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Estimating the Orientation of Planar Surfaces:
Algorithms and Bounds

Haim Permuter and Joseph M. Franc8snior Member, IEEE

Abstract—This paper presents a computationally and statisti- For example, the segmentation of two— (2-D) or three—dimen-
cally efficient parametric solution to the problem of estimating the  sjonal (3-D) images and video for content-based coding and rep-
orientation in space of a planar textured surface from a single, yegentation is considerably simplified if the effects of the per-

noisy, observed image of it. The coordinate transformation from ti iecti liminated first. th ducina the inh
surface to image coordinates, due to the perspective projection, Spective projection are eliminated nrst, thus reducing the inho-

transforms each homogeneous sinusoidal component of the sur-mogeneity of the image. By estimating and then canceling the
face texture into a sinusoid whose frequency is a function of loca- effect of the perspective projection orgaven imagewe avoid

tion. The functional dependence of the sinusoid phase in location the difficulty of segmenting and coding an image where each
is uniquely determined by the tilt and slant angles of the surface. of its patches is inhomogeneous. Thus the original problem is
From the physical model of the perspective projection, we derive . . .

the Cramér—Rao lower bound on the error variance of estimating _replaced by the simpler problem of segmenting and coding an
the tilt and slant of the observed surface in the presence of obser- image where large patches are homogeneous. Furthermore, mul-
vation noise. It is shown in this paper that the phase of each of tifunctional coding of visual information is a desirable feature
the sinusoids can be expressed as a linear function of some vari-tg provide not only an efficient representation of the information
ables that are related to the surface tilt and slant angles. Using the itself, but also to enable additional multimedia functionalities,

Phase Differencing Algorithm, we fit a polynomial phase model to h tent-based indexing f tri | f timedi
a sinusoidal component of the observed texture. Substituting in the such as content-based inaexing tor retrieval irom mufimedia

derived linear relation, the unknown phase with the one estimated databases. Clearly, to enable such indexing, the effect of the spe-
using the Phase Differencing Algorithm, we obtain a closed-form, cific perspective projection in each image has to be nulled in
analytic, and computationally efficient solution to the problem of grder to “normalize” all images with respect to some “common
estimating the tilt and slant angles. The algorithm performance is - y5gis » |n particular, in indexing and retrieval systems of multi-
shown to be close to the Cramér—Rao bound, even for low signal-to- dia data that lov the textural inf tion in the i
noise ratios, at computational complexity which is considerably media data that employ the textural information in the imagery
lower than that of any existing algorithm. components of the data, e.qg., [12], the identification of similar
. . . textured surfaces as being such is impossible unless the effects
Index Terms—Cramér—Rao bound, inhomogeneous two-dimen- f the diff t ti ecti involved in th
sional signals, parametric texture modeling, perspective estima- ofthe ' eren perSpeq Ive projec 'On§ involved in the process
tion, two-dimensional polynomial phase models. of creating each of the images are estimated and then removed.
We, therefore, conclude that all the foregoing applications re-
quire an accurate estimate of the perspective transformation to
become available at a moderate computational complexity, so
ERSPECTIVE projection has a dominant and fundamentdiat perspective estimation could be conveniently integrated into
role in any imaging process, whether by the human visutile higher level applications.
system or some type of a camera. Hence, perspective is one dExisting solutions to problems where perspective estimation
the prominent clues in image interpretation and understandirgjinvolved attempt to extract the projection parameters based on
This makes perspective estimation a key problem in many iméije observed variations in the image generated by the perspec-
modeling and analysis applications. In this paper, we addrestive projection. Structure-based approaches attempt to recog-
special case of this general problem: we consider the problennife the structure of the surface texture (the “true” texture) from
estimating the orientation in space of a planar textured surfathe observed projected image of that surface. In other words,
from a single observed image of it. in order to estimate the projection parameters, these methods
A solution to this problem is an essential component in marigust first (or jointly as proposed in [5]) obtain the character-
image processing and multimedia data processing applicatioa#g properties of the surface texture such as regularity, peri-
odicity, symmetry, collinearity, etc. (see, e.g., [6] and the refer-
ences therein). This task is very difficult in general, and more so
_ _ _ _ in the presence of noise, since due to the projection distortion
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texture, or an observed inhomogeneity of a homogeneous surThe 2-D Wold decomposition implies that the deterministic
face texture, is employed to estimate the surface orientation. \@mponent of any homogeneous texture field can be approxi-
note that many of the foregoing methods (see, e.g., [6], [LThated by a sum of 2-D sinusoids, [20]. Thus an approximate
[3], [4]) are derived for binary images, or are based on an imrodel of the surface texture deterministic component is given
tial local analysis of the image, using its edge information. THzy
algorithm proposed in [14] evaluates the dominant frequency at
each image point using the wavelet transform, and then employs
the spatial dependence of this frequency component to estimate
the surface orientation.

Generally speaking, all these algorithms consider the estimenere(x,, y,) denote the surface coordinates. The coordinate
tion of theinstantaneous frequenat every image point (or a transformation from surface to image coordinates, due to the
related quantity) as a first step in a procedure for estimating therspective projection, transforms each homogeneous sinu-
tilt and slant of the observed surface from the variations of tkgidal component to a sinusoid whose frequency is a function
instantaneous frequency. This approach is further pursed withlocation. In the case of a planar surface, the functional
the introduction of novel space—frequency methods, see, edbpendence of the sinusoid phase in location is uniquely deter-
[14], [7]. However, given an inhomogeneous sighét;,y;), mined by the tilt and slant angles of the surface [15]. Hence,
the question of the unique determination of its instantaneou® surface tilt and slant angles can be recovered from the phase
phase, frequency, and amplitude is not a straightforward o the sinusoidal component measured in the image plane.
as even in the one-dimensional case, incoherent definitions oDenote the image coordinates ky;, ;). We use the
instantaneous phase and amplitude are common. We refer dfamt—tilt system for representing the orientation of the planar
interested reader to [19] for a detailed discussion on the one-glirface (see Fig. 1). The slants the angle between the surface
mensional problem. Following [19], it is clear that starting fronmormal and the optical axig,,. The tilt  is the angle between
a given signaki(z;,y;), it is possible to introduce an infinite the ;-axis and the projection of the surface normal onto the
number of pairga(x;,y;), (x4, y:)] such that image plane. Substituting into the texture model (2), the inverse

coordinate transformation expression which expressgsy,

d(z:,y:) = alzi, y:) cos( (w4, yi))- @ in terms of the image coordinatés;, y;), the tilt, the SIS:nt, a)nd
Nevertheless, in order to be able to interpuét;, ;) as the some known parameters of the camera, we obtain a model of
instantaneous amplitude of the signal a@dr;,;) as its the texture deterministic component, projected onto the image
instantaneous phase, the instantaneous phase and ampliplaiee. (See Appendix A for the derivation.) In Appendix A it is
should be defined in such a way that onlsiagle well-defined, also shown that under the perspective transformation, the phase
pair [a(z;,v;), ®(x;, ;)] will correspond to any given signal of a sinusoidal component whose phase function is given in
d(x;,y;), so that the representation (1) is unique. We shalurface coordinates by, (z,,y,) = uzs + vy, + ¢ becomes
further elaborate on this point in Section II.

L

t(xsv ys) = Z Ay COS(J;SUII + ysvr + 901) (2)
=1

. o . . z; (GeosT— in7) | y; (ksin7+4% )
A maximum-likelihood (ML) estimator for the tilt and slant (s, y) = 7 e +y7 B I
parameters is proposed in [9]. In this framework, the homoge-*""" """ tan a(% cos T+y77' sinT)+1 4

neous surface texture is modeled by a Gauss—Markov random 3)
field. A probability distribution function for the observed tex-
tured image, assumingdiaear projection model (instead of thein the coordinate system of the observed image, whete.z,,
nonlinear perspective projection transformation) is derived. Thie= vz, 2o is the z,,-coordinate where the surface crosses the
joint problem of estimating the surface orientation parametesptical axis, and is the focal length.
and the texture model is then solved by a ML estimator. From the physical model of the perspective projection, we
In this paper, we elaborate on the problem of estimating thlerive the Cramér—Rao lower bound on the error variance in
orientation in space of a planar textured surface, such that, ingétimating the tilt and slant of the observed surface. Two com-
own coordinate system the surface texturbdsnogeneoudn putationally efficient algorithms for estimating the tilt and slant
particular, we derive universal performance bounds on the acamgles from the estimated phase of a sinusoidal component of
racy of estimating the tilt and slant parameters in the preseribe surface texture are derived.
of observation noise, and we propose computationally and staThe perspective projection results in a continuous coordi-
tistically efficient estimators for these parameters in the presate transformation from the surface coordinate system to the
ence of noise. To the best of our knowledge, the derivation iofiage coordinate system. Hence, the phase function of each si-
universal performance bounds for this problem and the derivaisoidal component of the surface texture is transformed by the
tion of estimation algorithms in the presence of noise have neymrspective projection into a nonlinear, continuous function of
been considered. Furthermore, since the model of the homotiee image coordinates. Since continuous functions can be ap-
neous surface texture is based on the 2-D Wold decompositfmoximated by polynomials, a natural choice for modeling the
of homogeneous random fields, the proposed algorithms pomntinuous phase function of each sinusoidal component is by
vide a unifying framework for both the structural and statistica polynomial function of the image coordinates. In [15] we de-
methods. In addition, the extremely difficult task of identifyingive an algorithm for estimating the slant and the tilt of the planar
the texture elements from the perspective projected noisy imagetface directly from the estimated parameters of a polynomial
as required by the structure-based approaches, is avoided. model of the phase. The estimated polynomial phase model is
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surface
z, surface plane
normal /

Fig. 1. The perspective projection.

obtained using the Phase Differencing (PD) algorithm, [16],1l. THE PARAMETRIC PHASE MODEL AND ITS ESTIMATION
[17]. In order to obtain the estimates of the tilt and slant an-
gles, it is assumed that the estimated polynomial phase coeffi-
cients are, in fact, the coefficients of a Taylor series expansion ofin Section I it is shown that the phase function of any sinu-
the phase. However, the algorithm, though computationally Spoidal component of the homogeneous surface texture is trans-
ficient, has a relatively high bias and error variance. To improJ@rmed by the perspective projection into a nonlinear function
accuracy, an iterative refinement procedure is applied in a sn¥fithe image coordinates. For a given focal length, the transfor-
neighborhood of the previously obtained tilt and slant estimatégation is a unique function of the surface tilt and slant angles
The combined two-stage algorithm produces estimates of loW&pl- Hence, in principle, the surface tilt and slant can be re-
bias and standard deviation, at the cost of higher computatiofgvered from the phase of the projected sinusoidal component.
complexity. The algorithms proposed in this paper employ tféowever, due to it2r periodicity the phase wraps around, and
PD algorithm to estimate thghaseof a sinusoidal component only its principle value is observable. Therefore, any use of the
of the observed surface texture. Itis shown that the phase of eRbRse information is limited by the need to unwrap the phase of
of the sinusoids can be expressed disear function of some the observed signal first.
variables that are related, in a rather simple form, to the surfacén this paper, we propose to use a parametric model as an
tilt and slant angles. Hence, the tilt and slant can be estimatgternative to the need to employ phase unwrapping methods.
by solving a linear least squares problem. The performanceSifice continuous functions can be approximated by polyno-
the two algorithms proposed in this paper is shown to be closgals, a natural choice for modeling aogntinuous2-D phase
to the Cramér—Rao bound, at a computational complexity whifinction is by a 2-D polynomial of the coordinates. Since the
is considerably lower than that of any existing algorithm. assumption of phase smoothness is implicit to this model,
The paper is organized as follows. In Section Il, the 2-D polyro explicit phase unwrapping is required in estimating the
nomial phase model is introduced and the considerations observed phase. In this section we briefly study the model of a
volved in applying the PD algorithm for estimating the modedingle-component constant-amplitude exponential of a polyno-
are described. In Section lll, it is shown that the phase of eagtial function of the field coordinates. The model, described in
of the sinusoids observed in the image plane can be exprestgsl section, as well as the properties of the parametric phase
as a linear function of some variables that are related in a ratlestimation algorithm are studied in detail in [16] and [17]. The
simple form to the surface tilt and slant angles. This functionptoposed phase estimation algorithm is suboptimal (relative to
dependence is the basis of two algorithms presented in Sectiba maximum-likelihood (ML) estimator) but computationally
Il for estimating the surface tilt and slant. In Section IV, weefficient (since no multidimensional search in the parameter
derive the Cramér—Rao lower bound (CRB) on the error vagpace is required). The algorithm is based on the properties of
ance in estimating the tilt and slant of the observed surfage2-D phase difference operator.

The bound is derived directly from the physical model of the | et us first define the type of signal for which this operator
perspective projection. The performance of the proposed algg@as designed. Leftt(ws, ;) } be a discrete 2-D constant ampli-
rithms is illustrated using synthetic and photographed imagggie polynomial phase signal, i.e.,

in Section V. In particular, we investigate the performance of

the algorithms in the presence of noise and analyze their perfor-

mance through Monte Carlo simulations and by comparing the: ¥i) = Aexp{idq+1(wi, v:)},

Monte Carlo results with the CRB. z,=0,1,...,N—-1, 2 =0,1,.... M -1 (4)
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where some arbitraryP, for all P such thatd < P < @, we obtain
B ) ke estimates of all the parameters of the highest order l&yer],
bo1(wi, yi) = Z ok, Ozivi- ) ofthe phase model. Multiplying(z;, »;) by

{0<k, £0<KH<Q+1)

+1
We call ¢g+1(xs, ;) 2-D polynomial oftotal degree? + 1. exp {_jQz: é(k,Q+1— k)y9+1—kx§}
The amplituded is a real-valued positive constant. To simplify ’
the presentation, we assume there is no observation noise
A = 1. Hencet(z;, y:) = exp{jodo+1(xi, v}

Next we define the basic phase differencing operators.

?é%cblts in a new polynomial phase signal whose total degree is
. By applying to the resulting signal, a procedure similar to the
one used to estimate the parametéis ¢) fork + ¢ = Q + 1,
Definition 1: Let 7, andr, be some positive constants. Dewe obtain an estimate of ti¢ + 1 parameters in th@ “layer.”

fine In general, lett‘“tY)(z;,4;) denote the 2-D signal, where
q + 1 denotes theurrenttotal degree of its phase polynomial.
PD,w [t(wi, yi)] = t(zi, ui), By repeating for aly = @,...,0, the two basic steps of esti-

r;=0,1,...,N—-1, ¢ =0,1,...,M—1 (6) mating thec(k,f) parameters of “layery + 1 through finding
the maxima of

IDFT(PDyco- 7 [PDycm [t (a1, 1))

and, in general,

PD, o [t(xi; yi)] = PDy-u [t(wi, yi)] o
(PD (o [t vi + Ty)])* @) forall0 < P <gq, fo_llowed by multlplylng the already reduced
order 2-D polynomial phase signal by
where the resulting 2-D signal BD[t(x;,y;)] exists for g1
a:.i:O,l,....,N—l,yi:O,l,...,M—1—qry.Thepha'.S€ exp JZ kg+1— )(1+1*kx£c
differencing operator along the;-axis, PD,w)[t(x;, y;)] is

fined in a similar way. .
defined in a similar way in the next step, we obtaln estimates for all the phase param-

Assume we have sequentially applidimes the phase dif- eters except(0,0). The resulting signal after this processing,
ference operator PRy, andQ — P times the phase differencet(?) (z;, 1), is a constant phase 2-D signal. Taking now the av-
operator PL)), to some complex-valued 2-D signdle;,y;). erage of the imaginary part of the logarithm of this signal, we
We will denote the resulting signal by BD, ,e-» [t(x;,%:)]. obtain an estimate far(0,0). We have thus completed the es-

Theorem 1: Let #(x, ;) be given by (4) and (5). Then, thetlmatlon of all the coefficients of the 2-D phase polynomial of

. . S total degree) + 1. In the following, we refer to the algorithm
signal PR o-r [#(2i, yi)] is @ 2-D exponential given by o thePﬁas?Differencing AIgoritr?r(PD Algorithm). ’

PD,r) ya—m[t(xi, 4i)] So far we have described the parameter estimation algorithm

= explilwoz: + vou: + 70 (Te: T} for the case in which no observation noise exists. However, in

many practical situations the signal is observed in the pres-

z;=0,1,...,N—-1-Pr, ence of additive noise. Thus a straightforward but computa-
v, =0,1,....M —-1-(Q—P)r, (8) tionally prohibitive alternative to the PD Algorithm is to de-
velop a maximume-likelihood estimator (MLE) for the polyno-

mial phase parameters. It turns out [16], that although the PD
wo = (—1)%(P+1,Q — P)(P+1){(Q - P)!Txp’f'yQ_P Algorithm is suboptimal (relative to the ML algorithm), its per-

9) formance in thle pressncedof ad?]itive white noise, is close to the

P Oo—p Cramér—Rao lower bound on the error variance in estimating

vo = (~L¥P.Q+ 1= P)PAQ+1 - P)lr,r} the parameters of the polynomial phase model, for moderate to

(10)  nhigh signal-to-noise ratios. Optimal selection rules of the PD al-
gorithm parameters, andr, are derived in [22]. These rules

are employed in this paper to achieve optimal performance of
Theorem 1 implies that applying in some arbitrary sequengge phase estimation.

where

andvyg (s, 7,) is not a function ofz; nory;.

P times the operator P, and@—P times the operator Pfa, However, the PD Algorithm is designed to work with com-
to the observed signal (4), the resulting signal is the 2-D expgtex-valued constant-amplitude polynomial phase monocompo-
nential nent signals. In our application, the 2-D signal is real, and in

general it has more than a single component. In [15] we derive
an algorithm that isolates a single component from the observed
wherewg and g are given by (9) and (10), respectivelysignal and converts it into a complex form through the Hilbert
Hence, estimatingwg, vo) using any standard frequency estitransform, (see, e.g., [18] and the references therein). This pro-
mation technique, results in estimates:P + 1,Q — P) and cedure produces a 2-D analytic signal of the form

(P, + 1 — P). In this paper, we estimate the frequency of
the exponential using a search for the maximum of the absolute
value of the signal’s 2-D discrete Fourier transform (2-D DFT¥uch that the instantaneous amplitude and phase of the real-
Repeating the procedure which was described above assumialyied component(x;, ;) in (1) are unambiguously defined.

PD,(r ya-m [tz yi)|=expljlwqzi+vQui+vq (T2, 7)1}

2z, ui) = alzq, yi) exp(P(xi, wi))
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The component selection procedure is based on the resuft§17) the terms% and¥ area priori known, while®(x;, v;)
of Section IV on the Cramér—Rao lower bound on the erris assumed known for allz;, ;) in the observed image. All
variance in estimating the tilt and slant of the observed surfacgher terms of the linear equation (17), i.8;, 62,1, 12, ¢, are
More specifically, it is shown in Section IV that the boundsinknown variables. These variables, excepare functions of
are nearly linear functions o& where SNR denotes thethe spatial frequencyu,, vs) of the selected sinusoidal com-
signal-to-noise ratio of the sinusoidal component to which thEnent measured in the surface coordinate system, the distance
estimation procedure is applied. It is further shown that thg, and the tilt and slant angles. On a planar surface, the tilt and
bounds on both the tilt and slant parameters are high when 8lent angles are constant. Since the observed surface texture is
frequencies of the observed inhomogeneous components lamemogeneous, the variabléss, ¢ are independent dfr;, v;).
low. The bounds rapidly decrease as the spatial frequenci¢snce, we conclude that the all the unknown variables in (17)
become higher. Hence, the selection rule selects the highexst independent dfz;, v;).
energy component among the components for which at leasNote that (17) holds for everyz;,y;) in the image of the
four periods are observed in the image. In other words, it mapserved surface. However, in practice the phase function
very well be that a higher frequency component will be chosé z;, ;) is unknown, and hence in solving (17) for the tilt and
even if its amplitude is lower than that of a lower frequencglant angles®(x;, ;) must be substituted with its estimate.
component. The selection result is verified using the CRB: lifi this paper we employ the PD Algorithm to estimate the
there is more than a single candidate component, the estimatitiase as a function of the image coordinates. Since the phase
algorithm described in the next sections is applied to eaelktimation procedure is subject to errors due to observation
of these components. The estimates obtained based onribse and model mismatch, (17) holds only approximately.
alternative choices are substituted into the CRB equations artius lete(z;, ;) denote the modeling error of (17). Rewriting
the estimate that provides the lowest CRB is chosen. (17) for every(z;,y;) in the image of the observed surface we

obtain the following matrix form:

A\ —b=c (18)

where (see (19)—(21) at the top of the following page), and the

o ) . .~ unknown parameter vector is
As was indicated earlier, the perspective transformation in-

volved in the imaging process causes a texture which is homo- A=[3 & L b ¢ (22)

geneous on the planar su_rface tq appear mhpmogeneous in thfane least squares solution of (18) is given by

image plane. Let us consider a single sinusoidal component of

the observed surface texture, and assume that the functional de- A=[ATA] 1A, (23)

pendenqe of |t_s phase in the image coordinates is _ava|lable t?—|aving estimated, the tilt and slant angles can be computed

us. In this section we show that the phase at each image coor- .
. . . . using the estimated values kfandi,. Let

dinate can be expressed akreear function of some variables

that are related in a rather simple form to the required unknown . la

. - . . 71 = arctan | -~ (24)

tilt and slant angles. This linear relation enables us to derive a Iy

closed-form, analytic, and computationally efficisotution to 1

the problem of estimating the tilt and slant angles. Previously 01 = arctan <COS Tl) : (25)

derived algorithms, e.g., [5], [9], [14], [15], require a computa-

tionally intensive iterative search for the minimum of an obje¢JOWeVer, four possible solutions ferando satisfy (24), (25).
tive function. These are given by

I1l. LINEAR LEAST SQUARES ESTIMATION OF THE
TILT AND SLANT ANGLES

A. Tilt and Slant Estimation Using the Estimated Phase

Define T, 01
B = (ticosT — VcososinT) (11) T o= le_’:;’t; ] (26)
COs g
(sint 4+ Ucoso cosT) (e S
by = cos o (12) Yet, only one of the four possible solutions satisfies the con-
Iy =tanocost (13) straintthat) < o < (w/2). This is the desired solution for the
ly = tanosin 7 (14) tilt and slant angles.
In Appendix B it is further shown that very often the solu-
and tion for the tilt angle does not requieepriori knowledge of the
origin of the image coordinate system nor of the focal lenfth
P2 =L+l (15) In the foregoing discussion it was assumed that the phase
g = 61 + pla. (16) function ®(x;,y;) can be estimated from the observed data.

Next, we propose two possible algorithms for obtaining the
phase estimate. The first method is a direct one. Having
estimated the 2-D polynomial model of the observed signal
phase using the PD Algorithm, and evaluating the estimated
(17) phase by substituting the estimated coefficients into (5), these

Using these notations (3) can be written in timear form

Qs y:) = ?/32-#%52 - ?‘1’(%‘7 yi)li— %‘1’(%7 yi)la+.
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b= [®(0,0),...,0(0,M —1),&(1,0)....,0(L,M 1), 8N =1,0),....0(N-1L,M -1 (19
e:[e(O,O),...,e(O,M—1),6(1,0)...,6(1,M—1),...,...,6(N—1,0),...,6(N—1,M—1)]T (20)
-0 0 —0- ®(0,0) —0-®(0,0) Ia
0 M-1 —0-®(0, M — 1) S(M=1)-00,M—1) f
1 0 ~1-9(1,0) —0-(1,0) ¥
A:% 1 M-1 C1-B(1, M —1) S(M—1)- S, M-1) f 21)
N-1 o0 (N —1)-&(N —1,0) —0-®(N —1,0) f
(N1 M—-1 —(N—1)-®(N-1,M—-1) —(M—-1)-®(N—-1,M—1) [

estimated values are substituted into (19), (21) instead of tRext, the unwrapped phase values are substituted into (19), (21)
unknown phase values. Next, (23)—(26) are solved using thésstead of the unknown phase, and (23)—(26) are solved.
estimated phase values. The second method is an extension of

this method. It is described next. IV. THE CRB ON THE ERRORVARIANCE IN ESTIMATING THE

, . ) TILT AND SLANT ANGLES
B. Tilt and Slant Estimation Using the Unwrapped Phase ) ) _ ]
In this section we derive the Cramér—Rao bound (CRB) on

| i the int inaful int tati fltll% error variance in estimating the tilt and slant angles when
always in the interval—,«], a meaningful interpretation o the planar surface is observed in white additive Gaussian noise.

the phase information .is possible only if successful UNWIabhe cRB provides a well-known lower bound on the achievable
ping of the phase function can be performed to remove the Ukriance of any unbiased estimator of these parameters.

herent2s ambiguities of the observed phase. In [21] we presentAssuming the energy of the texture purely indeterministic

a rlno%eé-bDas_ed, 2|-D E[Ease E[J_nwrapplrr:g alg:contr:_m for_(r:r?mbpleesmponent is much smaller than that of the observation noise,
valueéd 2-L signais with continuous phase functions. The Dag 5y e that an approximate model of the homogeneous surface

building block of this phase unwrapping algorithm is the P T 2) H h fiel lis i
Algorithm, [16], [17]. Since 2-D continuous functions can b%exture is given by (2). Hence, the observed field model is given

approximated by 2-D polynomials, the first step of the phasé/

Since the observed phase of any complex-valued signa

unwrapping algorithm is to fit a 2-D polynomial model to the L
observed phase. The estimated phase is then used as areference t(z;,y;) = Z Apcos (Qi(x,y)) +nlxi,y)  (29)
information that directs the actual phase unwrapping process: =1

the phase of each sample of the observed field is unwrappeﬁ denotes th hite G . b
by increasing (decreasing) it by the multiplef which is the WHeren(x:, v;) denotes the zero-mean white Gaussian observa-

nearest to the difference between the principle value of the ph%{g%nms;a\} whjc\);e%/arla'?cepiThe (::mensmns of the observed
and the estimated phase value at this coordinate. ield are N x M. Rewriting (3) we have

More specifically, let)(x;, v; ), ppv(x:, vi), ¥ (x;, y;) denote ) COST €in T WT
the phase function of the noiseless signal, the prmupleyal@é(%yi)z[ul v)Z [—CosasinT COSUCOST} |:y_:| +o1
of the observed phase, and the unwrapped phase obtained by s (30)

the proposed procedure, respectively. Alsofjeti,yi) denote
the estimated phase obtained using the PD Algorithm. In thgeres — (zo/(sino((x;/f)cosT + (y;/ f)sinT) + cos o)).

absence of noise we have that Define
(i, vi) — dpv(zi,vi) = 27k (27) t=[t0,0),...,4(0,M — 1),#(1,0),...+(1,M — 1) ...,

where  is some integer. However, in practicg(z;,y;) is CLHN = 1,0),. .. #(N — 1,M — D)]F. (31)
unknown to us, and we only havéz;, y;), which is estimated
from the ol;served noisy measurements. Hence, replacinige vectors®;,! = 1,...,L andn are similarly defined.
d(xi,y:) by ¢(x;,y;) we obtain the basic unwrapping formulalet alsoD; = cos®; wherecos®; is an M N-dimensional
for the observed signal phase column vector such that each of its entries is the cosine of

- corresponding entry o®;. Leta = [A4;, As,...,Ar]? and
(2, y;) = 27 - ROUND <¢(xi’yi) — (/)PV(%’Z”)) let D = [D;,D,,...,Dy]. Using these definitions, we can

2m rewrite the observations equation (29) in the following matrix

+épv(zi,¥:)- (28) representationt = Da + n. Note thatt is a linear function of
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the amplitude parameter vectar while the tilt and slant pa- CRB on the error variance in estimating the slant and the tilt.
rameters enter nonlinearly through Let; = u;20,7; = v120  This conclusion is intuitively explained by the fact that as the
absolute value of the focal length is smaller, we see “more” of

_ ~ -~ ~ T
0=lomus...;uL, ... 00,91 o1] (32)  the planar surface in the same image. In the limiting case, where
and let |f| — oo, the perspective projection becomes an orthogonal
projection. In that case, it is impossible to estimate the surface
~T 17T . . . . .
0=100 ,a"] (33) orientation from a single observation of its texture.

A similar numerical analysis of the dependence of the CRB
denote the vector of the unknown problem parameters. Also, { the orientation of the planar surface, expressed throaga
V = Da. Since the observation noise is assumed to be a realingicates that the bounds on estimating the tilt and slant have
valued Gaussian white noise field with zero mean and varianegaively low values (less thart Standard deviation for an SNR
p*, the probability density function of the observations is givegt 10 dB). The only exception is the bound on the error variance
by in estimating the tilt, which becomes very high as the slant tends
1 1 ) to zero. Indeed, as — 0 the tiltis loosing its physical meaning.
p(t;0) = m eXP{_ﬁ”t =V } . (34)  Furthermore, the results indicate that the bounds on both the
P slant and the tilt are strongly influenced by the value of the slant
To derive the CRB we use the well-known formula which stateggle but are nearly constant functions of the tilt. Evaluation of
that the elements of the Fisher Information Matrix (FIM) argne relation between the CRB and the distance of the planar sur-

given by face from the pinholey indicates that as the camera is getting
2A further away from the surface, the CRB becomes smaller. This
F,;,=-F {W} (35) is due to the fact that as the camera is further away from the
(]

surface, there are more periods of the surface texture sinusoidal
whereA denotes the log-likelihood function. The CRB is simphgomponents in the same size of an image.

the inverse of the FIM [23]. Thus to evaluate the FIM we need Note from (30) that the distance of the planar surfage

to compute the derivatives of the log-likelihood function wittalways appears in the phase equation as a multiplication factor
respect to the various parameters of interest, and take their ekthe surface texture spatial frequencieg,v;). Thus the

pected value. Thus functional dependence of the CRB on the texture’s frequen-
cies (ug, 1) is similar to its dependence ofy. We therefore

B { 92\ }_ 1 fovTov (36) conclude that employing harmonic components with higher

00,00; |  p2 \ 00, 96; | frequencies in an estimation procedure of the slant and filt

" . . . should result in better estimates than when low-frequency
Rewriting (36) using matrix notations we conclude that the F”\éomponents with the same amplitude are used. More specifi-
has the form cally, our experimental results show that even for medium to

F=fTFf 37) high SNRs, if we observe less than four cycles of the texture

sinusoidal component, the values of the CRB are very high

where and the estimation of the tilt and slant is difficult. On the other
17V aV oV vV ov hand, when the number of observed periods is higher than four,
f=- . o the CRB is considerably lower. Hence, the component to which

pLdo dr i augV&ng 5V the phase estimation is applied should be selected as the one
, s (38) Wwith the highest energy among those components for which the
dpr, 04 A number of observed periods is no less than four or five. (Clearly,

Note that care should be taken in evaluating the performarib€ selection maybe a matter of a tradeoff between the number
of an algorithm for estimating angular parameters and in co®f cycles and the amplitudes of the competing components.)
paring it with the CRB. More specifically, in evaluating the dis-
tance between an angular parameter and its estimate, the dis- V. NUMERICAL EXAMPLES
tance should be evaluated as the minimal Euclidean distance be- i i
tween the parameter, séyandé -+ kT wheref is the estimated " this section we present some results of applying the pro-
value of the parameteF is the period length, ankican assume posed parametrlc model and algorithms to synthetlc.as ngl as
any integer value. This is due to the fact that angular paran{@/€@l images. We also perform some Monte Carlo simulations
ters are defined on an interval. Hence, if a parameter assurife@nalyze the statistical properties of the different algorithms.

a value close to the interval boundary, even a small estimation
error could be interpreted as a large deviation (whose magnitude . . o
is close to the period lengfh) because of the periodic folding”: Statistical Performance Analysis of the Estimation
of the parameter space. Algorithms

The results of numerically evaluating the CRB on estimating In this subsection we illustrate the performance of the pro-
the tilt and slant angles as a function of the focal length f@osed parameter estimation algorithms using Monte Carlo sim-
some specific examples of surface textures indicate that as titetions. We compare the estimation error variances of the sug-
absolute value of the focal length is getting smaller, so does thested algorithms with the CRB derived in Section IV. The sur-
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Fig. 2. Performance of the proposed algorithms as a function of SHRJ data dimensions, in comparison with the corresponding CRB. Dashed-doted line
denotes the CRBx denotes the performance curve of the algorithm that employs the Taylor series expansiomfifites the performance curve of the search
algorithm initialized by the algorithm based on the Taylor expansion [15], solid line denotes the performance curve of the linear least sqataethasémploys

the estimated phase,denotes the performance curve of the linear least squares estimator that employs the unwrapped phase.

face texture being considered in these experiments is composethis figure the results obtained by the two estimation algo-
of three sinusoids, given by rithms derived in [15]. Recall that the CRB is a lower bound on
the error variance of any unbiased estimator of the problem pa-
rameters. Hence, the Monte Carlo results in Fig. 2 are depicted
1 only for SNR values (data dimensions) above the threshold SNR
+ = sin(5z,u0 4 5ysv0) (39) (datadimensions). In other words, for each of the algorithms, the
2 leftmost point of its performance curve is the threshold point.
where(ug, v9) = (0.25,0) cycles/cm. To generate the image of.ower SNRs (data dimensions) result in biased estimates. The
the planar surface, the intensity of each pixel in the image plaresults indicate that while the computational complexity of the
was evaluated by projecting the intensity levels of the surfat&o algorithms derived in this paper is equivalent to the com-
texture using (45). More specifically, the intensity of each imagaexity of the algorithm that estimates the tilt and slant using
pixel (x;,y;) is that of the surface coordinate which is mappethe Taylor series approach, their bias and standard deviation are
by the perspective projection ta;, v;). The surface orientation considerably lower than the bias and standard deviation of the
parameters are = 30° andr = 90°. The focal length of the algorithm that employs the Taylor series expansion. Moreover,
cameraisf = —60 mm,z, = 6 m, and the image plane dimen-the performance of these two algorithms is slightly better than
sions are 30 mnx 30 mm, with the origin being located at thethat of the computationally demanding iterative search algo-
center of the image plane. The observation noise is a zero-mei#inm. We note that the computational complexity of the search
additive white Gaussian noise. Define SpIR= A%, /p? where algorithm in [15] is still much lower than that of the exhaustive
Ap is the amplitude of the selected sinusoidal component (teearch suggested in [14] due to its initialization by the Taylor
dominant one in this example) and is the variance of the series based estimation algorithm.
observation noise. We investigate the performance of the algoThe Monte Carlo simulations summarized in Fig. 2 demon-
rithms as a function of the selected component signal to nosteate that the proposed algorithms are essentially unbiased
ratio SNR, and the dimensions of the observed square imagand their error variance very close to the CRB even for low
The experimental standard deviation results depicted in FigSAIR values, and relatively small dimensions of the observed
are based on 500 independent realizations of the image for eanhge (such as 24 24 pixels). Note that the algorithm that
SNRp, and data dimensions. For comparison, we have includethploys the unwrapped phase produces slant and tilt estimates

. 1 .
t(xsv ys) = Sln(xsuo + ysUO) + 5 S111(3-755“'0 + 3ysU0)
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Fig. 3. The images and the corresponding estimated tilt and slant parameters using the four algorithris, dete- (74, 0.4) denote the estimated tilt and

slant produced by the four algorithms. The measuredrtilt,and slantg -, are given in the first row. Based on the estimate@ndo, we depict the orientation

of the surface normal as seen in the image plane. The ellipse illustrates how a circle drawn on the planar surface would appear in the image pliaax@dwhose ti
slant arer, ando., respectively.

with smaller bias and error variance than any other algorithmentation produced by each of the proposed algorithms, and the
We therefore conclude that the proposed algorithms produteasured (“true”) orientation. Based on the tilt and slant esti-
nearly optimal estimates at computational complexity which mated using the algorithm that employs the unwrapped phase,
considerably lower than that of any existing algorithm. we depict the orientation of the surface normal as seen in the
image plane. The ellipse illustrates how a circle drawn on the
planar surface would appear in the image plane. For comparison,
In this subsection, we evaluate the performance of the algee have also included in this figure the results obtained by the
rithms by applying them to photographed textured surfaces. Tiw@ estimation algorithms derived in [15]. Thus we use in this
images are those used in [14]. The focal length of the camera @ax@&mple the following notations:; , 1 are the estimated slant
the image coordinate system in common units, are known. Taed tilt produced by the algorithm that employs the Taylor series
algorithms were applied to@& x 64 segment of each original expansion, [15]y2, 72 are the estimated slant and tilt produced
128 x 128 image. Fig. 3 shows the images, the estimated oafter an iterative minimization stage is applied to improve the re-

B. Experimental Results with Real-World Textured Surfaces
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SNR=-5 SNR=-5

SNR=5

Fig. 4. Observed noisy images at SNR values of 5 dB-aBdiB.

TABLE |
THE RESULTS OF ESTIMATING THE ORIENTATION OF PLANAR SURFACES FROMREAL NOISY IMAGES USING THE
ALGORITHM THAT EMPLOYES THE UNWRAPPEDPHASE IMAGES ARE NUMBERED IN CORRESPONDENCE WITH-IG. 4

Image (a) o7 = 20,77 = 90 (b)Y o7 = 70,77 = 90 (¢) o7 = 20,77 = 180
SNR 10 5 0 -5 10 5 0 -5 10 5 0 -5
mean o 15.4 | 15,5 | 15.4 | 17.0 || 65.0 | 65.1 | 64.2 | 62.8 18.3 18.0 18.0 17.8
st. dev o || 0.7 1.6 2.5 4.2 0.3 0.6 7.6 9.9 04 0.8 1.4 2.1
mean T 90.6 | 90.0 | 90.7 | 89.6 || 89.9 | 90.0 | 91.3 | 91.7 || 180.0 | 180.1 | 179.8 | 180.6
st.dev 7 2.5 5.8 9.6 | 15.2 ] 0.7 1.2 9.4 | 10.7 1.0 2.2 3.4 6.2

sults of the Taylor series expansion based algorithm, @B}s  neous surface texture from the perspective viewed image of that
are the estimated slant and tilt produced by the least squaressoface through nonuniform resampling of the observed image.
lution based on the estimated phase, Section llI-A; whiler, As explained in Section I, applying this procedure to the entire
provide the estimation results produced by the least squaresistage, of which the textured surface is a part, considerably sim-
lution based on the unwrapped phase, Section IlI-B. Note thdifies further processing such as coding, and content-based in-
the measured tilt; and slantr are subject to a measurementexing and retrieval of images. In the following, we summarize
error of 1°-3°, the main steps of the algorithm for “normalizing” the observed
image so that the effect of the perspective projection is elimi-
C. Experimental Results with Real-World Textured Surfacesited: using the inverse coordinate transformation (45) the co-
the Presence of Noise ordinates of the image boundaries, expressed in surface coordi-
In this example, we illustrate the performance of the prdrates are found. The surface coordinate system is then uniformly
posed algorithm in the presence of noise for real-world tegampled, and the image coordinatethat corresponds to each
tured surfaces observed at various SNRs. Since the modelg:obn the surface sampling grid is evaluated using (44). Finally,
these real-world images are unknown, the SNR here is evalle gray level of each sample in the surface coordinate system is
ated as the ratio between the experimental variance of the noigtto the gray level of the corresponding observed image sample
less image (shown in Fig. 3) and the noise variance. The perfag-(using interpolation since in general the resultingandy;
mance of the algorithm that employs the unwrapped phase (Afe notintegers). The results of applying this procedure to three
gorithm 4) is evaluated using Monte Carlo simulations for SNReal-world images are shown in Fig. 5. It is easily seen that the
values of 10, 5, 0, ané5 dB. For illustration purposes, Fig. 4recovered textures are indeed nearly homogeneous.
shows a single realization of each test image at SNR values of
5 dB and-5 dB. Note that the algorithm is applied tG4 x 64
segment of th@28 x 128 image shown in Fig. 4. The results of
the Monte Carlo simulations, summarized in Table |, indicate We have presented a parametric solution to the problem of
that the proposed algorithm is effective even at relatively loastimating the orientation in space of a planar textured surface,
SNR’s. from a single, noisy, observed image of it. Based on the non-
linear physical model of the perspective projection, we derive
D. Recovery of the Homogeneous Surface Texture from they,e cramér—Rao lower bound on the error variance of estimating
Perspective Image the tilt and slant of the observed surface. The algorithms derived
Once the tilt and slant angles of the observed surface hamehis paper are based on the observation that the coordinate
been estimated, it becomes possible to recover the homogeansformation from surface to image coordinates, due to

VI. CONCLUSIONS
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g located at,, = f < 0 where|f] is the focal length. Define the
e i i iy T T

= S=== image plane coordinate system= [z; y;]* suchthat; = z,,
ESEEE andy -

ISEEESE We use the slant-tilt system for representing the orientation
s of the plane. The slantis the angle between the surface normal

and the optical axig,,. The tilt 7 is the angle between the
x;-axis and the projection of the surface normal onto the image
plane. To describe a texture on the surface, we must define a
coordinate system, = [z, y; 2|1 on the surface. This coor-
dinate system is formed by

1) setting thez,-axis to be the surface normal,

2) setting thess-axis to be the back-projection onto the sur-
face of the image tilt vectafcos 7, sin 7);

%) setting they,-axis so as to form right-handed orthogonal
coordinate system; and

4) setting the origin at the intersection of the surface with

the perspective projection, uniquely transforms each homoge-  zw-axis.

neous sinusoidal component of the surface texture into a Sk the coordinate transformation from the surface coordinate
soid whose frequency is a function of location in the image €O stem to the world coordinate system is given by
dinate system. It is shown that the phase of each of the sinusoids

Fig.5. Recovered homogeneous surface texture from the observed perspectiv
projected image.

can be expressed as a linear function of some variables that are cosocosT —sinT sinocosTt 0
related to the surface tilt and slant angles. The two-dimensionah, = | cososinT cos7 sinosin7 | Z,+ | 0 | (40)
Hilbert transform is employed to guarantee that the instanta- —sino 0 coso ZQ

neous phase of each observed inhomogeneous sinusoidal C\%]érezo is the~,,-coordinate of the surface where it crosses the

ponent is uniquely defined. Using the Phase Differencing Algg— tical axis
rithm, the unwrapped phase function of a sinusoidal componentry, o o\ inate transformation of a point in the world coordi-

of the observed texture is evaluated. Substituting in the derivggte system to image coordinates due to the perspective projec-
linear relation the unknown phase with its unwrapped estimajg, | i< given by

and solving the resulting system by a linear least squares solu-

tion, the tilt and slant are estimated. The proposed algorithm is / [1 0 0} (41)

. . . . . T, =
shown to produce unbiased estimates with error variance which Zw |0 1 0

is close to the CRB for a wide range of SNRs, at computational . -
complexity which is considerably lower than that of any X Since for any surface point we have by definition that= 0,

isti laorithm. To the best of knowledae. the derivati t us definer, = [z, v,]* to be the coordinate vector of a sur-
ISting algorithm. 10 € Dest of our knowleage, the derivatiop, ., point. Therefore, the surface to world coordinate transfor-

of universal performance bounds for this problem, and the e%’ation of a poinbn the surface is given using (40) by

mation of the parameters of the perspective projection model Iin

the presence of noise, have never been considered in the litera- CcOSo COST —sinT 0
ture. Finally, once the tilt and slant angles of the observed sur- Z, = | cososint cosT |x;+ |0 |. (42)
face have been estimated it becomes possible to recover the ho- —sino 0 20

mogeneous surface texture form the perspective viewed imag%

of that surface, through nonuniform resampling of the observed

image. Applying this procedure to the entire image, of which thcgv

textured surface is a part, eliminates its inhomogeneities due to P = 70 — Ty Sin 0. (43)

the perspective projection, thus considerably simplifying further

processing such as coding, segmentation, and content-base&ubstituting (42) and (43) into (41) we obtain the surface-to-

dexing and retrieval of images. image coordinate transformation of a poatthe surface to a
point on the image plane due to the perspective projection:

or any point of the surface we have thatsitscoordinate is
en by

APPENDIX A xi 1 |:COS7' —Sin’f':| |:COSO' O}x (44)
THE PERSPECTIVETRANSFORMATION [ zo—wmssino [sInT - cosT 0 1
This appendix defines the viewing geometry we use. In thTehe matrix
following, we adopt the notations used by Super and Bovik in cosT —sinT
[14] and assume a pinhole perspective projection model since it sinT  cosT

provides a good approximation to a lens-type imaging syste
Assign a world coordinate system, = [z, % 2o’ tO

the imaging system such that its origin is at the focal point and coso 0

the —z,-axis is the optical axis (see Fig. 1). The image plane is [ 0 1}

m. . . .
IS a rotation matrix, and the matrix
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provides the projection at, to x;/f for a zero tilt. The term Using the constraint that the slant is between zeromgfadonly

m is a varying scaling factor due to the different disene solution for tilt is possible. (The one for which substitution
tance of each surface point from the pinhole. of 7 into (25) yields slant angle between zero an).
The inverse of (44) is given by Assume now that the magnitude of the focal length is un-
. known. This results in a scaling problem where the true coor-
seco 0 cosT sInT | & . _ s ) .
T, = 2y [ 0 1} [—Sin'f COST} 7 (45) dinates? and % are replaced by’ anda ¥, with a > 0

being unknown. Similarly, if the pinhole location is unknown,

where substitution of (45) into (43) yields we end up with an unknown location of the origin of the image
vy = 20 (46) coordinate system, and hence with an unknown shift of the co-

ordinatesz; andy; by b, andb,, respectively, wheréb,, b,)

o ) ) ) is the coordinate of the assumed origin in the image coordinate
Substituting the inverse coordinate transformation expressi@istem. (The origin of the image coordinate system is defined
(45) into the model (2), we obtain the model of the texture sinys the point where the optical axis crosses the image plane). The

soidal components, projected onto the image plane, i.e.,  joint effectin the case where both the focal length and the origin
L of the image coordinate system are upknown is expressed by
ti(a:) =tz ()] = > Arcos (o)) (47)  substituting% and¥% by a% + % anda + % We thus have

tano (% cosT + L sinT) +1°

=1 the relation
where the phase of a sinusoidal component whose phase func- 4 g
. . . . . Zq l’z z
tion is given in surface coordinates B(x,,v,) = zsu; + — =a -+ (51)
f o r

1y, + @, becomes ,

x; (% cos T—T; cos o sinT) + Yi (% sin 74 cos g cos ) ? it CM? + 7 ( )
(I)l(l" y) _f cos o f cos o

Ty S -
tan o (WT CoST + y? sin 7') +1 The effect of the unknown parameters on the denominator of

(48) the phase function (49) can be evaluated by substituting (51) and
(52) into (49). Following this substitution the denominator gets

in the coordinate system of the observed image, and we defthe form

= e v = Uiz _— 5 b v b
Since the origin of the observed surface is projected onto the <a—Z + —'”) L+ <04—Z + —‘“) Ih +1. (53)

origin of the image, we conclude that for each sinusoidal com- S S fo 7

ponent of the surface texture, its projection on the image has tfige shift and the scale constants modify the numerator of (49)

same initial phase; as on the surface. This is because the ings well. However, it remains a linear function of the coordinates

tial value of each cosine function, i.e., its valué@t0), remains  and hence it has no influence on the nonlinear characteristics of

unchanged under a projection that keeps the origin. the phase in which we are interested.

We note that (53) can be written in the form

+ @i

APPENDIX B ) )
A PROPERTY OF THEPERSPECTIVEPROJECTION <%ii + &52 + 1) : (54)
In this appendix we elaborate on a special property of the
perspective projection, that may be very useful in some specighere
estimation problems.
c=1 bo l by 1 55
Theorem 2: Assume that the signs ef and the focal length c=hythptd (55)
are known. Then, tilt estimation is independent of the magnituded
of the focal length and is invariant to translations of the image 5 I
. L =a= (56)
coordinate system.
Proof: Using (11)—(14) we can rewrite (3) in the form =D
lh=a—=. (57)

Zp) + G ¢

o+ Sl + 1 14 (49)

(i, i) = Estimating; andl, the tilt can be evaluated up tereambiguity
Since in any given problem settirity andé; are fixed, the nu-
merator of (49) is a linear function of the coordinates. Therefore, arctan 2

the nonlinearity of®(x;, ;) due to the perspective projection T= h . (58)

(and hence the inhomogeneity of the signal) is expressed only

by the denominator of (49). In other words, by estimafingnd We therefore conclude that knowledge of the signg aindé

> we can uniquely find the slant and the tilt from (13) and (14?S sufficient to enable us to unambiguously estimatsy using
as suggested in Section Ill. The solution for the tilt is given b¥he constraint that the slant is between zero ayel

B arctan% (50) We finally show that ifz, < 0, thené > 0. Indeed, since
= ) (b2, by) is @ point on the image plane, there exists a surface co-

arctan %—2 +7
1

arctan ;—f +7
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ordinate(z,, 7s) which is projected by the perspective projec- [4] J. V. Stone and S. D. Isard, “Adaptive scale filtering: A general method

tion onto(b, b, ), i.e., from (44) we have

by
N 1 cosocosT —sinT | |z,
1]t ] e

+ 79 — Tysing | cososinT  cosT Ts
Using (43), (13), (14), (55), and (59) we find that
. b b,
c= 117 + 127y +1
tano

= (T cos0c08° T — s cosTSINT
7o — Tysino
+ &, cos o sin’ 7 + 7, cos T sin T)+1
tano B Tssino
=———(Tsco80)+1=—"-——+1
7o — Tysino 7y — Ty sino
20 20

(60)

20— Ts8ing Z,

where from (43),z,, is the value of thez,, coordinate of the

(5]

(6]
(71

(8]

9]

(10]

(11]

planar surface poirtz;, ¥s ). Since the surface is in front of the [12]

cameraz,, must be negative as, otherwise,, %) will not be

projected onto the image plane. Hence, from the assumption that

zo < 0, we have that > 0. O

We finally note that in a standard camefa< 0. Also, in

nearly every case the intersection of the optical axis and the ph

tographed surface occurs in front of the lens, and hegee 0.

(23]

(14]

fis)

We therefore conclude that often, the tilt of the planar surface
can be estimated from the phase measured on the image plabé!
even when the focal length and the origin of the image coordi-

nate system are unknown.
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