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Abstract

A novel approach for coding textured images is presented. The texture �eld is assumed to be a realization

of a regular homogeneous random �eld, which can have a mixed spectral distribution. On the basis of a

2-D Wold-like decomposition, the �eld is represented as a sum of purely indeterministic, harmonic, and

a countable number of evanescent �elds. We present an algorithm for estimating and coding the texture

model parameters, and show that the suggested algorithm yields high quality reconstructions at low bit

rates. The model and the resulting coding algorithm are seen to be applicable to a wide variety of texture

types found in natural images.

1 Introduction

Many natural images can be described as a �nite ensemble of patches of uniform textures. In a previous

paper, [1], we have presented parametric texture model, and estimation algorithm for estimating the

parameters of individual textures. The previously derived texture model and estimation/synthesis algo-

rithms are employed in the present paper as the basic building block of a contour-texture image coding

method. In this method the image is segmented into its individual texture patches. For each patch the

corresponding parametric model and the contour of its boundaries are estimated and coded. This type

of method can be used for coding textured images, or for coding textured regions in larger images.

The texture model which is the basis for the image coding scheme suggested in the present paper

is based on a 2-D Wold-like decomposition for homogeneous random �elds [2]. The texture �eld is

decomposed into a sum of two mutually orthogonal components: a deterministic component which results

in the structural attributes of the observed realization, and a purely indeterministic component which

is the structureless, \random looking" component of the texture �eld. The deterministic �eld is further
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orthogonally decomposed into a harmonic component and a countable number of evanescent components.

The harmonic �eld results in the periodic attributes of the texture, whereas the evanescent components

result in directional ones. In other words, the parametric representation of the texture has meaningful

interpretation in terms of the visual properties of the observed texture. Since the proposed texture model

is based on the Wold decomposition results, it enables a rigorous mathematical treatment of the texture

modeling and parameter estimation problems. Moreover, due to the generality of the decomposition, the

model is not tailored to any speci�c type of texture.

In the present paper we elaborate on the problem of coding the estimated parameters of the individual

texture �elds. We show that the suggested coding scheme yields high compression ratios, while producing

high quality synthesis results on the decoder side. The idea of contour-texture coding is not new, e.g., [3].

However, in the coding scheme proposed in [3], the texture is represented using 2-D polynomials, whereas

in the present paper we propose a coding scheme which is based on a much more advanced texture model.

This paper is organized as follows: In Section 2 we present the texture model which is based on the

results of the 2-DWold decomposition, and an overview on the estimation algorithm for the parameters of

the harmonic, evanescent and purely indeterministic components of the texture. In Section 3, we describe

the coding methods chosen for these parameters and in Section 4, the results are compared with those of

the JPEG algorithm. Finally, in Section 5, we state our conclusions.

2 Estimation of Texture Parameters

The presented texture model is based on the results of the 2-D Wold-type decomposition of discrete,

homogeneous random �elds, [1], [2]. It can be shown that any 2-D regular and homogeneous random �eld

fy(n;m)g, can be uniquely represented by the orthogonal decomposition

y(n;m) = w(n;m) + v(n;m) : (1)

The �eld fw(n;m)g is purely indeterministic and has a unique white innovations driven moving average

representation. The �eld fv(n;m)g is a deterministic random �eld. It can also be shown that it is

possible to de�ne a family of NSHP total-order de�nitions such that the boundary line of the NSHP is

of rational slope. Let �; � be two coprime integers, such that � 6= 0. The angle � of the slope is given

by tan � = �=�. (See, for example, Figure 1.) Each of these supports is called rational non-symmetrical

half-plane (RNSHP). We denote by O the set of all possible RNSHP de�nitions on the 2-D lattice, (i.e.,

the set of all NSHP de�nitions in which the boundary line of the NSHP is of rational slope). The

introduction of the family of RNSHP total-ordering de�nitions results in a corresponding decomposition

of the deterministic random �eld into a countable number of mutually orthogonal �elds:

v(n;m) = p(n;m) +
X

(�;�)2O

e(�;�)(n;m) : (2)
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The �eld fp(n;m)g is a half-plane deterministic random �eld, and fe(�;�)(n;m)g is the evanescent �eld

corresponding to the RNSHP total-ordering de�nition (�; �) 2 O. The spectral measures of the decom-

position components in equations (1) and (2) are mutually singular. The spectral measure of the purely

indeterministic component fw(n;m)g is absolutely continuous with respect to the Lebesgue measure.

The spectral measure of the deterministic �eld is singular with respect to the Lebesgue measure, and

therefore it is concentrated on a set of Lebesgue measure zero in the 2-D spectral domain. Hence, the

spectral measure of the half-plane-deterministic �eld, as well as the spectral measures of the evanescent

�elds are concentrated on sets of Lebesgue measure zero in the spectral domain.

For practical applications we can exclude singular-continuous spectral measures from the framework

of our treatment. Hence, a model for the evanescent �eld which corresponds to the RNSHP de�ned by

(�; �) 2 O is given by

e(�;�)(n;m) =

I(�;�)X
i=1

s
(�;�)
i (n� �m�) cos 2�

�
(�;�)
i

�2 + �2
(n� +m�) + t

(�;�)
i (n��m�) sin 2�

�
(�;�)
i

�2 + �2
(n� +m�); (3)

where fs
(�;�)
i (n� � m�)g and ft

(�;�)
i (n� � m�)g are mutually orthogonal 1-D purely indeterministic

processes of identical autocorrelation function, and I(�;�) is in�nite in general. Hence, the \spectral

density function" of each evanescent �eld has the form of a countable sum of 1-D delta functions which

are supported on lines of rational slope in the 2-D spectral domain.

One of the half-plane-deterministic �eld components, which is often found in natural textures, is the

harmonic random �eld

h(n;m) =
PX
p=1

�
Cp cos 2�(n!p +m�p) +Dp sin 2�(n!p +m�p)

�
; (4)

where the Cp 's and Dp 's are mutually orthogonal random variables, and (!p; �p) are the spatial frequen-

cies of the pth harmonic. In general, P is in�nite. This component generates the 2-D delta functions of

the \spectral density". (The 2-D delta functions are singular functions supported on discrete points in

the frequency plane.) The parametric modeling of deterministic random �elds whose spectral measures

are concentrated on curves other than lines of rational slope, or discrete points in the frequency plane,

is still an open question to the best of our knowledge. Since such components seem to be of very little

practical importance for the texture modeling problem, we assume that the half-plane deterministic �eld

consists only of the harmonic random �eld.

As stated earlier, the most general model for the purely indeterministic component w(n;m) is the

MA model. However, if its spectral density function is strictly positive on the unit bicircle and analytic

in some neighborhood of it, a 2-D AR representation for the purely indeterministic �eld exists as well.

In the following, we assume that the above requirements are satis�ed. Hence the purely indeterministic
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component's autoregressive model is given by

w(n;m) = �
X

(0;0)�(k;`)

b(k; `)w(n� k;m� `) + u(n;m); (5)

where fu(n;m)g is the 2-D white innovations �eld, whose variance is �2. In the practical estimation

problem, the model support is assumed �nite.

Hence, the observed �eld y(n;m) is uniquely represented by the model y(n;m) = w(n;m)+h(n;m)+P
(�;�)2O e(�;�)(n;m). In [6] we present a ML estimation procedure for jointly estimating the parameters

of the harmonic, evanescent, and purely indeterministic components, of the texture �eld. However, due

to its high computational complexity, we have based the coding algorithm suggested in the present paper,

on the suboptimal algorithm, [1], which is computationally much simpler. Contrary to the ML algorithm

in [6] which enables us to obtain a complete parameter estimation for the parameters of the evanescent

components, in the suboptimal algorithm, the evanescent components are approximated by a linear com-

bination of harmonic components whose frequencies are along a \line" in the sampled frequency domain.

This estimation/synthesis algorithm enables the synthesis of purely random, as well as structured textures

from the estimated parameters. Although the algorithm is suboptimal, the synthesis results obtained us-

ing the estimated parameters were far superior to those obtained by the frequently used AR and MRF

models. The algorithm in [1] is a sequential, periodogram based estimation algorithm. In the �rst stage

the parameters of the harmonic and evanescent components are estimated and their contribution to the

observed realization is removed. Ideally, the obtained residual is the purely indeterministic component

of the texture. In a second stage, a 2-D AR model is �tted to the residual by solving the 2-D normal

equations system using a 2-D Levinson type algorithm for the reection coe�cients representation of the

AR model. The estimation algorithm is summarized in Table 1. For additional details on the estimation

algorithm we refer the reader to [1].

3 Coding of the Component Fields

3.1 Introduction

The problem of encoding a texture image is now one of encoding the parameters of the model of the

image. The model separates the image into two independent �elds, deterministic and indeterministic.

As these �elds have di�erent characteristics, di�erent coding procedures were adopted for each one. For

the indeterministic �eld, the signi�cant reection coe�cients of the model support region are quantized

and the indices of the quantizer levels were conveyed to the decoder through a binary code of rate close

to the entropy of these indices. This encoding of the quantizer levels is called an entropy code and the

levels are said to be entropy-coded. The locations of the signi�cant reection coe�cients must also be

transmitted to inform the decoder where in the support region these coe�cients should be placed. For

the deterministic �eld, DFT coe�cients of signi�cant magnitude may occur anywhere in the Fourier
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plane. The real and imaginary parts of these signi�cant coe�cients are independently quantized and

entropy-coded. The Fourier plane locations of these signi�cant coe�cients are transmitted along with

the entropy-coded quantized components to reconstruct the �eld at the decoder. The reconstructed

indeterministic and deterministic �elds are then added to produce the texture image reconstruction. In

the following, we describe the above coding procedures in detail. For the limited purpose of validating this

model-based approach, the coding procedures for the deterministic and indeterministic �elds were chosen

to be simple and non-rigorous. Nevertheless, these procedures brought good quality reconstructions at

low rates.

3.2 Coding of the Indeterministic Field

First, consider the indeterministic �eld determined through the 2-D AR model. Through experiments on a

few textures, it was determined that a (6, 6) NSHP support yielded a su�ciently accurate reconstruction

for most textures. The eighty-four (84) reection coe�cients for this model's support are extracted

directly by a 2-D Levinson type algorithm and are the parameters of choice for encoding. Such a strategy

has proved successful in speech coding, due to the fact that the reection coe�cients are bounded by

unity in magnitude and that the reconstructions are less sensitive to their perturbations than to similar

perturbations of AR coe�cients [4].

Two reection coe�cients, the (0, 1) and (1, 0) ones, were deemed su�ciently important to reproduce

with eight bit accuracy. All the remaining coe�cients were quantized with the same quantizer. This

quantizer was empirically designed through calculation of a histogram of the magnitude distribution and

setting eight non-uniform decision intervals experimentally with the quantization levels as the midpoint

of these intervals. This experimental design was selected, due to the di�culty of relating the quantization

error in reection coe�cients to the visual error in the reconstructed texture. Finer quantization with

more than eight levels for the magnitude produced little visible advantage.

A reection coe�cient was selected for quantization if its magnitude exceeded 0.05, otherwise, it was

set to zero. Since in most circumstances, few of the eighty-four coe�cients were quantized, it was decided

to transmit their location indices by run-length coding. The run-length symbols describing the lengths

of runs of zeros were then entropy coded using an adaptive arithmetic code. The indices of the non-zero

quantizer levels were also entropy coded, using a Hu�man code with �xed probabilities calculated from

the histogram of the reection coe�cients and the quantizer characteristic.

3.3 Coding of Deterministic Field

In the extraction of the deterministic �eld, the cosinusoidal and sinusoidal components in (3) and (4)

are real and imaginary parts of DFT coe�cients. If the texture generator were a homogeneous random

�eld having the strong mixing property, (i.e., the autocorrelation function decays su�ciently fast with

increasing lag values), the extracted DFT components would be asymptotically Gaussian and statistically
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independent [5]. In general, the texture random �eld is non-ergodic and therefore does not possess the

strong mixing property. Nevertheless, lacking no better model, we assume Gaussian and quantize, using

the same Gaussian quantizer, each component of every (non-redundant) DFT coe�cient whose magnitude

exceeds a certain threshold. The minimum mean-squared-error uniform quantizer of 32 quantization levels

proved to be a satisfactory choice. Theoretically, the entropy of H = 4:4 bits/component of this quantizer

can be achieved by entropy coding if the Gaussian model is accurate. Otherwise, the Gaussian entropy

serves as an upper bound for a given mean square error. Because the outputs of these quantizers were

entropy coded with an adaptive arithmetic code, the actual average number of bits per component usually

fell below the Gaussian entropy.

The suprathreshold DFT coe�cients are relatively few in number, and can occur at any spatial

frequency with equal probability. Therefore, the location indicators of the suprathreshold coe�cients

were encoded with a run-length code, where the runs of zeros signaling subthreshold coe�cients were

entropy coded with an adaptive arithmetic code.

4 Coding Results

Six original textures of size 64� 64 and 256 gray levels were chosen for coding. For any of these textures,

the reconstruction quality could not be anticipated by setting beforehand a coding rate. Even if one

could set such a rate, the allocation of that rate between the deterministic and indeterministic �elds can

not be determined, because the usual mathematical criteria such as squared error are of questionable

value in evaluating reconstruction quality. Therefore, neither a rate target nor a rate allocation was

attempted. Instead, magnitude thresholds were set for the reection coe�cients and the DFT coe�cients

and whatever total rate resulted from the subsequent quantization of the suprathreshold coe�cients and

their run-length encoded locations was accepted.

Table 2 presents the number of bits which were used for representation of the indeterministic and

deterministic �elds for each of the six textures. These numbers are actual bits counted, not entropies.

Note that there seems to be no consistent division of the bits between the two �elds. The coding rate

measured by the average number of bits per pixel varied from 0.08 to 0.23 bits per pixel. In order to assess

the quality and e�ciency of the reconstructions, we decided to encode the same textures using the JPEG

algorithm. Two alternative JPEG coding schemes were tested. The �rst one uses a uniform quantizer,

while in the second the quantization matrix is computed for each texture according to its statistics (and

hence must be transmitted as well). Since the uniform quantization yields higher quality reconstructions,

at rates that are not much higher than the adaptive scheme, only results using the uniform quantization

JPEG coding are presented. The JPEG coding rate is such that it gives a roughly similar visual quality

as our reconstructions. The JPEG rates turned out to be much higher than the coding rates with our

parametric texture representation as shown in the two right columns of Table 2. The other obvious

strategy is to set the JPEG coding rate to be the same rate obtained for the parametric model. However,

6



at such low rates, the JPEG procedure broke down entirely, as the recommended tables supplied with

the software could not be adapted to work for such low rates.

We present in Figure 2 the original, the model based reconstruction, and the JPEG reconstruction for

the six textures at the coding rates given in Table 2. Despite the higher rates, the JPEG reconstructions

are inferior to the model-based ones, as they display blocking e�ects and tend to smooth the characteristic

roughness of the textures. It is evident that our coding method obtains a high quality rendition of the

original and is superior to the JPEG method applied at much higher rates.

5 Conclusions

We have presented a novel approach for coding textured images, whereby the images are decomposed into

a 2-D Wold-like representation and the parameters of this representation are encoded. We have proved,

through enactment of a coding scheme for the parameters, that both high quality reconstructions and

low bit rates are simultaneously achievable for a wide variety of natural textures. We conclude that this

new approach is promising and viable for encoding of textured images.
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Figure 1: RNSHP total-order de�nition.

1. Test for the existence of deterministic components (i.e., test for the existence
of 1-D and 2-D delta functions in the periodogram).

2. Construct a �lter which is \1" at the frequencies of the detected 2-D delta
functions, and \0" elsewhere.

3. Filter the sample DFT through the �lter of step 2, and compute the inverse
transform to obtain the estimated harmonic component.

4. Remove the contribution of the estimated harmonic component from the
data.

5. Construct a �lter which is \1" at the frequencies of the detected 1-D delta
functions, and \0" elsewhere.

6. Filter the sample DFT through the �lter of step 5, and compute the inverse
transform to obtain the estimated evanescent components.

7. Remove the contribution of the estimated evanescent components from the
data.

At this stage the residual image contains no deterministic components.

8. Apply a 2-D Levinson-type algorithm to estimate the 2-D AR model param-
eters of the residual (the purely indeterministic component).

Table 1: The Estimation Algorithm.
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Figure 2: Coding results for six texture �elds. From left to right: original, reconstruction from model
based coding, and reconstruction from JPEG coding of the textures. From top to bottom: Texture 1
through Texture 6.
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Texture Indeterministic Deterministic Total Number of
Number Components Components (Including Bits/Pixel

8-bits for
Mean) Model Based JPEG

Coding

1 74 480 554 0.14 1.16

2 74 592 666 0.16 1.28

3 90 520 610 0.15 1.56

4 60 864 924 0.23 1.24

5 202 136 338 0.08 0.76

6 267 584 851 0.21 1.36

Table 2: Coding results. Total bits and rates required for the experiment textures. The right column

gives the required JPEG rate.
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