, as opposed to its dis-
torted, perspective projected appearance in the observed image.
Finally note that, as expected, in the orthogonalized image the
distance of the pier from the parallel pier where the rectangular
structures are located, is equal at any point along the pier.

VIII. C ONCLUSIONS

We have presented a parametric solution to the problem of
estimating the orientation in space of a planar textured surface,
from a single, noisy, observed image of it. The proposed solution
is based on the observation that the coordinate transformation

from surface to image coordinates, due to the perspective projec-
tion, uniquely transforms each homogeneous sinusoidal compo-
nent of the surface texture into a sinusoid whose frequency is a
function of location in the image coordinate system. Since the
sinusoid phase is a continuous function of the field coordinates
it can be approximated by a 2-D polynomial function of the field
coordinates. Using the 2-D Hilbert transform and the PD algo-
rithm we fit a constant-amplitude, polynomial-phase model to
a sinusoidal component of the observed texture, such that the
concepts of 2-D instantaneous phase, frequency, and amplitude
are well defined. We then establish a linear recursive relation
between the model parameters and the unknown slant and tilt.
A linear least squares solution of the resulting system provides
the slant and tilt estimates. To improve accuracy, an iterative re-
finement procedure is applied in a small neighborhood of these
estimates. The performance of the proposed algorithms was in-
vestigated. It is shown that the combined two-stage algorithm
produces estimates that are close to the CRLB.

APPENDIX

UNIQUENESS OF THERELATION BETWEEN THEPHASE AND THE

SURFACE TILT AND SLANT ANGLES

In (11) it is shown that the phase function of an harmonic
component of the surface texture is transformed by the perspec-
tive projection into

(62)

measured in the image plane.
Let and be two such phase function

with parameters , and , , re-
spectively. To simplify the notations let us rewrite
and in the following form:

(63)

(64)

Theorem 3: Assume , and . Then,
for all if and only if

and .
Proof: Using the notations of (63) and (64) we have to

show that for all if only if
.

It is easy to check that if
then for all

.
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Fig. 10. (Left) Original and (right) orthogonalized aerial images. (Top row) “Stadium.” (Bottom row) “Pier.”

On the other hand, let us assume that
for all . Hence in particular,

. We therefore conclude that . The assump-
tion implies that for all :

(65)

This polynomial is identically zero if and only if its co-
efficients are zero. Hence, we have

.

Expressing the equalities and in terms of
the original problem parameters we have

(66)

(67)

Hence

(68)

Therefore or . Since ,
and are positive. Hence, the signs of both

and must be identical. This rules out the possibility that
. Thus and .
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