
1908 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 5, AUGUST 2000

Estimating the Orientation of Planar Surfaces:
Algorithms and Bounds
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Abstract—This paper presents a computationally and statisti-
cally efficient parametric solution to the problem of estimating the
orientation in space of a planar textured surface from a single,
noisy, observed image of it. The coordinate transformation from
surface to image coordinates, due to the perspective projection,
transforms each homogeneous sinusoidal component of the sur-
face texture into a sinusoid whose frequency is a function of loca-
tion. The functional dependence of the sinusoid phase in location
is uniquely determined by the tilt and slant angles of the surface.
From the physical model of the perspective projection, we derive
the Cramér–Rao lower bound on the error variance of estimating
the tilt and slant of the observed surface in the presence of obser-
vation noise. It is shown in this paper that the phase of each of
the sinusoids can be expressed as a linear function of some vari-
ables that are related to the surface tilt and slant angles. Using the
Phase Differencing Algorithm, we fit a polynomial phase model to
a sinusoidal component of the observed texture. Substituting in the
derived linear relation, the unknown phase with the one estimated
using the Phase Differencing Algorithm, we obtain a closed-form,
analytic, and computationally efficient solution to the problem of
estimating the tilt and slant angles. The algorithm performance is
shown to be close to the Cramér–Rao bound, even for low signal-to-
noise ratios, at computational complexity which is considerably
lower than that of any existing algorithm.

Index Terms—Cramér–Rao bound, inhomogeneous two-dimen-
sional signals, parametric texture modeling, perspective estima-
tion, two-dimensional polynomial phase models.

I. INTRODUCTION

PERSPECTIVE projection has a dominant and fundamental
role in any imaging process, whether by the human visual

system or some type of a camera. Hence, perspective is one of
the prominent clues in image interpretation and understanding.
This makes perspective estimation a key problem in many image
modeling and analysis applications. In this paper, we address a
special case of this general problem: we consider the problem of
estimating the orientation in space of a planar textured surface,
from a single observed image of it.

A solution to this problem is an essential component in many
image processing and multimedia data processing applications.
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For example, the segmentation of two– (2-D) or three–dimen-
sional (3-D) images and video for content-based coding and rep-
resentation is considerably simplified if the effects of the per-
spective projection are eliminated first, thus reducing the inho-
mogeneity of the image. By estimating and then canceling the
effect of the perspective projection on agiven image, we avoid
the difficulty of segmenting and coding an image where each
of its patches is inhomogeneous. Thus the original problem is
replaced by the simpler problem of segmenting and coding an
image where large patches are homogeneous. Furthermore, mul-
tifunctional coding of visual information is a desirable feature
to provide not only an efficient representation of the information
itself, but also to enable additional multimedia functionalities,
such as content-based indexing for retrieval from multimedia
databases. Clearly, to enable such indexing, the effect of the spe-
cific perspective projection in each image has to be nulled in
order to “normalize” all images with respect to some “common
basis.” In particular, in indexing and retrieval systems of multi-
media data that employ the textural information in the imagery
components of the data, e.g., [12], the identification of similar
textured surfaces as being such is impossible unless the effects
of the different perspective projections involved in the process
of creating each of the images are estimated and then removed.
We, therefore, conclude that all the foregoing applications re-
quire an accurate estimate of the perspective transformation to
become available at a moderate computational complexity, so
that perspective estimation could be conveniently integrated into
the higher level applications.

Existing solutions to problems where perspective estimation
is involved attempt to extract the projection parameters based on
the observed variations in the image generated by the perspec-
tive projection. Structure-based approaches attempt to recog-
nize the structure of the surface texture (the “true” texture) from
the observed projected image of that surface. In other words,
in order to estimate the projection parameters, these methods
must first (or jointly as proposed in [5]) obtain the character-
izing properties of the surface texture such as regularity, peri-
odicity, symmetry, collinearity, etc. (see, e.g., [6] and the refer-
ences therein). This task is very difficult in general, and more so
in the presence of noise, since due to the projection distortion
and the noise contribution the observed surface does not exhibit
the expected “regularities,” and texture elements (“texels”) are
difficult to identify [5]. An alternative approach, that does not
require the initial recognition of the structure of the surface tex-
ture is based on statistical assumptions regarding the distribution
of textural properties of the surface texture. Typical assumptions
are isotropy, [1], [2], [8], [13] and homogeneity, [3], [6], [14].
Thus an observed preferred orientation of an isotropic surface
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texture, or an observed inhomogeneity of a homogeneous sur-
face texture, is employed to estimate the surface orientation. We
note that many of the foregoing methods (see, e.g., [6], [11],
[3], [4]) are derived for binary images, or are based on an ini-
tial local analysis of the image, using its edge information. The
algorithm proposed in [14] evaluates the dominant frequency at
each image point using the wavelet transform, and then employs
the spatial dependence of this frequency component to estimate
the surface orientation.

Generally speaking, all these algorithms consider the estima-
tion of the instantaneous frequencyat every image point (or a
related quantity) as a first step in a procedure for estimating the
tilt and slant of the observed surface from the variations of the
instantaneous frequency. This approach is further pursed with
the introduction of novel space–frequency methods, see, e.g.,
[14], [7]. However, given an inhomogeneous signal ,
the question of the unique determination of its instantaneous
phase, frequency, and amplitude is not a straightforward one,
as even in the one-dimensional case, incoherent definitions of
instantaneous phase and amplitude are common. We refer the
interested reader to [19] for a detailed discussion on the one-di-
mensional problem. Following [19], it is clear that starting from
a given signal , it is possible to introduce an infinite
number of pairs such that

(1)

Nevertheless, in order to be able to interpret as the
instantaneous amplitude of the signal and as its
instantaneous phase, the instantaneous phase and amplitude
should be defined in such a way that only asingle, well-defined,
pair will correspond to any given signal

, so that the representation (1) is unique. We shall
further elaborate on this point in Section II.

A maximum-likelihood (ML) estimator for the tilt and slant
parameters is proposed in [9]. In this framework, the homoge-
neous surface texture is modeled by a Gauss–Markov random
field. A probability distribution function for the observed tex-
tured image, assuming alinear projection model (instead of the
nonlinear perspective projection transformation) is derived. The
joint problem of estimating the surface orientation parameters
and the texture model is then solved by a ML estimator.

In this paper, we elaborate on the problem of estimating the
orientation in space of a planar textured surface, such that, in its
own coordinate system the surface texture ishomogeneous. In
particular, we derive universal performance bounds on the accu-
racy of estimating the tilt and slant parameters in the presence
of observation noise, and we propose computationally and sta-
tistically efficient estimators for these parameters in the pres-
ence of noise. To the best of our knowledge, the derivation of
universal performance bounds for this problem and the deriva-
tion of estimation algorithms in the presence of noise have never
been considered. Furthermore, since the model of the homoge-
neous surface texture is based on the 2-D Wold decomposition
of homogeneous random fields, the proposed algorithms pro-
vide a unifying framework for both the structural and statistical
methods. In addition, the extremely difficult task of identifying
the texture elements from the perspective projected noisy image,
as required by the structure-based approaches, is avoided.

The 2-D Wold decomposition implies that the deterministic
component of any homogeneous texture field can be approxi-
mated by a sum of 2-D sinusoids, [20]. Thus an approximate
model of the surface texture deterministic component is given
by

(2)

where denote the surface coordinates. The coordinate
transformation from surface to image coordinates, due to the
perspective projection, transforms each homogeneous sinu-
soidal component to a sinusoid whose frequency is a function
of location. In the case of a planar surface, the functional
dependence of the sinusoid phase in location is uniquely deter-
mined by the tilt and slant angles of the surface [15]. Hence,
the surface tilt and slant angles can be recovered from the phase
of the sinusoidal component measured in the image plane.

Denote the image coordinates by . We use the
slant–tilt system for representing the orientation of the planar
surface (see Fig. 1). The slantis the angle between the surface
normal and the optical axis . The tilt is the angle between
the -axis and the projection of the surface normal onto the
image plane. Substituting into the texture model (2), the inverse
coordinate transformation expression which expresses
in terms of the image coordinates , the tilt, the slant, and
some known parameters of the camera, we obtain a model of
the texture deterministic component, projected onto the image
plane. (See Appendix A for the derivation.) In Appendix A it is
also shown that under the perspective transformation, the phase
of a sinusoidal component whose phase function is given in
surface coordinates by becomes

(3)

in the coordinate system of the observed image, where
is the -coordinate where the surface crosses the

optical axis, and is the focal length.
From the physical model of the perspective projection, we

derive the Cramér–Rao lower bound on the error variance in
estimating the tilt and slant of the observed surface. Two com-
putationally efficient algorithms for estimating the tilt and slant
angles from the estimated phase of a sinusoidal component of
the surface texture are derived.

The perspective projection results in a continuous coordi-
nate transformation from the surface coordinate system to the
image coordinate system. Hence, the phase function of each si-
nusoidal component of the surface texture is transformed by the
perspective projection into a nonlinear, continuous function of
the image coordinates. Since continuous functions can be ap-
proximated by polynomials, a natural choice for modeling the
continuous phase function of each sinusoidal component is by
a polynomial function of the image coordinates. In [15] we de-
rive an algorithm for estimating the slant and the tilt of the planar
surface directly from the estimated parameters of a polynomial
model of the phase. The estimated polynomial phase model is
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Fig. 1. The perspective projection.

obtained using the Phase Differencing (PD) algorithm, [16],
[17]. In order to obtain the estimates of the tilt and slant an-
gles, it is assumed that the estimated polynomial phase coeffi-
cients are, in fact, the coefficients of a Taylor series expansion of
the phase. However, the algorithm, though computationally ef-
ficient, has a relatively high bias and error variance. To improve
accuracy, an iterative refinement procedure is applied in a small
neighborhood of the previously obtained tilt and slant estimates.
The combined two-stage algorithm produces estimates of lower
bias and standard deviation, at the cost of higher computational
complexity. The algorithms proposed in this paper employ the
PD algorithm to estimate thephaseof a sinusoidal component
of the observed surface texture. It is shown that the phase of each
of the sinusoids can be expressed as alinear function of some
variables that are related, in a rather simple form, to the surface
tilt and slant angles. Hence, the tilt and slant can be estimated
by solving a linear least squares problem. The performance of
the two algorithms proposed in this paper is shown to be close
to the Cramér–Rao bound, at a computational complexity which
is considerably lower than that of any existing algorithm.

The paper is organized as follows. In Section II, the 2-D poly-
nomial phase model is introduced and the considerations in-
volved in applying the PD algorithm for estimating the model
are described. In Section III, it is shown that the phase of each
of the sinusoids observed in the image plane can be expressed
as a linear function of some variables that are related in a rather
simple form to the surface tilt and slant angles. This functional
dependence is the basis of two algorithms presented in Section
III for estimating the surface tilt and slant. In Section IV, we
derive the Cramér–Rao lower bound (CRB) on the error vari-
ance in estimating the tilt and slant of the observed surface.
The bound is derived directly from the physical model of the
perspective projection. The performance of the proposed algo-
rithms is illustrated using synthetic and photographed images
in Section V. In particular, we investigate the performance of
the algorithms in the presence of noise and analyze their perfor-
mance through Monte Carlo simulations and by comparing the
Monte Carlo results with the CRB.

II. THE PARAMETRIC PHASE MODEL AND ITS ESTIMATION

In Section I it is shown that the phase function of any sinu-
soidal component of the homogeneous surface texture is trans-
formed by the perspective projection into a nonlinear function
of the image coordinates. For a given focal length, the transfor-
mation is a unique function of the surface tilt and slant angles
[15]. Hence, in principle, the surface tilt and slant can be re-
covered from the phase of the projected sinusoidal component.
However, due to its periodicity the phase wraps around, and
only its principle value is observable. Therefore, any use of the
phase information is limited by the need to unwrap the phase of
the observed signal first.

In this paper, we propose to use a parametric model as an
alternative to the need to employ phase unwrapping methods.
Since continuous functions can be approximated by polyno-
mials, a natural choice for modeling anycontinuous2-D phase
function is by a 2-D polynomial of the coordinates. Since the
assumption of phase smoothness is implicit to this model,
no explicit phase unwrapping is required in estimating the
observed phase. In this section we briefly study the model of a
single-component constant-amplitude exponential of a polyno-
mial function of the field coordinates. The model, described in
this section, as well as the properties of the parametric phase
estimation algorithm are studied in detail in [16] and [17]. The
proposed phase estimation algorithm is suboptimal (relative to
the maximum-likelihood (ML) estimator) but computationally
efficient (since no multidimensional search in the parameter
space is required). The algorithm is based on the properties of
a 2-D phase difference operator.

Let us first define the type of signal for which this operator
was designed. Let be a discrete 2-D constant ampli-
tude polynomial phase signal, i.e.,

(4)
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where

(5)

We call 2-D polynomial oftotal degree .
The amplitude is a real-valued positive constant. To simplify
the presentation, we assume there is no observation noise and

. Hence
Next we define the basic phase differencing operators.

Definition 1: Let and be some positive constants. De-
fine

PD

(6)

and, in general,

PD PD

PD (7)

where the resulting 2-D signal PD exists for
. The phase

differencing operator along the -axis, PD is
defined in a similar way.

Assume we have sequentially appliedtimes the phase dif-
ference operator PD , and times the phase difference
operator PD , to some complex-valued 2-D signal .
We will denote the resulting signal by PD

Theorem 1: Let be given by (4) and (5). Then, the
signal PD is a 2-D exponential given by

PD

(8)

where

(9)

(10)

and is not a function of nor .

Theorem 1 implies that applying in some arbitrary sequence
times the operator PD and times the operator PD

to the observed signal (4), the resulting signal is the 2-D expo-
nential

PD

where and are given by (9) and (10), respectively.
Hence, estimating using any standard frequency esti-
mation technique, results in estimates of and

. In this paper, we estimate the frequency of
the exponential using a search for the maximum of the absolute
value of the signal’s 2-D discrete Fourier transform (2-D DFT).
Repeating the procedure which was described above assuming

some arbitrary , for all such that , we obtain
estimates of all the parameters of the highest order layer, ,
of the phase model. Multiplying by

results in a new polynomial phase signal whose total degree is
. By applying to the resulting signal, a procedure similar to the

one used to estimate the parameters for ,
we obtain an estimate of the parameters in the “layer.”

In general, let denote the 2-D signal, where
denotes thecurrent total degree of its phase polynomial.

By repeating for all the two basic steps of esti-
mating the parameters of “layer” through finding
the maxima of

DFT PD PD

for all , followed by multiplying the already reduced
order 2-D polynomial phase signal by

in the next step, we obtain estimates for all the phase param-
eters except . The resulting signal after this processing,

, is a constant phase 2-D signal. Taking now the av-
erage of the imaginary part of the logarithm of this signal, we
obtain an estimate for . We have thus completed the es-
timation of all the coefficients of the 2-D phase polynomial of
total degree . In the following, we refer to the algorithm
as thePhase Differencing Algorithm(PD Algorithm).

So far we have described the parameter estimation algorithm
for the case in which no observation noise exists. However, in
many practical situations the signal is observed in the pres-
ence of additive noise. Thus a straightforward but computa-
tionally prohibitive alternative to the PD Algorithm is to de-
velop a maximum-likelihood estimator (MLE) for the polyno-
mial phase parameters. It turns out [16], that although the PD
Algorithm is suboptimal (relative to the ML algorithm), its per-
formance in the presence of additive white noise, is close to the
Cramér–Rao lower bound on the error variance in estimating
the parameters of the polynomial phase model, for moderate to
high signal-to-noise ratios. Optimal selection rules of the PD al-
gorithm parameters and are derived in [22]. These rules
are employed in this paper to achieve optimal performance of
the phase estimation.

However, the PD Algorithm is designed to work with com-
plex-valued constant-amplitude polynomial phase monocompo-
nent signals. In our application, the 2-D signal is real, and in
general it has more than a single component. In [15] we derive
an algorithm that isolates a single component from the observed
signal and converts it into a complex form through the Hilbert
transform, (see, e.g., [18] and the references therein). This pro-
cedure produces a 2-D analytic signal of the form

such that the instantaneous amplitude and phase of the real-
valued component in (1) are unambiguously defined.
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The component selection procedure is based on the results
of Section IV on the Cramér–Rao lower bound on the error
variance in estimating the tilt and slant of the observed surface.
More specifically, it is shown in Section IV that the bounds
are nearly linear functions of , where SNR denotes the
signal-to-noise ratio of the sinusoidal component to which the
estimation procedure is applied. It is further shown that the
bounds on both the tilt and slant parameters are high when the
frequencies of the observed inhomogeneous components are
low. The bounds rapidly decrease as the spatial frequencies
become higher. Hence, the selection rule selects the highest
energy component among the components for which at least
four periods are observed in the image. In other words, it may
very well be that a higher frequency component will be chosen
even if its amplitude is lower than that of a lower frequency
component. The selection result is verified using the CRB: if
there is more than a single candidate component, the estimation
algorithm described in the next sections is applied to each
of these components. The estimates obtained based on the
alternative choices are substituted into the CRB equations and
the estimate that provides the lowest CRB is chosen.

III. L INEAR LEAST SQUARES ESTIMATION OF THE

TILT AND SLANT ANGLES

A. Tilt and Slant Estimation Using the Estimated Phase

As was indicated earlier, the perspective transformation in-
volved in the imaging process causes a texture which is homo-
geneous on the planar surface to appear inhomogeneous in the
image plane. Let us consider a single sinusoidal component of
the observed surface texture, and assume that the functional de-
pendence of its phase in the image coordinates is available to
us. In this section we show that the phase at each image coor-
dinate can be expressed as alinear function of some variables
that are related in a rather simple form to the required unknown
tilt and slant angles. This linear relation enables us to derive a
closed-form, analytic, and computationally efficientsolution to
the problem of estimating the tilt and slant angles. Previously
derived algorithms, e.g., [5], [9], [14], [15], require a computa-
tionally intensive iterative search for the minimum of an objec-
tive function.

Define

(11)

(12)

(13)

(14)

and

(15)

(16)

Using these notations (3) can be written in thelinear form

(17)

In (17) the terms and area priori known, while
is assumed known for all in the observed image. All
other terms of the linear equation (17), i.e., , are
unknown variables. These variables, except, are functions of
the spatial frequency of the selected sinusoidal com-
ponent measured in the surface coordinate system, the distance

, and the tilt and slant angles. On a planar surface, the tilt and
slant angles are constant. Since the observed surface texture is
homogeneous, the variables are independent of .
Hence, we conclude that the all the unknown variables in (17)
are independent of .

Note that (17) holds for every in the image of the
observed surface. However, in practice the phase function

is unknown, and hence in solving (17) for the tilt and
slant angles must be substituted with its estimate.
In this paper we employ the PD Algorithm to estimate the
phase as a function of the image coordinates. Since the phase
estimation procedure is subject to errors due to observation
noise and model mismatch, (17) holds only approximately.
Thus let denote the modeling error of (17). Rewriting
(17) for every in the image of the observed surface we
obtain the following matrix form:

(18)

where (see (19)–(21) at the top of the following page), and the
unknown parameter vector is

(22)

The least squares solution of (18) is given by

(23)

Having estimated , the tilt and slant angles can be computed
using the estimated values ofand . Let

(24)

(25)

However, four possible solutions forand satisfy (24), (25).
These are given by

(26)

Yet, only one of the four possible solutions satisfies the con-
straint that . This is the desired solution for the
tilt and slant angles.

In Appendix B it is further shown that very often the solu-
tion for the tilt angle does not requirea priori knowledge of the
origin of the image coordinate system nor of the focal length.

In the foregoing discussion it was assumed that the phase
function can be estimated from the observed data.
Next, we propose two possible algorithms for obtaining the
phase estimate. The first method is a direct one. Having
estimated the 2-D polynomial model of the observed signal
phase using the PD Algorithm, and evaluating the estimated
phase by substituting the estimated coefficients into (5), these
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(19)

(20)

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

(21)

estimated values are substituted into (19), (21) instead of the
unknown phase values. Next, (23)–(26) are solved using these
estimated phase values. The second method is an extension of
this method. It is described next.

B. Tilt and Slant Estimation Using the Unwrapped Phase

Since the observed phase of any complex-valued signal is
always in the interval , a meaningful interpretation of
the phase information is possible only if successful unwrap-
ping of the phase function can be performed to remove the in-
herent ambiguities of the observed phase. In [21] we present
a model-based, 2-D phase unwrapping algorithm for complex-
valued 2-D signals with continuous phase functions. The basic
building block of this phase unwrapping algorithm is the PD
Algorithm, [16], [17]. Since 2-D continuous functions can be
approximated by 2-D polynomials, the first step of the phase
unwrapping algorithm is to fit a 2-D polynomial model to the
observed phase. The estimated phase is then used as a reference
information that directs the actual phase unwrapping process:
the phase of each sample of the observed field is unwrapped
by increasing (decreasing) it by the multiple of which is the
nearest to the difference between the principle value of the phase
and the estimated phase value at this coordinate.

More specifically, let denote
the phase function of the noiseless signal, the principle value
of the observed phase, and the unwrapped phase obtained by
the proposed procedure, respectively. Also let denote
the estimated phase obtained using the PD Algorithm. In the
absence of noise we have that

(27)

where is some integer. However, in practice, is
unknown to us, and we only have , which is estimated
from the observed noisy measurements. Hence, replacing

by we obtain the basic unwrapping formula
for the observed signal phase

ROUND

(28)

Next, the unwrapped phase values are substituted into (19), (21)
instead of the unknown phase, and (23)–(26) are solved.

IV. THE CRB ON THE ERRORVARIANCE IN ESTIMATING THE

TILT AND SLANT ANGLES

In this section we derive the Cramér–Rao bound (CRB) on
the error variance in estimating the tilt and slant angles when
the planar surface is observed in white additive Gaussian noise.
The CRB provides a well-known lower bound on the achievable
variance of any unbiased estimator of these parameters.

Assuming the energy of the texture purely indeterministic
component is much smaller than that of the observation noise,
we have that an approximate model of the homogeneous surface
texture is given by (2). Hence, the observed field model is given
by

(29)

where denotes the zero-mean white Gaussian observa-
tion noise, whose variance is. The dimensions of the observed
field are . Rewriting (3) we have

(30)

where .
Define

(31)

The vectors and are similarly defined.
Let also where is an -dimensional
column vector such that each of its entries is the cosine of
corresponding entry of . Let and
let . Using these definitions, we can
rewrite the observations equation (29) in the following matrix
representation: . Note that is a linear function of
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the amplitude parameter vector, while the tilt and slant pa-
rameters enter nonlinearly through. Let

(32)

and let

(33)

denote the vector of the unknown problem parameters. Also, let
. Since the observation noise is assumed to be a real-

valued Gaussian white noise field with zero mean and variance
, the probability density function of the observations is given

by

(34)

To derive the CRB we use the well-known formula which states
that the elements of the Fisher Information Matrix (FIM) are
given by

(35)

where denotes the log-likelihood function. The CRB is simply
the inverse of the FIM [23]. Thus to evaluate the FIM we need
to compute the derivatives of the log-likelihood function with
respect to the various parameters of interest, and take their ex-
pected value. Thus

(36)

Rewriting (36) using matrix notations we conclude that the FIM
has the form

(37)

where

(38)

Note that care should be taken in evaluating the performance
of an algorithm for estimating angular parameters and in com-
paring it with the CRB. More specifically, in evaluating the dis-
tance between an angular parameter and its estimate, the dis-
tance should be evaluated as the minimal Euclidean distance be-
tween the parameter, sayand where is the estimated
value of the parameter, is the period length, andcan assume
any integer value. This is due to the fact that angular parame-
ters are defined on an interval. Hence, if a parameter assumes
a value close to the interval boundary, even a small estimation
error could be interpreted as a large deviation (whose magnitude
is close to the period length) because of the periodic folding
of the parameter space.

The results of numerically evaluating the CRB on estimating
the tilt and slant angles as a function of the focal length for
some specific examples of surface textures indicate that as the
absolute value of the focal length is getting smaller, so does the

CRB on the error variance in estimating the slant and the tilt.
This conclusion is intuitively explained by the fact that as the
absolute value of the focal length is smaller, we see “more” of
the planar surface in the same image. In the limiting case, where

, the perspective projection becomes an orthogonal
projection. In that case, it is impossible to estimate the surface
orientation from a single observation of its texture.

A similar numerical analysis of the dependence of the CRB
on the orientation of the planar surface, expressed throughand

, indicates that the bounds on estimating the tilt and slant have
relatively low values (less than 1standard deviation for an SNR
of 10 dB). The only exception is the bound on the error variance
in estimating the tilt, which becomes very high as the slant tends
to zero. Indeed, as the tilt is loosing its physical meaning.
Furthermore, the results indicate that the bounds on both the
slant and the tilt are strongly influenced by the value of the slant
angle but are nearly constant functions of the tilt. Evaluation of
the relation between the CRB and the distance of the planar sur-
face from the pinhole indicates that as the camera is getting
further away from the surface, the CRB becomes smaller. This
is due to the fact that as the camera is further away from the
surface, there are more periods of the surface texture sinusoidal
components in the same size of an image.

Note from (30) that the distance of the planar surface
always appears in the phase equation as a multiplication factor
of the surface texture spatial frequencies . Thus the
functional dependence of the CRB on the texture’s frequen-
cies is similar to its dependence on . We therefore
conclude that employing harmonic components with higher
frequencies in an estimation procedure of the slant and tilt
should result in better estimates than when low-frequency
components with the same amplitude are used. More specifi-
cally, our experimental results show that even for medium to
high SNRs, if we observe less than four cycles of the texture
sinusoidal component, the values of the CRB are very high
and the estimation of the tilt and slant is difficult. On the other
hand, when the number of observed periods is higher than four,
the CRB is considerably lower. Hence, the component to which
the phase estimation is applied should be selected as the one
with the highest energy among those components for which the
number of observed periods is no less than four or five. (Clearly,
the selection maybe a matter of a tradeoff between the number
of cycles and the amplitudes of the competing components.)

V. NUMERICAL EXAMPLES

In this section we present some results of applying the pro-
posed parametric model and algorithms to synthetic as well as
to real images. We also perform some Monte Carlo simulations
to analyze the statistical properties of the different algorithms.

A. Statistical Performance Analysis of the Estimation
Algorithms

In this subsection we illustrate the performance of the pro-
posed parameter estimation algorithms using Monte Carlo sim-
ulations. We compare the estimation error variances of the sug-
gested algorithms with the CRB derived in Section IV. The sur-
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Fig. 2. Performance of the proposed algorithms as a function of SNRand data dimensions, in comparison with the corresponding CRB. Dashed-doted line
denotes the CRB,� denotes the performance curve of the algorithm that employs the Taylor series expansion [15],� denotes the performance curve of the search
algorithm initialized by the algorithm based on the Taylor expansion [15], solid line denotes the performance curve of the linear least squares estimator that employs
the estimated phase,� denotes the performance curve of the linear least squares estimator that employs the unwrapped phase.

face texture being considered in these experiments is composed
of three sinusoids, given by

(39)

where cycles/cm. To generate the image of
the planar surface, the intensity of each pixel in the image plane
was evaluated by projecting the intensity levels of the surface
texture using (45). More specifically, the intensity of each image
pixel is that of the surface coordinate which is mapped
by the perspective projection to . The surface orientation
parameters are 30 and 90 . The focal length of the
camera is 60 mm, 6 m, and the image plane dimen-
sions are 30 mm 30 mm, with the origin being located at the
center of the image plane. The observation noise is a zero-mean
additive white Gaussian noise. Define SNR where

is the amplitude of the selected sinusoidal component (the
dominant one in this example) and is the variance of the
observation noise. We investigate the performance of the algo-
rithms as a function of the selected component signal to noise
ratio SNR , and the dimensions of the observed square image.

The experimental standard deviation results depicted in Fig. 2
are based on 500 independent realizations of the image for each
SNR and data dimensions. For comparison, we have included

in this figure the results obtained by the two estimation algo-
rithms derived in [15]. Recall that the CRB is a lower bound on
the error variance of any unbiased estimator of the problem pa-
rameters. Hence, the Monte Carlo results in Fig. 2 are depicted
only for SNR values (data dimensions) above the threshold SNR
(data dimensions). In other words, for each of the algorithms, the
leftmost point of its performance curve is the threshold point.
Lower SNRs (data dimensions) result in biased estimates. The
results indicate that while the computational complexity of the
two algorithms derived in this paper is equivalent to the com-
plexity of the algorithm that estimates the tilt and slant using
the Taylor series approach, their bias and standard deviation are
considerably lower than the bias and standard deviation of the
algorithm that employs the Taylor series expansion. Moreover,
the performance of these two algorithms is slightly better than
that of the computationally demanding iterative search algo-
rithm. We note that the computational complexity of the search
algorithm in [15] is still much lower than that of the exhaustive
search suggested in [14] due to its initialization by the Taylor
series based estimation algorithm.

The Monte Carlo simulations summarized in Fig. 2 demon-
strate that the proposed algorithms are essentially unbiased
and their error variance very close to the CRB even for low
SNR values, and relatively small dimensions of the observed
image (such as 24 24 pixels). Note that the algorithm that
employs the unwrapped phase produces slant and tilt estimates
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Fig. 3. The images and the corresponding estimated tilt and slant parameters using the four algorithms. Here,(� ; � ) � (� ; � ) denote the estimated tilt and
slant produced by the four algorithms. The measured tilt,� , and slant,� , are given in the first row. Based on the estimated� and� we depict the orientation
of the surface normal as seen in the image plane. The ellipse illustrates how a circle drawn on the planar surface would appear in the image plane whose tilt and
slant are� and� , respectively.

with smaller bias and error variance than any other algorithm.
We therefore conclude that the proposed algorithms produce
nearly optimal estimates at computational complexity which is
considerably lower than that of any existing algorithm.

B. Experimental Results with Real-World Textured Surfaces

In this subsection, we evaluate the performance of the algo-
rithms by applying them to photographed textured surfaces. The
images are those used in [14]. The focal length of the camera and
the image coordinate system in common units, are known. The
algorithms were applied to a segment of each original

image. Fig. 3 shows the images, the estimated ori-

entation produced by each of the proposed algorithms, and the
measured (“true”) orientation. Based on the tilt and slant esti-
mated using the algorithm that employs the unwrapped phase,
we depict the orientation of the surface normal as seen in the
image plane. The ellipse illustrates how a circle drawn on the
planar surface would appear in the image plane. For comparison,
we have also included in this figure the results obtained by the
two estimation algorithms derived in [15]. Thus we use in this
example the following notations: are the estimated slant
and tilt produced by the algorithm that employs the Taylor series
expansion, [15]; are the estimated slant and tilt produced
after an iterative minimization stage is applied to improve the re-
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Fig. 4. Observed noisy images at SNR values of 5 dB and�5 dB.

TABLE I
THE RESULTS OF ESTIMATING THE ORIENTATION OF PLANAR SURFACES FROMREAL NOISY IMAGES USING THE

ALGORITHM THAT EMPLOYES THEUNWRAPPEDPHASE IMAGES ARE NUMBERED IN CORRESPONDENCE WITHFIG. 4

sults of the Taylor series expansion based algorithm, [15];
are the estimated slant and tilt produced by the least squares so-
lution based on the estimated phase, Section III-A; while
provide the estimation results produced by the least squares so-
lution based on the unwrapped phase, Section III-B. Note that
the measured tilt and slant are subject to a measurement
error of 1 –3 .

C. Experimental Results with Real-World Textured Surfaces in
the Presence of Noise

In this example, we illustrate the performance of the pro-
posed algorithm in the presence of noise for real-world tex-
tured surfaces observed at various SNRs. Since the models of
these real-world images are unknown, the SNR here is evalu-
ated as the ratio between the experimental variance of the noise-
less image (shown in Fig. 3) and the noise variance. The perfor-
mance of the algorithm that employs the unwrapped phase (Al-
gorithm 4) is evaluated using Monte Carlo simulations for SNR
values of 10, 5 , 0, and 5 dB. For illustration purposes, Fig. 4
shows a single realization of each test image at SNR values of
5 dB and 5 dB. Note that the algorithm is applied to a
segment of the image shown in Fig. 4. The results of
the Monte Carlo simulations, summarized in Table I, indicate
that the proposed algorithm is effective even at relatively low
SNR’s.

D. Recovery of the Homogeneous Surface Texture from the
Perspective Image

Once the tilt and slant angles of the observed surface have
been estimated, it becomes possible to recover the homoge-

neous surface texture from the perspective viewed image of that
surface through nonuniform resampling of the observed image.
As explained in Section I, applying this procedure to the entire
image, of which the textured surface is a part, considerably sim-
plifies further processing such as coding, and content-based in-
dexing and retrieval of images. In the following, we summarize
the main steps of the algorithm for “normalizing” the observed
image so that the effect of the perspective projection is elimi-
nated: using the inverse coordinate transformation (45) the co-
ordinates of the image boundaries, expressed in surface coordi-
nates are found. The surface coordinate system is then uniformly
sampled, and the image coordinatethat corresponds to each

on the surface sampling grid is evaluated using (44). Finally,
the gray level of each sample in the surface coordinate system is
set to the gray level of the corresponding observed image sample

(using interpolation since in general the resultingand
are not integers). The results of applying this procedure to three
real-world images are shown in Fig. 5. It is easily seen that the
recovered textures are indeed nearly homogeneous.

VI. CONCLUSIONS

We have presented a parametric solution to the problem of
estimating the orientation in space of a planar textured surface,
from a single, noisy, observed image of it. Based on the non-
linear physical model of the perspective projection, we derive
the Cramér–Rao lower bound on the error variance of estimating
the tilt and slant of the observed surface. The algorithms derived
in this paper are based on the observation that the coordinate
transformation from surface to image coordinates, due to
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Fig. 5. Recovered homogeneous surface texture from the observed perspective
projected image.

the perspective projection, uniquely transforms each homoge-
neous sinusoidal component of the surface texture into a sinu-
soid whose frequency is a function of location in the image coor-
dinate system. It is shown that the phase of each of the sinusoids
can be expressed as a linear function of some variables that are
related to the surface tilt and slant angles. The two-dimensional
Hilbert transform is employed to guarantee that the instanta-
neous phase of each observed inhomogeneous sinusoidal com-
ponent is uniquely defined. Using the Phase Differencing Algo-
rithm, the unwrapped phase function of a sinusoidal component
of the observed texture is evaluated. Substituting in the derived
linear relation the unknown phase with its unwrapped estimate,
and solving the resulting system by a linear least squares solu-
tion, the tilt and slant are estimated. The proposed algorithm is
shown to produce unbiased estimates with error variance which
is close to the CRB for a wide range of SNRs, at computational
complexity which is considerably lower than that of any ex-
isting algorithm. To the best of our knowledge, the derivation
of universal performance bounds for this problem, and the esti-
mation of the parameters of the perspective projection model in
the presence of noise, have never been considered in the litera-
ture. Finally, once the tilt and slant angles of the observed sur-
face have been estimated it becomes possible to recover the ho-
mogeneous surface texture form the perspective viewed image
of that surface, through nonuniform resampling of the observed
image. Applying this procedure to the entire image, of which the
textured surface is a part, eliminates its inhomogeneities due to
the perspective projection, thus considerably simplifying further
processing such as coding, segmentation, and content-based in-
dexing and retrieval of images.

APPENDIX A
THE PERSPECTIVETRANSFORMATION

This appendix defines the viewing geometry we use. In the
following, we adopt the notations used by Super and Bovik in
[14] and assume a pinhole perspective projection model since it
provides a good approximation to a lens-type imaging system.

Assign a world coordinate system to
the imaging system such that its origin is at the focal point and
the -axis is the optical axis (see Fig. 1). The image plane is

located at where is the focal length. Define the
image plane coordinate system such that
and .

We use the slant–tilt system for representing the orientation
of the plane. The slant is the angle between the surface normal
and the optical axis . The tilt is the angle between the

-axis and the projection of the surface normal onto the image
plane. To describe a texture on the surface, we must define a
coordinate system on the surface. This coor-
dinate system is formed by

1) setting the -axis to be the surface normal;
2) setting the -axis to be the back-projection onto the sur-

face of the image tilt vector ;
3) setting the -axis so as to form right-handed orthogonal

coordinate system; and
4) setting the origin at the intersection of the surface with

-axis.

Thus the coordinate transformation from the surface coordinate
system to the world coordinate system is given by

(40)

where is the -coordinate of the surface where it crosses the
optical axis.

The coordinate transformation of a point in the world coordi-
nate system to image coordinates due to the perspective projec-
tion is given by

(41)

Since for any surface point we have by definition that ,
let us define to be the coordinate vector of a sur-
face point. Therefore, the surface to world coordinate transfor-
mation of a pointon the surface is given using (40) by

(42)

For any point of the surface we have that itscoordinate is
given by

(43)

Substituting (42) and (43) into (41) we obtain the surface-to-
image coordinate transformation of a pointon the surface to a
point on the image plane due to the perspective projection:

(44)

The matrix

is a rotation matrix, and the matrix
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provides the projection of to for a zero tilt. The term
is a varying scaling factor due to the different dis-

tance of each surface point from the pinhole.
The inverse of (44) is given by

(45)

where substitution of (45) into (43) yields

(46)

Substituting the inverse coordinate transformation expression
(45) into the model (2), we obtain the model of the texture sinu-
soidal components, projected onto the image plane, i.e.,

(47)

where the phase of a sinusoidal component whose phase func-
tion is given in surface coordinates by

, becomes

(48)

in the coordinate system of the observed image, and we define
.

Since the origin of the observed surface is projected onto the
origin of the image, we conclude that for each sinusoidal com-
ponent of the surface texture, its projection on the image has the
same initial phase as on the surface. This is because the ini-
tial value of each cosine function, i.e., its value at , remains
unchanged under a projection that keeps the origin.

APPENDIX B
A PROPERTY OF THEPERSPECTIVEPROJECTION

In this appendix we elaborate on a special property of the
perspective projection, that may be very useful in some special
estimation problems.

Theorem 2: Assume that the signs of and the focal length
are known. Then, tilt estimation is independent of the magnitude
of the focal length and is invariant to translations of the image
coordinate system.

Proof: Using (11)–(14) we can rewrite (3) in the form

(49)

Since in any given problem setting and are fixed, the nu-
merator of (49) is a linear function of the coordinates. Therefore,
the nonlinearity of due to the perspective projection
(and hence the inhomogeneity of the signal) is expressed only
by the denominator of (49). In other words, by estimatingand

we can uniquely find the slant and the tilt from (13) and (14),
as suggested in Section III. The solution for the tilt is given by

(50)

Using the constraint that the slant is between zero and, only
one solution for tilt is possible. (The one for which substitution
of into (25) yields slant angle between zero and ).

Assume now that the magnitude of the focal length is un-
known. This results in a scaling problem where the true coor-
dinates and are replaced by and , with
being unknown. Similarly, if the pinhole location is unknown,
we end up with an unknown location of the origin of the image
coordinate system, and hence with an unknown shift of the co-
ordinates and by and , respectively, where
is the coordinate of the assumed origin in the image coordinate
system. (The origin of the image coordinate system is defined
as the point where the optical axis crosses the image plane). The
joint effect in the case where both the focal length and the origin
of the image coordinate system are unknown is expressed by
substituting and by and . We thus have
the relation

(51)

(52)

The effect of the unknown parameters on the denominator of
the phase function (49) can be evaluated by substituting (51) and
(52) into (49). Following this substitution the denominator gets
the form

(53)

The shift and the scale constants modify the numerator of (49)
as well. However, it remains a linear function of the coordinates
and hence it has no influence on the nonlinear characteristics of
the phase in which we are interested.

We note that (53) can be written in the form

(54)

where

(55)

and

(56)

(57)

Estimating and the tilt can be evaluated up to aambiguity
by

(58)

We therefore conclude that knowledge of the signs ofand
is sufficient to enable us to unambiguously estimateby using
the constraint that the slant is between zero and.

We finally show that if , then Indeed, since
is a point on the image plane, there exists a surface co-
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ordinate which is projected by the perspective projec-
tion onto , i.e., from (44) we have

(59)

Using (43), (13), (14), (55), and (59) we find that

(60)

where from (43), is the value of the coordinate of the
planar surface point . Since the surface is in front of the
camera, must be negative as, otherwise, will not be
projected onto the image plane. Hence, from the assumption that

, we have that .

We finally note that in a standard camera . Also, in
nearly every case the intersection of the optical axis and the pho-
tographed surface occurs in front of the lens, and hence .
We therefore conclude that often, the tilt of the planar surface
can be estimated from the phase measured on the image plane,
even when the focal length and the origin of the image coordi-
nate system are unknown.
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