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Abstract— We study the diversity-multiplexing tradeoff (DMT)
for the slow fading interference channel with a relay (ICR).
We derive four inner bounds on the DMT region: the first
is based on the compress-and-forward (CF) relaying scheme,
the second is based on the decode-and-forward (DF) relaying
scheme, and the last two bounds are based on the half-duplex
(HD) and full-duplex (FD) amplify-and-forward (AF) schemes.
For the CF and DF schemes, we find conditions on the channel
parameters and the multiplexing gains, under which the cor-
responding inner bound achieves the optimal DMT region. We
also identify the cases in which the DMT region of the ICR
corresponds to that of two parallel slow fading relay channels,
implying that interference does not decrease the DMT for each
pair, and that a single relay can be DMT-optimal for two pairs
simultaneously. For the HD-AF scheme, we derive conditions
on the channel coefficients under which the proposed scheme
achieves the optimal DMT for the AF-based relay channel.
Finally, we identify the conditions under which adding a relay
strictly enlarges the DMT region relative to the interference
channel without a relay.

Index Terms— Interference, relay networks, diversity methods,
multiplexing, wireless networks.

I. INTRODUCTION

THE interference channel with a relay (ICR) is a canonical
network model in which a relay helps two independent

transmitters, Tx1 and Tx2, in sending messages to their corre-
sponding receivers, Rx1 and Rx2, simultaneously over a shared
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channel. The ICR provides design insights and performance
bounds on cooperation strategies for wireless networks with
interference.

The ICR was first studied in [1] and has since been
the focus of considerable research. Inner and outer bounds
on the capacity region of the two-user ICR with additive
white Gaussian noise (AWGN) were characterized in [1]–[3].
In [1] an achievable region was obtained by employing
a rate-splitting scheme at the transmitters, a decode-and-
forward (DF) strategy at the relay, and a backward decoding
scheme at the receivers. The work in [2] used the compress-
and-forward (CF) strategy at the relay to obtain an achievable
rate region. Outer bounds for the AWGN-ICR were obtained
by applying the cut-set bound in [2] and [3], and by using a
potent relay in combination with genie-aided methods in [2].
Capacity regions for ergodic phase-fading and for ergodic
Rayleigh fading ICRs in the strong interference regime were
characterized in [4] for the case in which the source-relay links
are good, i.e., when DF achieves capacity.

The diversity-multiplexing tradeoff (DMT), first introduced
in [5], characterizes the fundamental tradeoff between rate
and reliability for multiple-antenna channels in the high
signal-to-noise ratio (SNR) regime. In general, employing
multiple-input multiple-output (MIMO) schemes allows higher
rates compared to single-antenna schemes. However, these
schemes require the physical dimensions of the nodes in a
network to be large enough such that (s.t.) it is practical to
mount a multiple-antenna array on each node.

In recent studies it was shown that some of the benefits
of MIMO from the DMT perspective can be gained through
user cooperation rather than using physical multiple-antenna
arrays. In [6], the DMT characteristics of several relaying
configurations were derived for both half-duplex (HD) and
full-duplex (FD) relaying in two scenarios: (1) A clustered
scenario, in which the relay nodes are clustered either with the
source or with the destination (the channel between the nodes
in the cluster is modeled as an AWGN channel), and (2) A non-
clustered scenario, in which all channel coefficients matrices
have independent and identically distributed (i.i.d.) Rayleigh-
distributed entries. Specifically, [6] first studied the DMT of
FD multiple-antenna single-relay channels and showed that
while the DF scheme is optimal for single-antenna relay
channels, it is suboptimal for multiple-antenna relay channels.
On the other hand, CF was shown to be optimal for the
MIMO relay channel over the whole range of multiplex-
ing gains, and for both clustered and non-clustered relay
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networks using either HD or FD relay nodes. Finally, [6]
compared different cooperation strategies and models against
conventional MIMO schemes and concluded that in many
scenarios relaying cannot achieve the same DMT as non-
virtual MIMO systems. In [7] it was shown that quantize-map-
and-forward (QMF) achieves the optimal DMT for certain
configurations of the HD relay channel without channel state
information (CSI) at the relay node. DMT analysis of the
two-hop two-way MIMO relay channel was presented in [8],
which showed that in such a scenario CF at the relay is opti-
mal. The work in [8] also proposed a dynamic CF protocol for
the one-way multi-hop MIMO relay channel with a HD relay
node, and showed that this scheme achieves the optimal DMT.

The DMT of the single-antenna block Rayleigh fading
interference channel (IC) was studied in [9] for the scenario
in which CSI is available both at the receivers (Rx-CSI) and
at the transmitters (Tx-CSI), and in [10] for the scenario with
only Rx-CSI. In [10], it was shown that in the very strong
interference regime, successive decoding with interference
cancellation is DMT optimal. Since for the ergodic fading
case, using the approach of [10] achieves the capacity region
of the IC [4], it follows that the same strategy is optimal from
both DMT and capacity perspectives. Additionally, for general
interference regimes, [10] proposed a transmission scheme
using a Han-Kobayashi [11] type superposition encoding,
in which each receiver jointly decodes the common mes-
sages from both transmitters, and the private message from
its intended transmitter. This scheme was shown to be
DMT optimal in the strong and in the very strong interference
regimes, and over a certain range of multiplexing gains.
The DMT region of the block Rayleigh fading Gaussian
MIMO ICR was studied in [12] for the case where all links
have the same exponential behavior as a function of the SNR.
In [12], an outer bound on the DMT was derived using the
cut-set theorem, and an achievable DMT was characterized
using CF at the relay subject to probabilistic conditions.
The generalized degrees of freedom (GDoF) of the ICR was
studied in [13] where new outer bounds on the achievable
GDoF of the ICR were derived using genie-aided methods.
The work [13] also proposed a functional decode-and-
forward (FDF) strategy which was shown to achieve the
optimal GDoF of the ICR given some constraints on the gains
of the links in the channel. It was also shown in [13] that
relaying can increase the GDoF compared to the IC.

A. Main Contributions

In this work we present results on the DMT region of the
single-antenna ICR considering both FD and HD relaying.
We consider the scenario in which the receivers have perfect
Rx-CSI, but there is no Tx-CSI at the sources. We allow
the direct link gains, the interfering link gains, the source-
relay link gains, and the relay-destinations link gains to scale
differently as exponential functions of the SNR, and focus on
characterizing the effects of the relationship between interfer-
ence and cooperation on the DMT region. The channel model
is symmetric in the sense that the scaling of the corresponding
links at both pairs is identical.

The main contributions of this work are:

1) Four achievable DMT regions are derived based on the
CF, DF, and the HD and FD AF relaying schemes.
For each scheme, we analyze the effect of the cross-
link gains (interference), the relay-destination link gains
(cooperation), and the source-relay links gains on the
achievable DMT region.

2) We derive sufficient conditions under which each of the
schemes DF and CF achieves the optimal DMT. Based
on the optimality results, we further obtain sufficient
conditions under which the ICR has the same DMT
as that of two parallel single-relay channels. Thus, the
relay assistance to one pair does not degrade the DMT
performance at the other pair, and a single relay is simul-
taneously DMT-optimal for two separate communicating
pairs sharing one channel.

3) For the AF scheme, we derive conditions under which
each pair in the ICR has a DMT which is equal to the
best known DMT for the relay channel with AF relaying.

4) We compare the DMT of the ICR with that of the IC,
and provide sufficient conditions under which adding a
relay to the IC strictly increases the DMT region.

The rest of the paper is organized as follows: The channel
model and notation are presented in Section II. The DMT
performance with CF at the relay is studied in Section III,
and the DMT performance with DF relaying is studied
in Section IV. AF relaying is studied in Section V for the
HD and the FD regimes. Concluding remarks are presented
in Section VII.

II. NOTATION AND SYSTEM MODEL

In the following we denote random variables (RVs) with
upper-case letters, e.g., X , Y , and their realizations with
lower-case letters, e.g., x, y. We denote the probability density
function (p.d.f.) of a continuous complex-valued RV X with
fX (x). For brevity, the subscript X may be omitted when
it is the upper-case version of the realization symbol x .
Upper-case double-stroke letters are used for denoting
matrices, e.g., A, with the exception that E{X} denotes the
stochastic expectation of X . Im denotes the m × m identity
matrix. Bold-face letters, e.g., x, denote column vectors
(unless otherwise specified), and the i ’th element of
a vector x is denoted by xi . We use x j to denote the vector
(x1, x2, . . . , x j−1, x j ), X∗ to denote the conjugate of X , AH

to denote the Hermitian transpose of A, and (x)+ to denote
max {x, 0}. Given two n × n Hermitian matrices, A,B, we
write B � A if A − B is positive semidefinite (p.s.d.) and
B ≺ A if A − B is positive definite (p.d.). A(n)

ε (X) denotes
the set of weakly jointly typical sequences with respect to
fX (x), as defined in [23, Sec. 8.2]. We denote the circularly
symmetric, complex Normal distribution with mean μ and
variance σ 2 with CN (μ, σ 2), and the set of complex numbers
with C. Lastly, we denote f (ρ)

.= ρc if limρ→∞ log f (ρ)
log ρ = c.

Given f (ρ)
.= ρc and g(ρ)

.= ρd , we write f (ρ)≤̇g(ρ) if
c ≤ d . All logarithms are to base 2.

The ICR consists of two transmitters, two receivers, and a
relay node that assists communications from the transmitters
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Fig. 1. The ICR model. ρ denotes the SNR.

to their respective receivers, as shown in Fig. 1. Txk sends
messages to Rxk , k = 1, 2. The received signals at Rx1,
Rx2 and at the relay at time i are denoted by Y1,i, Y2,i,
and Y3,i respectively. The channel inputs from Tx1, Tx2 and
the relay at time i are denoted by X1,i, X2,i, and X3,i,
respectively. Let ρ denote the average received SNR over the
direct link for both pairs, and let Hkl denote the normalized
channel coefficient from node k to node l, s.t. its variance is
normalized to one. We assume that all normalized channel
coefficients are generated i.i.d. according to CN (0, 1). The
relationship between the channel inputs and outputs at time
i, i = 1, 2, . . ., n, is characterized by the following equations:

Y1,i = √
ρH11X1,i +

√
ρα H21X2,i +

√
ρβ H31X3,i +Z1,i (1a)

Y2,i = √
ρα H12X1,i +√

ρH22X2,i +
√

ρβ H32X3,i +Z2,i (1b)

Y3,i = √
ργ H13X1,i +

√
ργ H23X2,i + Z3,i , (1c)

Here, Z1,i , Z2,i , and Z3,i are mutually independent RVs,
distributed according to CN (0, 1), independent over time and
independent of the channel inputs and of the normalized
channel coefficients. Each channel input has a per-symbol
unit power constraint: E{|Xk,i |2} ≤ 1, k ∈ {1, 2, 3}. The
normalized channel coefficients are generated at the beginning
of the codeword, and once determined, they remain fixed
throughout the transmission of the entire codeword, which
corresponds to slow fading.

Note that in (1), the cross-link gains scale as
√

ρα , the
relay-destination link gains scale as

√
ρβ , the source-relay link

gains scale as
√

ργ , and the source-destination link gains scale
as

√
ρ. This allows us to identify the impact of the scaling of

the links in the channel on the DMT. The SNR exponents
in (1) define the ratio of the strength of different links
in decibels. This model is very common in high SNR
analysis of interference networks, see also [10], [13]–[15].
From a physical point of view, the different exponents rep-
resent different pathloss scaling behaviour due to different
propagation conditions. The values of these exponents depend
on the geographical setup and on whether a line-of-sight (LOS)
exists between a transmitter and a receiver. Specifically, let
l denote the distance between a transmitter and a receiver.
Then, as observed, e.g. in [20], the received signal power at the
receiver (and therefore the SNR1) scales proportionally to l−η,

1In this work we fix the power of the additive white Gaussian noise to one.

where η is commonly referred to as the pathloss exponent.
Different studies show that the LOS pathloss exponents in
indoor environments range from 1 to 2, while non-LOS
pathloss exponents typically range from 3 to 7 [20].

The following CSI assumptions are made for the different
schemes studied in this work:

• In the study of CF relaying in Section III, it is assumed
that Rxk has Rx-CSI on all of its incoming links. This
Rx-CSI is represented by H̃k �

(
H1k, H2k, H3k

) ∈ C3 �
H̃k, k ∈ {1, 2}. It is also assumed that the relay has
Rx-CSI represented by H̃3 � (H13, H23) ∈ C2 � H3.
In this section only, we assume that the relay also has
Tx-CSI on its outgoing links represented by H̃3,T �
(H31, H32) ∈ C2.

• In the study of DF relaying in Section IV, it is assumed
that the receivers and the relay have only Rx-CSI, each
on its incoming links. The Rx-CSI of Rxk is H̃k, k = 1, 2,
and the Rx-CSI of the relay is H̃3.

• In the study of AF relaying in Section V, it is assumed
that the relay has only Rx-CSI, H̃3, and that Rxk, k = 1, 2
has Rx-CSI on its incoming links and on the incoming
links of the relay, i.e., (H̃k, H̃3).

• Throughout this work, there is no Tx-CSI at Tx1 or
at Tx2.

Finally, we let H̃ � (H̃1, H̃2, H̃3, H̃3,T ) be the vector of all
channel coefficients.

Definition 1: An (R1, R2, n) code for the slow-fading ICR
consists of two message sets Mk �

{
1, 2, . . . , 2nRk

}
, k = 1, 2,

two encoders at the sources, ek : Mk 
→ Cn , k = 1, 2, and two
decoders at the destinations, gk : H̃k × Cn 
→ Mk , k = 1, 2.
With Rx-CSI only, the transmitted signal at the relay at time i
is x3,i = ti

(
yi−1

3,1 , h̃3
) ∈ C, i = 1, 2, . . . , n. With both Rx-CSI

and Tx-CSI at the relay we have x3,i = ti
(
yi−1

3,1 , h̃3, h̃3,T
) ∈ C.

We denote a coding scheme by Sc.
Definition 2: The average probability of error where each

sender selects its message independently and uniformly
from its message set is P(n)

e � Pr
(
g1(H̃1, Y n

1 ) �= M1 or
g2(H̃2, Y n

2 ) �= M2
)
.

Definition 3: A rate pair (R1, R2) is called achievable if for
any ε>0 and δ>0 there exists some blocklength n0(ε, δ) s.t.
for every n > n0(ε, δ) there exists an (R1 −δ, R2 −δ, n) code

with P(n)
e < ε. R(h̃,Sc, ρ) denotes the maximum achievable

rate region, achieved by a coding scheme Sc for the ICR
whose channel coefficients are h̃, and the direct-link SNR
is ρ.

Definition 4: The probability of an outage event in the
slow-fading ICR, for the scheme Sc and target rates R1,T for
pair Tx1-Rx1, and R2,T for pair Tx2-Rx2, is defined as:

PO(R1,T , R2,T , ρ,Sc) � Pr
(
(R1,T , R2,T ) /∈ R(H̃ ,Sc, ρ)

)
.

Definition 5: We say that a coding scheme Sc for the
ICR achieves multiplexing gains (r1, r2), if there exist rates(
R1(h̃,Sc, ρ), R2(h̃,Sc, ρ)

) ∈ R(h̃,Sc, ρ) that scale as
(see [6, Sec. III])

lim
ρ→∞

Rk(h̃,Sc, ρ)

log(ρ)
= rk, k = 1, 2.
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Definition 6: We say that a scheme Sc achieves a diversity
gain of d(r1, r2) for multiplexing gains (r1, r2), if
(see [6, Sec. III])

− lim
ρ→∞

log PO
(

r1 log(ρ), r2 log(ρ), ρ,Sc

)

log(ρ)
= d(r1, r2).

III. RX-CSI AND TX-CSI AT THE RELAY:
COMPRESS-AND-FORWARD

A. An Outer Bound on the DMT Region

When the receivers have Rx-CSI and the relay has
Rx-CSI and Tx-CSI, we have the following outer bound on
the DMT region:

Proposition 1: An outer bound on the DMT region of the
symmetric ICR is given by

d+(r1, r2) = min
k∈{1,2,3,4}

{
d+

k (r1, r2)
}
, (2)

where,

d+
1 (r1, r2) = (1 − r1)

+ + (γ − r1)
+ (3a)

d+
2 (r1, r2) = (1 − r1)

+ + (β − r1)
+ (3b)

d+
3 (r1, r2) = (1 − r2)

+ + (γ − r2)
+ (3c)

d+
4 (r1, r2) = (1 − r2)

+ + (β − r2)
+ (3d)

Proof: The DMT outer bounds presented in (3) are obtained
by applying the cut-set bound [23, Th. 15.10.1] to the ICR.
A detailed proof is provided in Appendix A.

We note that the mutual information expressions in the
cut-set outer bound, which is the basis for deriving the
DMT outer bound, are simultaneously maximized by mutu-
ally independent complex Normal channel inputs, each with
zero-mean and unit power [4, Appendix C].

B. An Achievable DMT Region via
Compress-and-Forward Relaying

We now derive an achievable DMT region based on
CF relaying and provide sufficient conditions under which
this region coincides with the DMT outer bound (2), leading
to the characterization of the optimal DMT of the ICR. The
achievability scheme is based on a special case of [2] in which
the sources transmit only common messages. The result is
summarized in the following theorem:

Theorem 1: An inner bound on the DMT region of the
symmetric slow-fading Gaussian ICR is given by:

d−
CF(r1, r2) = min

k∈{1,2,3}

{
d−

k,CF(r1, r2)
}
, (4)

where,

d−
1,CF(r1, r2) =

{
(1−r1)

++(γ −(γ +α−β)+−r1
)+

α>1

(1−r1)
++(γ −(γ +1−β)+−r1

)+
α≤1

(5a)

d−
2,CF(r1, r2) =

{
(1−r2)

++(γ −(γ +α−β)+−r2
)+

α>1

(1−r2)
++(γ −(γ +1−β)+−r2

)+
α≤1

(5b)

d−
3,CF(r1, r2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1−r1−r2)
+ + (α−r1−r2)

+

+(γ −(γ +α−β)+−r1−r2
)+

α>1

(1−r1−r2)
+ + (α−r1−r2)

+

+(γ −(γ +1−β)+−r1−r2
)+

α≤1

(5c)

Proof: The proof is provided in Appendix B.
Corollary 1: Consider the symmetric slow-fading Gaussian

ICR defined in Section II. If

β ≥ max{γ + 1, γ + α} (6a)

min
{
(1−r1)

++(γ −r1)
+, (1−r2)

++(γ −r2)
+}

≤ (1−r1−r2)
++(α−r1−r2)

++(γ −r1−r2)
+, (6b)

then the optimal DMT region is

dOpt−CF(r1, r2) = min
{
(1 − r1)

+ + (γ − r1)
+,

(1 − r2)
+ + (γ − r2)

+}, (7)

and it is achieved with CF at the relay.
Proof: The corollary follows from Theorem 1. Note that

when β ≥ max{γ + 1, γ + α} and (6b) is satisfied, then the
achievable DMT region of the CF scheme is min

{
(1−r1)

+ +
(γ − r1)

+, (1 − r2)
+ + (γ − r2)

+} which coincides with the
DMT outer bound derived in Proposition 1.

C. Discussion

The Physical Meaning of Conditions (6): To understand the
physical meaning of conditions (6) note that ρβ

ρ represents
the relay-destination SNR, treating only the desired signal
as noise, and ρβ

ρα represents the relay-destination SNR, treat-
ing only the interference as noise. Condition (6a) can now
be rewritten as min{β − 1, β − α} > γ, or equivalently,
min

{
ρβ

ρ , ρβ

ρα

}
> ργ. Thus, (6a) can be interpreted as requiring

that the SNR of the relay-destination link (i.e., min{ρβ

ρ , ρβ

ρα })
be higher than the SNR of the source-relay link (i.e., ργ).
It follows that this conditions guarantees that the relay be able
to reliably convey its received information to destination nodes
using only minor compression. The second condition, stated
in (6b), requires that the multiplexing gains be such that jointly
decoding both messages at the destination (with the help of the
relay) does not constrain the individual rates. The combination
of this condition with the fact that the relay can reliably convey
its information to the destination nodes leads naturally to the
optimality of the CF scheme used in Theorem 5.

On the Equivalence to the DMT of Two Parallel Relay
Channels: Note that under the conditions of Corollary 1,
(7) corresponds to the optimal DMT of two interference-free
parallel relay channels. This can be seen by inspecting the
cut-set bound for the relay channel. The relationship between
the channel inputs and outputs for the relay channel at times
i = 1, 2, . . . , n, is given by:

Y1,i = √
ρH11X1,i +

√
ρβ H31X3,i + Z1,i

Y3,i = √
ργ H13X1,i + Z3,i ,

where X1 and X3 denote the transmitted signals of the
source and of the relay, respectively, and Y1 and Y3
denote the received signals at the destination and at the
relay node, respectively. The rest of the definitions are as
given in Section II. Let H r = (H11, H13, H31). From
[6, Eqs. (4), (5)], for a given realization h r the capacity of
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the relay channel is upper-bounded by

CRelay(h r ) ≤ max
f (x1,x2)

min
{

I (X1, X3; Y1|h r ),

I (X1; Y1, Y3|X3, h r )
}
.

Following steps similar to [12, Proof of Th. 1], we bound each
expression as follows:

I (X1; Y1, Y3|X3, h r ) ≤ log
(

1 + ρ|h11|2 + ργ |h13|2
)

= log
(

1 + ρ1−θ11 + ργ−θ13
)

(8)

I (X1, X3; Y1|h r ) ≤ log
(
ρ1−θ11 + 2 · ρ

1−θ11+β−θ31
2

+ ρβ−θ31 + 1
)
. (9)

Hence, the DMT of the relay channel is upper-bounded by

d+
Relay(r)=min

{
(1−r)+ + (γ −r)+, (1−r)+ + (β − r)+

}
.

(10)

Next, recall that in Corollary 1 we have β ≥ γ +1. Comparing
d+

Relay(r) and dOpt−CF(r, r), we conclude that for β ≥ γ + 1,
d+

Relay(r) = dOpt−CF(r, r). Thus, under the conditions of
Corollary 1, the optimal DMT of the ICR coincides with
the outer bound on the optimal DMT of two interference-
free parallel relay channels. Hence, a single relay employing
the CF strategy in this situation is DMT optimal for both
communicating pairs simultaneously, and in fact interference
does not degrade the DMT performance in this case.

Notes on the Optimality of CF: Observe that there exist
values of α and β for which DMT optimality of CF holds
over the entire range of multiplexing gains, i.e., for any
0 ≤ r1, r2 ≤ 1. One such example is when γ = 1, α = 2
and β = 3. However, if β < max{γ + 1, γ + α}, CF is not
DMT-optimal in the sense that its achievable DMT region does
not coincide with the DMT outer bound derived based on the
cut-set theorem (we cannot rule out a tighter outer bound for
this scenario). To understand the reason for this, note that as
stated in the previous discussion, when the relay-destination
links are strong (large β), then the compression loss at the
relay is minor which allows conveying the relay information
to the destinations with negligible distortion. However, if the
relay-destination links are not strong enough, i.e., if β <
max{γ + 1, γ + α}, then the compression loss at the relay
is substantial. As a result, much of the information received at
the relay is not conveyed to the destinations, leading to sub-
optimality of CF. It follows that the achievable DMT region of
the CF-based scheme used for deriving Theorem 1 coincides
with the DMT region derived from the cut-set bound only
over a strict subset of channel coefficients, contrary to the
situation for the CF scheme in the single-relay channel, as
observed in [6]. This difference is due to the fact that unlike
the single-relay channel, in the ICR there is interference,
and hence the relay-destination links should be stronger than
in the case of single-relay channel in order for CF to be
optimal. This follows since the destination has to be able to
decode the relay signal in the presence of interference. An
alternative to CF in situations where the relay-destination links
are too weak for CF optimality is to use the DF scheme.

However, DF has other limitations due to the required source-
relay link strength. This is discussed in detail in the next
section.

Furthermore, note that from Theorem 1 it follows that
when α ≤ 1, i.e., when interference is weak, the achievable
DMT region obtained with CF at the relay (when each receiver
decodes both messages) is an increasing function of α, that is,
increasing the interference between the communicating pairs
enlarges the DMT region. On the other hand, if α > 1, i.e., if
interference is strong, then there are two cases:

• When β ≥ γ + α, then (5a) and (5b) do not depend
on α, while (5c) increases as α increases. We conclude
that in this case, the DMT region with CF is enlarged
as the interference becomes stronger. This is because
the cooperation links are strong enough to support the
required relay information rate and to facilitate decoding
of the interference and of the desired message at each
receiver.

• When β < γ + α and r1 + r2 ≤ min{β − α, α}, then
(5a) and (5b) decrease as α increases, while (5c) does not
depend on α. Thus, increasing the interference decreases
the achievable DMT obtained with the CF strategy. This
follows as the SNR at the relay-destination links is not
high enough for the relay to convey the information on
its received signal to the destinations without substantial
compression, and hence, its assistance is limited. Thus,
increasing α decreases the DMT.

Additionally, it can be observed that the achievable
DMT region of CF is a non-decreasing function of β, which
represents the strength of the cooperation links from the
relay to the destinations. Thus, better relay-destinations links
(i.e., better cooperation) improves the DMT performance for
the ICR. Similarly, note that the DMT region of CF is a non-
decreasing function of γ, which corresponds to the strength
of the source-relay links. Thus, strong source-relay links
(i.e., increasing the reliability of the information at the relay)
increases the achievable DMT for the ICR as well.

Maximum Achievable Diversity Gain With CF: For the
Gaussian ICR defined in Section II, the maximum achievable
diversity gain with CF relaying is:

dmax
CF =

{
1 + min

{
γ, (β − α)+

}
α > 1

1 + min
{
γ, (β − 1)+

}
α ≤ 1.

In [6] it is shown that for the single relay channel with
γ = β = 1, the maximum achievable diversity gain is 2 and
it is achieved with CF at the relay. Note that in the ICR with
γ = 1, and α ≤ 1 there are two cases:

• If β ≥ 2, then we have dmax
CF = 2

• If β < 2, then we have dmax
CF = β < 2.

Hence, when α ≤ 1, although the DMT region of the ICR
increases with α (see also the discussion above), the maximal
diversity gain of the ICR does not depend on α. Lastly,
we note that when α ≤ 1, β < 2, and γ = 1, then the
maximal diversity gain of the CF scheme (as implemented
in Theorem 1) is smaller than the diversity gain of the
relay channel. Thus, interference decreases the diversity gain
(subject to joint decoding at the receivers).
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For the scenario with γ = 1 and α > 1:

• If β ≥ 1 + α, then we have dmax
CF = 2

• If β < 1 + α, then we have dmax
CF = 1 + (β − α)+ ≤ 2.

It follows that when γ = 1, α > 1 and β ≥ 1 + α, although
the DMT region of the ICR generally increases with α, the
maximal diversity gain of the ICR does not depend on α.
For the scenario in which γ = 1, α > 1, and β < 1 + α,
both the maximal diversity gain and the DMT region of the
ICR decrease with respect to α.

In conclusion, in the ICR (with γ = 1) the same
diversity gain as that of the relay channel is achieved
if β ≥ max{2, α + 1}. This is due to the fact that
unlike the single-relay channel, in the ICR there is inter-
ference and therefore, in order to achieve the same diver-
sity gain, the relay-destination links in the ICR should be
stronger than that in the single-relay channel to overcome the
interference.

CF Relaying Can Increase the DMT of the IC: We note
that the relay can enlarge the DMT region of the IC in certain
regimes: The DMT region of the IC without a relay was
outer bounded in [9, Th. 1] by min

{
(1 − r1)

+, (1 − r2)
+}.

This outer bound can be achieved in certain regimes, e.g., in
the very strong interference regime, characterized by α ≥ 2
[10, Sec. VI]. Note that in the scenario considered
in Corollary 1, if we consider γ = 1, then the achievable DMT
of ICR is twice the maximum achievable DMT of the IC. Note
that for values of γ > 1, this gap becomes even larger, i.e., the
achievable DMT of the ICR becomes strictly larger than twice
the maximum achievable DMT of the IC. Furthermore, from
Theorem 1 it follows that the DMT performance of the ICR
is better than that of the IC also in the scenarios where CF is
not DMT optimal: for example, when β ≥ max{γ + 1, γ +α}
and

min
{
(1−r1)

+, (1−r2)
+}≤ (1−r1−r2)

+ + (γ −r1−r2)
+

+ (α − r1 − r2)
+ ≤ min

{
(1 − r1)

+ + (γ − r1)
+,

(1 − r2)
+ + (γ − r2)

+},

the optimal DMT region of the IC [10] is dOpt−IC(r1, r2) =
min

{
(1 − r1)

+, (1 − r2)
+}, while for the ICR d−

CF(r1, r2) =
(1 − r1 − r2)

+ + (γ − r1 − r2)
+ + (α − r1 − r2)

+, and hence,
dOpt−IC(r1, r2) ≤ d−

CF(r1, r2). These observations motivate the
use of relaying in wireless networks.

IV. RX-CSI ONLY AT THE RELAY:
DECODE-AND-FORWARD

A. DMT Outer Bound

Since the case with only Rx-CSI at the relay is a special
case of Proposition 1, the outer bound of Proposition 1 is
an outer bound also for the case where both the receivers
and the relay have only Rx-CSI. Thus, we have the following
proposition:

Proposition 2: For the symmetric ICR with Rx-CSI
only at the relay, the region d+(r1, r2) defined in
Equations (2)-(3) is an outer bound on the DMT
region.

B. An Achievable DMT Region via
Decode-and-Forward Relaying

We begin with a statement of the achievable DMT region:
Theorem 2: Define d−

DF(r1, r2) as follows:

d−
DF(r1, r2) =

⎧
⎪⎨

⎪⎩

min
{
dIC(r1, r2) + dRelay(r1,r2),

dCoop.(r1, r2)
}

r1+r2 <γ

dIC(r1, r2) r1+r2 ≥γ,

(11)

where

dRelay(r1, r2) = min
{
(γ −r1)

+, (γ −r2)
+, 2(γ −r1−r2)

+}

(12a)

dIC(r1, r2) = min
{
(1−r1)

+, (1−r2)
+,

(1−r1−r2)
++(α−r1−r2)

+} (12b)

dCoop.(r1, r2) = min
{
(1−r1)

++(β−r1)
+, (1−r2)

++(β−r2)
+,

(1−r1−r2)
++(α−r1−r2)

+

+ (β−r1−r2)
+}. (12c)

Then, d−
DF(r1, r2) is an achievable DMT for the symmetric

slow-fading Gaussian ICR.
Proof: The proof is provided in Appendix C.
Corollary 2: Consider the symmetric slow-fading Gaussian

ICR as defined in Section II. If the following conditions are
satisfied:

r1 + r2 ≤ γ (13a)

max
{
(γ −r1)

+, (γ −r2)
+} ≤ 2(γ −r1−r2)

+ (13b)

max
{
(1−r1), (1−r2)

}≤ (1−r1−r2)
++(α−r1−r2)

+ (13c)

max
{
(1−r1) + (β−r1)

+, (1−r2) + (β−r2)
+} ≤

(1−r1−r2)
++(α−r1−r2)

++(β−r1−r2)
+, (13d)

then, the optimal DMT is

dOpt−DF(r1, r2)

= min
{
(1−r1)

+ + (γ −r1)
+, (1−r2)

+ + (γ −r2)
+,

(1−r1)
+ + (β−r1)

+, (1−r2)
+ + (β−r2)

+},
(14)

and it is achieved with DF at the relay.
Proof: The proof is based on Theorem 2. Note that

when (13) is satisfied, then (11) coincides with (2), character-
izing the optimal DMT for the Gaussian ICR.

C. Discussion

The Physical Meaning of Conditions (13): There are four
conditions in Corollary 2. These conditions correspond to
different requirements on the multiplexing gains and on
the SNR exponents in the channel. The conditions can be
interpreted as follows:

• The first condition in (13a) requires that the multiplexing
gains be small enough such that jointly decoding both
messages at the relay does not result in an outage,
otherwise, DF is not useful and the ICR scales back to
the IC, see [10].
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• The second condition in (13b) requires that joint decoding
at the relay does not limit the individual rates at the relay.

• The third condition in (13c) requires that when the relay
cannot help (i.e., is in outage), then jointly decoding both
the desired message and the interference at the destination
does not constrain the rate of the desired message.

• The fourth condition in (13d) requires that given a suc-
cessful decoding at the relay node, jointly decoding both
the desired message and the interference at the destination
does not constrain the rate of the desired message.

We obtain that the sum of (13b) and (13c) corresponds to the
outage probability at the destination when there is outage at
the relay, and (13d) corresponds to the outage probability at
the destination when the relay is not in outage. Thus, (13b)
combined with (13c) guarantee DMT optimality when the
relay is in outage, and (13d) guarantees DMT optimality when
the relay is not in outage.

On the Optimality of DF: From Theorem 2 we observe
that the achievable DMT region obtained with DF (when
each receiver decodes both messages) is monotonically
non-decreasing as α, β, and γ increase, i.e., the DMT perfor-
mance of the DF scheme improves as either interference, α,
or cooperation (either the relay-destination links, β, or the
source-relay links, γ ) become stronger, or it does not change
when they increase. This is since increasing α facilitates
joint decoding at the destinations. This is contrary to CF for
which there are regimes of α and β in which increasing the
interference decreases the DMT performance.

On the Equivalence to the DMT of Two Parallel Relay
Channels: Setting r1 = r2 = r , we note that under
conditions (13) each Tx-Rx pair achieves a DMT of
min

{
(1 − r) + (γ − r1)

+, (1 − r) + (β − r)+
}
, which coin-

cides with the DMT upper bound for the relay channel (10).
Thus, the optimal DMT (14) in this case corresponds to the
optimal DMT of two interference-free parallel relay channels.
We conclude that the DF strategy can be DMT optimal for both
communicating pairs simultaneously. Note that with CF, DMT
optimality was shown only for β ≥ max{γ +1, γ +α}; but with
DF, optimality is achieved for any value of β satisfying (13),
which represents a wider range of values than that for CF. The
DMT optimality of DF for different scenarios is demonstrated
in Figures 2-4 in the next section. For example, observe
in Fig. 2 that for β = 1 DF is DMT optimal for some
multiplexing gains (e.g. r1 = r2 ≤ 1

3 ) while CF is suboptimal
for all values of multiplexing gains.

Maximum Achievable Diversity Gain With DF: The
maximum diversity gain achieved by the DF scheme is
dmax

DF = min{γ + 1, β + 1}. Compared with the relay channel
whose maximum diversity gain is 2, we conclude that the
DF scheme achieves for each pair the maximum diversity gain
of the relay channel, as long as min{β, γ } ≥ 1. Observe that
this diversity gain is obtained for both pairs simultaneously,
using only a single relay.

DF Relaying Can Increase the DMT of the IC: When DF is
DMT optimal, its DMT region outer bounds the optimal DMT
region of the IC (for the same α). Note that this conclusion
holds for any value of β > 0. Moreover, there are scenarios
in which the achievable DMT for the ICR with DF is strictly

larger than the optimal DMT of the IC even when DF is
not optimal. One such example is when (13a) and (13d)
are satisfied, while (13c) is not satisfied. For example, when
r1 = r2 = 0.4, α = 1.8, β = 1, and γ = 1 then for the ICR
we have a diversity gain of 1, while for the IC the achievable
diversity gain is upper-bounded by 0.6.

V. AMPLIFY-AND-FORWARD AT THE RELAY

In this section we study scenarios in which the relay node
uses the AF scheme. We first consider a relay operating in the
full-duplex mode and then study relaying subject to a half-
duplex constraint. For each mode we propose a transmission
scheme and evaluate its DMT performance. In addition to our
standard Rx-CSI assumption, we assume that each receiver
knows the Rx-CSI at the relay. This can be done by sending
the Rx-CSI at the relay to the receivers with a negligible rate
cost, as the channel is constant during the transmission of the
entire codeword. For simplicity we consider only scenarios in
which γ = 1.

A. An Outer Bound on the DMT Region

Note that the DMT region d+(r1, r2) defined in (2), (3) was
derived when each receiver has CSI on all links in the channel
(see Appendix A for details). Therefore, d+(r1, r2) is an outer
bound on the DMT region of the ICR with a full-duplex relay,
and the ICR with a half-duplex relay.

B. An Achievable DMT Region via Full-Duplex
Amplify-and-Forward Relaying

An achievable DMT region for the ICR with a full-duplex
relay employing the AF strategy is stated in the following
theorem:

Theorem 3: Let d−
AFF D

(r1, r2) be defined as follows:

d−
AFF D

(r1, r2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
(1−r1)

+, (1−r2)
+, (α−1−r1)

+, (α−1−r2)
+
}
β<1

min
{
(2−β−r1)

++(β−1−r1)
+,

(2−β−r2)
++(β−1−r2)

+,

(α−β−r1)
+, (α−β−r2)

+
}

1≤β<2

min
{
(1−r1)

+, (1−r2)
+, (α−β−r1)

+, (α−β−r2)
+
}
β ≥2

(15)

The DMT region d−
AFF D

(r1, r2) is achievable for the symmetric
slow-fading Gaussian ICR.

Proof: The proof is provided in Appendix D.

C. An Achievable DMT Region via Half-Duplex
Amplify-and-Forward Relaying

The noise amplification issue observed when the relay
employs FD-AF at the relay motivates the consideration of
half-duplex relay operation, with the goal of limiting the noise
amplification, and thereby potentially increasing the diversity
gain. In this section, we consider HD-AF relaying in which
each receiver jointly decodes both its desired message and the
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Fig. 2. The effect of the strength of the interference on the achievable DMT of the ICR. (a) α = 0.5, β = γ = 1. (b) α = 1, β = γ = 1.
(c) α ≥ 2, β = γ = 1.

interfering message. The corresponding DMT region, denoted
by d−

AFH D
(r1, r2), is given in the following theorem:

Theorem 4: Let d−
AFH D

(r1, r2) be defined as follows:

d−
AFH D

(r1, r2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
(1−r1)

++(β−2r1)
+, (1−r2)

++(β−2r2)
+,

(1−r1−r2)
++ (α−r1−r2)

++(β−2r1−2r2)
+
}
β ≤1

min

{
max

{
2(1−2r1)

+, (1−2r1)
++( 3−β

2 −r1)
+
}

,

max
{

2(1−2r2)
+, (1−2r2)

++( 3−β
2 −r2)

+
}

,

( 3−β
2 −r1−r2)

++( 2α+1−β
2 −r1−r2)

++(1−2r1−2r2)
+
}
β >1

(16)

The DMT region d−
AFH D,J D

(r1, r2) is achievable for the
symmetric slow-fading Gaussian ICR.

Proof: The proof is provided in Appendix E.

D. Discussion

On the Equivalence to the DMT of Two Parallel Relay
Channels: From Theorem 4 it follows that when β = 1
and α ≥ 2, i.e., when interference is very strong, then the
achievable DMT is

d−
AFH D

(r1, r2) = min
{
(1 − r1)

+ + (1 − 2r1)
+,

(1 − r2)
+ + (1 − 2r2)

+}.

In [18] the class of AF relay channels has been studied and
it has been shown that the nonorthogonal AF (NAF) protocol
achieves the optimal DMT for AF single-relay channels which
was shown in [18, Th. 3] to be d∗(r) = (1 − r)+ + (1 − 2r)+.
Thus, if β = 1 and α ≥ 2, then in the class of
AF protocols, our proposed HD-AF scheme achieves the
optimal DMT for each communicating pair simultaneously,
and the DMT performance corresponds to that of two parallel
relay channels. In fact, in this configuration, interference does
not degrade the performance. This is because here interference
is very strong, and thus, decoding the interfering message

can be done without constraining the rate of the desired
information.

The Impact of Noise Amplification on the Achievable DMT
of AF: Observe that for AF with β ≤ 1, the achievable DMT of
the ICR increases with respect to β, while for β > 1, the DMT
decreases with respect to β. This behaviour for AF can be
observed both in the strong interference regime (Figure 3) as
well as in the weak to moderate interference regime (Figure 4).
Hence, if the relay-destination links are weak, then forwarding
desired information dominates the noise amplification caused
by AF, while for strong relay-destination links, we observe
the opposite behaviour. This demonstrates well the tradeoff
between forwarding desired information to the receivers and
amplifying the noise at the receivers.

VI. NUMERICAL EVALUATIONS AND

ADDITIONAL COMMENTS

The Effect of the Strength of the Interference on the
Achievable DMT: Figure 2 depicts the achievable DMT of the
ICR for different values of α when β = 1, for the symmetric
case where r1 = r2 = r . The figure demonstrates the effect of
the strength of the interference on the achievable DMT. When
α ≤ 1, i.e., when interference is weak, as in Figures 2a and 2b,
the achievable diversity gain of HD-AF (Theorem 4),
CF (Theorem 1), and DF (Theorem 2) is equal to zero for
high multiplexing gains (r ≥ 0.5). For CF and AF, this is due
to fact that interference is not strong enough to facilitate joint
decoding of the interference and of the desired message at
the destinations (see equations (5c) for CF and (16) for AF).
For DF, this is due to jointly decoding the messages from
both sources at the relay node, which follows from (12a).
However, when α = 2, i.e., when interference is very strong,
decoding the interference at the destinations does not constrain
the achievable DMT for high multiplexing gains. In this
case, an outage for decoding the desired message at the
destinations is the dominant outage event. This is the situation
in Figure 2c.

The Effect of the Strength of the Relay-Destination Links in
the Very Strong Interference Regime: Figure 3 demonstrates
the effect of the strength of the relay-destination links, repre-
sented by β, on the achievable DMT region of the ICR for
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Fig. 3. The effect of the strength of the relay-destination links on the achievable DMT of the ICR in the strong and in the very strong interference regime.
(a) α = 2, β = 0.2, γ = 1. (b) α = 2, β = 1, γ = 1. (c) α = 2, β = 2, γ = 1. (d) α = 2, β = 3, γ = 1.

the symmetric case where r1 = r2 = r when interference
is very strong (α = 2). This makes it possible to isolate the
effect of the relay-destination links. Note that when β is small,
as in Figure 3a, then the different relaying strategies achieve
the same diversity gains for almost all values of multiplexing
gains. This observation suggests that if the relay-destination
link is very poor, then it does not matter which relaying
strategy is used since the relay cannot provide much assistance
to the communicating pairs. In fact, the DMT of the ICR in
this case coincides with the DMT of the IC except for very low
multiplexing gains, in which DF and AF provide DMT gain
over the IC but CF does not. However, for β = 1 and β = 2
(Figures 3b and 3c, respectively), the achievable DMT of
DF and AF reaches the maximum possible diversity gain at
r = 0, i.e., a diversity gain of 2.

Recall that in Corollary 1 it was shown that when
β ≥ max{2, α + 1}, CF can be DMT-optimal. Indeed,
in Figures 3a-3c, where we have β < α, CF is suboptimal
and its achievable DMT is bounded by 1. But, when β ≥
max{2, α + 1}, then CF becomes DMT-optimal, as is the situ-
ation in Figure 3d. Observe that for β = 2, 3 (Figures 3c, 3d)
the DMT of AF decreases, and in fact becomes zero at high
multiplexing gains. This is because when the relay-destination
link is strong, then the noise amplification problem associated
with AF becomes dominant and constrains the achievable
DMT at the destinations.

The Effect of the Strength of the Relay-Destination Links in
the Weak Interference Regime: Figure 4 demonstrates the effect
of the strength of the relay-destination links on the achievable
DMT region of the ICR in scenarios in which the interference
is weak (α = 0.5). First, observe that in the weak interference
regime, DF outperforms both CF and AF. Note that if the
multiplexing gains are high (r ≥ 0.5), then the achievable
DMT of all three strategies is equal to zero. In this case, the
outage event due to jointly decoding both messages at the
relay is the dominating outage event for DF, while for the CF
and the AF relaying strategies, the dominating outage event
is the one that corresponds to jointly decoding both messages
at the destinations (See also the comment on the effect of
the strength of the interference on the achievable DMT).
When the multiplexing gains are low, however, then with
the DF strategy, the relay can reliably decode both messages
and forward noiseless desired information to the receivers,
while with CF and AF strategies, the relay forwards noisy

information to the receivers. Thus, DF outperforms CF and
AF at low multiplexing gains.

Note that the performance of CF improves with respect
to the strength of the relay-destination links, i.e., when
β increases (note that for β = 0.5 CF performs the same
as for β = 1, but when β > 1, the DMT performance of
CF improves as β increases). This follows from the fact that
as the relay-destination links improve, then the compression
at the relay can be less substantial (see Eqn. (B.7)), enabling
the relay to forward more information to the destinations.

Implications on the Incorporation of Relaying Into Existing
Wireless Networks: An important aspect to note is that
all achievable DMT regions in this paper were obtained
with mutually independent codebooks. This means that when
attempting to achieve the DMT gains characterized in this
work by adding a relay to an existing network, it is not
required to change the transmission scheme of the users, and in
fact they can be completely oblivious to the fact that they are
being assisted by a relay node. It is enough to modify only the
decoding process at the receivers. This greatly simplifies the
introduction of relaying into wireless networks and provides
further motivation for using relaying to mitigate interference.

Alternative Approached for the Weak Interference Regime:
The focus of the optimal DMT results obtained in this work
is on the strong and on the very strong interference regimes.
In these regimes, decoding both the desired message and
the interfering message at each receiver achieves the optimal
performance, since when interference is strong enough, it can
be decoded without constraining the rate of the desired infor-
mation. This observation has motivated basing the achievable
schemes employed in this work on decoding both messages at
each receiver. In the weak interference regime, this decod-
ing approach constrains the rates, and higher rates can be
obtained by applying partial interference cancellation as in the
well-known Han-Kobayashi scheme [11]. Partial interference
cancellation can be incorporated into these schemes by rate-
splitting at the sources combined with partial decoding and
rate-splitting at the relay (for example, this was done for CF
in [2, Sec. III-A]). Note that for the IC (without a relay) it was
shown in [10] that when interference is weak, then partial
interference cancellation leads to a larger achievable DMT
region compared to jointly decoding both messages; however,
DMT optimality was demonstrated only for the strong and for
the very strong interference regimes.
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Fig. 4. The effect of the strength of the relay-destination links on the achievable DMT of the ICR in the weak interference regime. (a) α = 0.5, β = 0.5, γ = 1.
(b) α = 0.5, β = 1, γ = 1. (c) α = 0.5, β = 1.5, γ = 1. (d) α = 0.5, β ≥ 3, γ = 1.

Another relevant relaying strategy is noisy network
coding (NNC) [21]. Note that in the weak interference
regime, [21] showed that NNC may allow higher rate pairs
than those achievable with CF relaying for the ICR with
noiseless, orthogonal relay-destinations links. Thus, NNC may
lead to a larger DMT region in such scenarios. In strong and
in very strong interference regimes, which are the focus of this
study, the receiver jointly decodes both the interference and the
desired message. In such situations, when CF is DMT optimal
(see, e.g., Corollary 1), clearly NNC cannot outperform CF.
When CF is not DMT optimal, then NNC may indeed provide
a better DMT performance.

The Operational Significance of DMT Analysis in Modern
Wireless Communications Systems: An interesting aspect to
investigate related to our DMT results for the ICR is their
operational significance, as was done for point-to-point MIMO
channels in [22]. The work [22] showed that in practical
wideband operating scenarios with frequency diversity, link
adaptation can be used to avoid outage in slowly fading
channels, while in rapidly fading scenarios, hybrid automatic-
repeat-request (HARQ) provides sufficient protection from
outage. Thus, in both rapidly and slowly fading channels, the
transmission scheme should utilize the available antennas for
increasing the information rate (i.e., multiplexing gain) rather
than for decreasing the probability of outage (i.e., diversity
gain). Note however, that the analysis in [22] does not easily
extend to the ICR studied in this paper for two reasons:
First, we assume no transmitter CSI and no feedback, which
precludes link adaptation as well as HARQ. In addition, our
setup is a virtual MIMO channel, and hence, even with trans-
mitter CSI everywhere, the ability to do link adaptation and
HARQ over virtual links is not straightforward. Furthermore,
the relay also complicates the analysis as it introduces multiple
hops which were not present in [22]. We conjecture that as
in [22], if there is transmitter CSI and/or feedback in our
model, then techniques such as link adaptation and HARQ
will reduce or eliminate the need to use degrees of freedom
for diversity in most settings, and hence typical operating
scenarios will use most degrees of freedom for multiplexing.
Making this conjecture rigorous, however, is a topic of future
work.

VII. SUMMARY

In this work we studied the DMT performance of
single-antenna Gaussian ICRs. We derived four achievable

DMT regions based on CF, DF, and AF at the relay. Addition-
ally, we derived conditions on the channel coefficients under
which the optimal DMT is achieved with CF and with DF. In
these scenarios, we showed that the optimal DMT of the ICR
is the same as the optimal DMT for two parallel interference-
free relay channels which means that a single relay can be
DMT-optimal for both communicating pairs simultaneously,
and that interference does not degrade the DMT performance
when these conditions are satisfied. For the AF strategy we
characterized scenarios in which the achievable DMT of the
ICR is the same as the best DMT for two parallel, AF-based
relay channels, and we showed that a single relay can assist
both pairs to achieve this DMT simultaneously. These results
demonstrate that adding a relay can substantially improve the
DMT of interference channels, which gives a strong motivation
for employing relay nodes in multi-user wireless networks that
have to cope with interference.

APPENDIX A
PROOF OF THE DMT OUTER BOUND OF PROPOSITION 1

We begin with the statement of a cut-set bound for the ICR,
which is given by the following proposition:

Proposition A: Let R+ denote the set of nonnegative real
numbers. Define f̂ (x) � f (x1) f (x2) f (x3|x1, x2; h̃3, h̃3,T ).
When h̃ is given and fixed, an outer bound on the achievable
rate region is given by the following region:

Couter−bound(h̃) �
⋃

f̂ (x)

{
(R1, R2) ∈ R2+ :

R1 ≤ I (X1; Y1, Y3|X2, X3, h̃) (A.1a)

R1 ≤ I (X1, X3; Y1|X2, h̃) (A.1b)

R2 ≤ I (X2; Y2, Y3|X1, X3, h̃) (A.1c)

R2 ≤ I (X2, X3; Y2|X1, h̃)
}

(A.1d)

Proof: In order to establish the conditioning on the
channel realization h̃ in (A.1), we review the derivation of
[23, Th. 15.10.1] starting from [23, Eq. (15.324)]. Enumerate
the set of nodes in the network {Tx1, Tx2, Relay, Rx1, Rx2}
with {1, 2, 3, 4, 5} � N, respectively. Recall that S and Sc

are a partition of the nodes in the network into two sets, and
let T denote the set of pairs of (i, j) indexes s.t. i ∈ S and
j ∈ Sc. T c denotes the set of all the pairs of indexes in N2

not in T . Let WT � {Wij }(i, j )∈T , and let XS � {Xik}i∈S .

Define εn � 1
n +

(∑
i∈S, j∈Sc Ri j

)
P(n)

e and note that εn → 0
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as n → ∞. Thus, for a set {Rij }i∈S, j∈Sc , we have

n
∑

i∈S, j∈Sc

Ri j

= H
(
W (T )|W (T c)

)

(a)= H
(
W (T )|W (T c), h̃

)

= H
(
W (T )|W (T c), h̃

)

−H
(
W (T )|W (T c), Y (Sc)

1 , Y (Sc)
2 , . . . , Y (Sc)

n , h̃
)

+ H
(
W (T )|W (T c), Y (Sc)

1 , Y (Sc)
2 , . . . , Y (Sc)

n , h̃
)

= I
(
W (T ); Y (Sc)

1 , Y (Sc)
2 , . . . , Y (Sc)

n |W (T c), h̃
)

+ H
(
W (T )|W (T c), Y (Sc)

1 , Y (Sc)
2 , . . . , Y (Sc)

n , h̃
)

(b)≤ I
(
W (T ); Y (Sc)

1 , Y (Sc)
2 , . . . , Y (Sc)

n |W (T c), h̃
)+ nεn

=
n∑

i=1

I
(
W (T );Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 ,. . ., Y (Sc)
i−1 , W (T c), h̃

)+nεn

=
n∑

i=1

[
H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 , W (T c), h̃

)

− H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 ,

W (T c), W (T ), h̃
)]+ nεn

(c)≤
n∑

i=1

[
H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 , W (T c), h̃

)

− H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 ,

W (T c), W (T ), X (Sc)
i , X (S)

i , h̃
)]+ nεn

(d)=
n∑

i=1

[
H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 , W (T c), X (Sc)

i , h̃
)

− H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 ,

W (T c), W (T ), X (Sc)
i , X (S)

i , h̃
)]+ nεn

(e)=
n∑

i=1

[
H
(
Y (Sc)

i |Y (Sc)
1 , Y (Sc)

2 , . . . , Y (Sc)
i−1 , W (T c), X (Sc)

i , h̃
)

−H
(
Y (Sc)

i |X (Sc)
i , X (S)

i , h̃
)]+ nεn

( f )≤
n∑

i=1

[
H
(
Y (Sc)

i |X (Sc)
i , h̃

)− H
(
Y (Sc)

i |X (Sc)
i , X (S)

i , h̃
)]+ nεn

=
n∑

i=1

I
(
X (S)

i ; Y (Sc)
i |X (Sc)

i , h̃
)+ nεn,

where (a) follows as the messages are independent of the
realization of the channel coefficients; (b) follows from the
Fano’s inequality; (c) follows as we added X (Sc)

i and X (S)
i to

the conditioning in the second term in the summation and used
the fact that conditioning reduces entropy; (d) follows as X (Sc)

i
is uniquely determined by the messages W (T c), the channel

outputs Y (Sc)
1 , Y (Sc)

2 , . . ., Y (Sc)
i−1 , and the channel coefficients h̃,

and therefore, adding X (S)
i to the conditioning of the first term

of the summation does not change the entropy; (e) follows
from the memorylessness of the channel; and (f) follows as
conditioning reduces entropy.

Proceeding with the steps used to arrive from
[23, Eq. (15.333)] to [23, Eq. (15.338)], we obtain

∑

i∈S, j∈Sc

Ri j ≤ I (XS ; YSc |XSc
, h̃), (A.2)

subject to some P(XS∪Sc |h̃).
Thus, equations (A.1a)-(A.1d) are obtained by

applying (A.2) to the ICR for four partitions: S = {Tx1},
S = {Tx1, Relay}, S = {Tx2}, and S = {Tx2, Relay},
respectively. Note that as in the ICR model considered there
is no feedback or CSI at the transmitters and the relay has
Rx-CSI and Tx-CSI on its incoming and outgoing links, the
joint distribution for the cut-set bound can be decomposed
into

p(x1, x2, x3|h̃) = p(x1)p(x2)p(x3|x1, x2; h̃3, h̃3,T ),

where (h̃3, h̃3,T ) should be taken as fixed throughout codeword
transmission.

Let C(h̃) denote the capacity region of the ICR for the
channel coefficients h̃. Then C(h̃) ⊆ Couter−bound(h̃). There-
fore, the outage probability corresponding to the outer bound,
Couter−bound(h̃), is a lower bound on the outage probability
corresponding to C(h̃), i.e.,

Pr
(
(R1, R2) /∈ Couter−bound(H̃ )

) ≤ Pr
(
(R1, R2) /∈ C(H̃)

)
,

It follows that the DMT region corresponding to the
cut-set bound Couter−bound(h̃) constitutes an outer bound on
the achievable DMT region of the ICR. In the following, we
characterize the DMT curves corresponding to (A.1a)-(A.1d):
Consider first the DMT corresponding to (A.1a), and let
Rk,T = rk log ρ, k ∈ {1, 2} denote the target rate for the pair
Txk-Rxk . The outage probability corresponding to (A.1a) is
defined as Pr(O+

1 ) � Pr
(
I (X1; Y1, Y3|X2, X3, h̃) < r1 log ρ

)
.

Note that similar to [16, Appendix A], I (X1; Y1, Y3|X2, X3, h̃)
can be upper bounded as follows:

I (X1; Y1, Y3|X2, X3, h̃) ≤ log
(

1 + ρ|h11|2 + ργ |h13|2
)

= log
(

1 + ρ1−θ11 + ργ−θ13
)

� R+
1 (θ11, θ13).

For this upper bound we have, Pr(O+
1 ) ≥ Pr(1 + ρ1−θ11 +

ργ−θ13 < ρr1) � Pr(Õ+
1 ). In order to calculate Pr(Õ+

1 ), we
follow similar steps as those used in [9, Th. 1]: Define θkl s.t.
|hkl |2 = ρ−θkl , where k, l ∈ {1, 2, 3}, (k, l) �= (3, 3), and note
that from [18, Eq. (5)] we obtain that since hkl are complex
Normal RVs, then in the asymptotic case as ρ → ∞, the p.d.f.
of θkl is equal to zero for all negative values of θkl . Therefore,
we consider only θkl ≥ 0, k, l ∈ {1, 2, 3}, (k, l) �= (3, 3). Let

Dr1 �
{
θ11 ≥ 0, θ13 ≥ 0, R+

1 (θ11, θ13) < r1 log ρ
}
.

Hence, using [18, Eq. (6)] we obtain that when ρ → ∞, then
Pr(Õ+

1 ) = Pr
(
(θ11, θ13) ∈ Dr1

)
scales as

Pr(Õ+
1 )

.= ρ
−dÕ+

1
(r1)

,
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where

dÕ+
1
(r1) = min θ11 + θ13

s.t. (1 − θ11)
+ ≤ r1 (A.3a)

(γ − θ13)
+ ≤ r1 (A.3b)

θ11 ≥ 0, θ13 ≥ 0. (A.3c)

As the constraints (A.3a)-(A.3c) can be rewritten as θ11 ≥
(1−r1)

+ and θ13 ≥ (γ −r1)
+, then the minimal sum equals to

dÕ+
1
(r1) = (1 − r1)

+ + (γ − r1)
+ � d+

1 (r1, r2),

given in (3a). Next, consider (A.1b). Define Pr(O+
2 ) =

Pr
(
I (X1, X3; Y1|X2, h̃) < r1 log ρ

)
. From [16, Eq. (A9)], we

upper bound I (X1, X3; Y1|X2, h̃) as follows:

I (X1, X3; Y1|X2, h̃)

≤ log
(
1+ρ|h11|2+ρ

1+β
2 h11h∗

31+ρ
1+β

2 h31h∗
11+ρβ |h31|2

)

= log
(
1+ρ|h11|2+2ρ

1+β
2 · Re{h11h∗

31}+ρβ |h31|2
)

≤ log
(
1+ρ|h11|2+2ρ

1+β
2 |h11||h31|+ρβ |h31|2

)

= log
(
1 + ρ1−θ11 + 2ρ

1−θ11+β−θ31
2 + ρβ−θ31

)
. (A.4)

Thus,

Pr(O+
2 ) ≥ Pr(1 + ρ1−θ11 + 2ρ

1−θ11+β−θ31
2 + ρβ−θ31 < ρr1)

� Pr(Õ+
2 ),

Following [18, Eq. (6)], we obtain that as ρ → ∞, then

Pr(Õ+
2 )

.= ρ
−dÕ+

2
(r1)

, where

dÕ+
2
(r1) = min θ11 + θ31

s.t. (1 − θ11)
+ ≤ r1

(β − θ31)
+ ≤ r1

θ11 ≥ 0, θ31 ≥ 0.

Which follows since (1−θ11+β−θ31)
+

2 ≤ (1−θ11)
++(β−θ31)

+
2 . For

this minimization problem we obtain the solution dÕ+
2
(r1) =

(1 − r1)
+ + (β − r1)

+ � d+
2 (r1, r2), given in (3b). Following

similar steps, we obtain the DMT bounds (3c) and (3d) from
(A.1c) and (A.1d), respectively.

APPENDIX B
PROOF OF THEOREM 1

An achievable rate region for the ICR with only common
messages and CF at the relay is given in [2, Th. 1]. This region
consists of all nonnegative rate pairs satisfying:

R1 ≤ I (X1; Y1, Ŷ3|X2, X3, h̃) (B.1a)

R2 ≤ I (X2; Y2, Ŷ3|X1, X3, h̃) (B.1b)

R1 + R2 ≤ I (X1, X2; Y1, Ŷ3|X3, h̃) (B.1c)

R1 + R2 ≤ I (X1, X2; Y2, Ŷ3|X3, h̃), (B.1d)

subject to the constraints:
I (X3; Y1|h̃) ≥ I (Y3; Ŷ3|X3, Y1, h̃) (B.2a)

I (X3; Y2|h̃) ≥ I (Y3; Ŷ3|X3, Y2, h̃), (B.2b)

for a joint distribution

f (x1) f (x2) f (x3) f (y1, y2, y3|x1, x2, x3) f (ŷ3|y3, x3)

with complex Normal inputs Xk ∼ CN (0, 1), k ∈ {1, 2, 3},
and Ŷ3 = Y3 + ZQ, ZQ ∼ CN (0, NQ), independent of
{Yk}3

k=1 and {Xk}3
k=1 where NQ is selected to satisfy (B.2).

Using the relationships I (X3; Yk |h̃) = h(Yk |h̃) − h(Yk |X3, h̃)
and I (Y3; Ŷ3|X3, Yk , h̃) = h(Yk , Ŷ3|X3, h̃) − h(Yk |X3, h̃) −
log

(
(πe)NQ

)
, k ∈ {1, 2}, we can rewrite the constraints in

(B.2a) and (B.2b) as:

log
(
(πe)NQ

) ≥ h(Yk , Ŷ3|X3, h̃) − h(Yk |h̃), k ∈ {1, 2}.
(B.3)

Next we find the smallest NQ that satisfies (B.3). Starting
with k = 1, we write explicitly h(Y1|h̃) for mutually indepen-
dent complex Normal channel inputs:

h(Y1|h̃) = log
(
(πe)(1 + ρ|h11|2 + ρα|h21|2 + ρβ |h31|2)

)
.

(B.4)

Defining

H �
[ √

ρh11
√

ραh21√
ργ h13

√
ργ h23

]
, X �

[
X1
X2

]
, Z �

[
Z1

Z3 + ZQ

]
,

we obtain

h(Y1, Ŷ3|X3, h̃) = h(H · X+Z)

= log
(
(πe)2

∣
∣H · cov(X) · HH +cov(Z)

∣
∣
)

≤ log
(
(πe)2((1+NQ)(1+ρ|h11|2+ρα|h21|2)
+ ργ |h13|2+ργ |h23|2

+ ργ+α|h13|2|h21|2 + ργ+1|h23|2|h11|2
))

.

(B.5)

Combining (B.4) and (B.5) we conclude that (B.3) is satisfied
for k = 1 if

NQ ≥ 1 + ρ1−θ11 + ρα−θ21 + ργ−θ13 + ργ−θ23

ρβ−θ31

+ ργ+α−θ13−θ21 + ργ+1−θ11−θ23

ρβ−θ31
.

where θi j is defined in Appendix A. Note that since θkl ≥ 0,
k, l ∈ {1, 2, 3}, (k, l) �= (3, 3), the above inequality is
guaranteed if

NQ ≥ 1 + ρ1 + ρα + ργ + ργ + ργ+α + ργ+1

ρβ−θ31
.

Thus, we obtain

NQ =̇ max{ργ+α−β+θ31, ργ+1−β+θ31}. (B.6)

Using the same arguments for k = 2 and combining with
(B.6), we conclude that (B.3) is satisfied with

NQ =̇ max{ργ+α−β+θ31, ργ+1−β+θ31,

ργ+α−β+θ32 , ργ+1−β+θ32}. (B.7)

Note that since the expression for NQ in (B.7) depends on
θ31 and θ32, then the relay must have Tx-CSI in order to
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compute NQ. Using its Tx-CSI, the relay is able to identify
the minimal compression required to be applied to its received
signal, to permit reliable transmission of information on its
received signal to the destinations. Also note that the degree
of compression is proportional to the relative strength of
the source-relay links compared to the strength of the relay-
destination links (represented by ργ

ρβ ). The Rx-CSI is needed
at the relay to facilitate the use of Gaussian codebooks for
compression.

Denote the event that the k’th inequality in (B.1a)-(B.1d) is
violated with OCF

k . We first evaluate Pr(OCF
1 ) as follows:

Pr(OCF
1 ) = Pr

(
h(Y1, Ŷ3|X2, X3, h̃)

− h(Z1, Z3 + Z Q |h̃) < r1 log ρ
)

= Pr
(
h(

√
ρh11 X1 + Z1,

√
ργ h13 X1 + Z3 + Z Q)

− log
(
(πe)2(1 + NQ)

)
< r1 log ρ

)
.

Defining H �
[√

ρh11,
√

ργ h13
]T , and Z �

[
Z1, Z3 + ZQ

]T,
we can write

Pr(OCF
1 ) = Pr

(
h(H · X1 + Z) − h(Z) < r1 log ρ

)

= Pr
(

log
(
(πe)2

∣
∣HHH + cov(Z)

∣
∣
)

− log
(
(πe)2(1 + NQ)

)
< r1 log ρ

)

= Pr
(
1 + ρ|h11|2 + ργ |h13|2

1 + NQ
< ρr1

)
.

Next, we write

1 + NQ =̇ max{ργ+α−β+θ31, ργ+1−β+θ31,

ργ+α−β+θ32, ργ+1−β+θ32 , ρ0}
= max{ρ(γ+α−β+θ31)

+
, ρ(γ+1−β+θ31)

+
,

ρ(γ+α−β+θ32)
+
, ρ(γ+1−β+θ32)

+}.
Hence, as in [9, Th. 1], by following similar steps as those
used in Appendix A, the DMT corresponding to the event
OCF

1 can be calculated by solving the following minimization
problem:

min θ11+θ13+θ31+θ32 (B.8a)

s.t.
(

1−θ11

)+ ≤ r1, (B.8b)
(
γ −θ13−max

{
(γ +α−β+θ31)

+,

(γ + 1 − β + θ31)
+, (γ +α−β+θ32)

+,

(γ +1−β+θ32)
+})+≤r1, (B.8c)

θ11 ≥0, θ13 ≥0, θ31 ≥0, θ32 ≥0. (B.8d)

First, consider the case where α > 1. The case for α ≤ 1
can be solved using similar arguments. For simplicity, define
φ(θ) � (γ + α − β + θ)+. Next, note that given θ31 and θ32,
the optimal values for θ11 and θ13 can be obtained as

θ11 = (1 − r1)
+

θ13 =
(
γ − max

{
φ(θ31), φ(θ32)

}−r1

)+
.

Define

f̂ (θ31, θ32) � (1−r1)
++

(
γ −max

{
φ(θ31), φ(θ32)

}− r1

)+

+ θ31 + θ32.

Thus, the optimization problem in (B.8) can be rewritten as

min
θ31,θ32

f̂ (θ31, θ32) (B.9a)

s.t. θ31 ≥ 0, θ32 ≥ 0. (B.9b)

Searching over all possible values of φ(θ31) and φ(θ32), there
are four possible cases:

1) γ + α − β + θ31 ≤ 0 and γ + α − β + θ32 ≤ 0: In this
case we obtain φ(θ31) = φ(θ32) = 0, for which we have

f̂ (θ31, θ32) = (1 − r1)
+ + (γ − r1)

+ + θ31 + θ32.

It follows that in this case f̂ (θ31, θ32) is a monotonically
increasing function of θ31 and θ32.

2) γ +α−β+θ31 > 0 and γ +α−β+θ32 ≤ 0: In this case
we obtain φ(θ31) = γ + α − β + θ31 and φ(θ32) = 0.
Thus,

f̂ (θ31, θ32) = (1 − r1)
+ + (

γ − φ(θ31) − r1
)+

θ31 + θ32.

Here, there are two possibilities:

• γ − φ(θ31) − r1 ≤ 0 for which we obtain

f̂ (θ31, θ32) = (1 − r1)
+ + θ31 + θ32.

It follows that in this case f̂ (θ31, θ32) is again a
monotonically increasing function of θ31 and θ32.

• γ − φ(θ31) − r1 > 0 for which we obtain

f̂ (θ31, θ32)

= (1 − r1)
+ + (

γ − φ(θ31) − r1
)+ θ31 + θ32

= (1 − r1)
+ + (

γ − (γ + α − β + θ31) − r1
)

+ θ31 + θ32

= (1 − r1)
+ + (

γ − (γ + α − β) − r1
)+ θ32.

It follows that in this case f̂ (θ31, θ32) does not
depend on θ31 but it is a monotonically increasing
function of θ32.

3) γ +α−β +θ31 ≤ 0 and γ +α−β +θ32 > 0: Following
steps similar to the previous case, we conclude that
f̂ (θ31, θ32) is either a monotonically increasing function
of θ31 and θ32, or it does not depend on θ32 and is a
monotonically increasing function of θ31.

4) γ + α − β + θ31 > 0 and γ + α − β + θ32 > 0: In this
case we obtain φ(θ31) = γ + α − β + θ31 and φ(θ32) =
γ + α − β + θ32. In this scenario,

f̂ (θ31, θ32) = (1 − r1)
+

+
(
γ − max

{
φ(θ31), φ(θ32)

}− r1

)+ + θ31 + θ32,

Depending on whether φ(θ31) > φ(θ32) or φ(θ31) ≤
φ(θ32), this case becomes the same as the second or the
third case, respectively.

We conclude that for the optimization problem in (B.9),
f̂ (θ31, θ32) is either a monotonically increasing function of
both θ31 and θ32, or it does not depend on one and is
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a monotonically increasing function of the other. Thus, the
optimal θ31 and θ32 for this optimization problem are zero.
Note that for θ31 = θ32 = 0, we have that φ(θ31) = φ(θ32) =
(γ + α − β)+, hence, the optimal solution to (B.9) is

min
θ31,θ32

f̂ (θ31, θ32) = (1 − r1)
+ + (γ − (γ + α − β)+ − r1)

+.

Repeating the same steps for the case α ≤ 1, we obtain

d−
1,CF =

{
(1 − r1)

+ +(γ −(γ +α − β)+ − r1
)+

α>1

(1 − r1)
+ +(γ −(γ +1−β)+−r1

)+
α≤1,

(B.10)

which is (5a). Similarly, we obtain the achievable DMT (5b)
by calculating the probability of the outage event OCF

2
which follows from the rate constraint (B.1b). Consider next
the outage probability Pr(OCF

3 ) corresponding to the rate
constraint (B.1c). Defining

H �
[√

ρh11
√

ραh21√
ργ h13

√
ργ h23

]
, X �

[
X1
X2

]
, Z �

[
Z1

Z3 + ZQ

]
,

we write

Pr(OCF
3 ) = Pr

(
I (X1, X2; Y1, Ŷ3|X3.h̃) < (r1 + r2) log ρ

)

= Pr
(

h(H · X + Z|h̃)

− log
(
(πe)2(1 + NQ)

)
< (r1 + r2) log ρ

)

= Pr

(
log

(
(πe)2

∣
∣HHH + cov(Z)

∣
∣
)

− log
(
(πe)2(1 + NQ)

)
< (r1 + r2) log ρ

)

= Pr

(
1 + ρ|h11|2+ρα|h21|2+ ργ |h13|2 + ργ |h23|2

1 + NQ

+
∣
∣
∣ρ

γ+α
2 h13h∗

21 − ρ
γ+1

2 h23h∗
11

∣
∣
∣
2

1 + NQ
< ρr1+r2

)

≤ Pr

(
1+ρ|h11|2 + ρα|h21|2 + ργ |h13|2

1 + NQ
< ρr1+r2

)
.

Thus, as in [9, Th. 1], by following similar steps as those
used in Appendix A, a lower bound on the DMT is obtained
by considering the following minimization problem:

min θ11 + θ21 + θ13 + θ31 + θ32

s.t.
(
1 − θ11

)+ ≤ r1 + r2,
(
α − θ21

)+ ≤ r1 + r2,(
γ −θ13−max

{
(γ +α−β+θ31)

+, (γ +1−β+θ31)
+,

(γ +α−β+θ32)
+, (γ +1−β+θ32)

+})+ ≤r1+r2,

θk,l ≥ 0, k, l ∈ {1, 2, 3}, (k, l) �= (3, 3).

Similar to the previous case, the minimal solution is obtained
at θ31 = θ32 = 0. The resulting DMT relationship is
characterized by d−

3,CF(r1, r2) stated in (5c). An identical DMT
expression is obtained from the analysis of Pr(OCF

4 ). This
completes the proof. �

APPENDIX C
PROOF OF THEOREM 2

The achievability scheme is based on employing DF at
the relay and using i.i.d. codebooks generated according to
mutually independent, zero-mean, complex Normal channel
inputs. Let OR denote the outage event at the relay, i.e., the
event that the relay fails to decode, and let Oc

R denote its
complement. Then, the probability of an outage for the ICR
can be evaluated as follows:

Pr(outage) = Pr(outage|OR) Pr(OR)

+ Pr(outage|Oc
R) Pr(Oc

R). (C.1)

Similarly to [4, Eq. (A1)], an achievable rate region for
decoding at the relay is given by all nonnegative pairs (R1, R2)
satisfying

R1 ≤ I (X1; Y3|X2, X3, h̃3, h̃3,T ) = log(1 + ργ |h13|2)
R2 ≤ I (X2; Y3|X1, X3, h̃3, h̃3,T ) = log(1 + ργ |h23|2)

R1 + R2 ≤ I (X1, X2; Y3|X3, h̃3, h̃3,T ) = log(1 + ργ |h13|2
+ ργ |h23|2).

The probability of an outage at the relay, Pr(OR), corresponds
to the event that at least one of the above inequalities is not
satisfied. Applying similar techniques as in Appendix A, we
obtain

Pr(OR) ≤̇ ρ− min{(γ−r1)
+,(γ−r2)+,2(γ−r1−r2)+}�ρ−dRelay(r1,r2).

Thus, similarly to [6, Appendix II] it can be shown that at
asymptotically high SNR

Pr(OR)
.=
{

ρ− min{(γ−r1)
+,(γ−r2)+,2(γ−r1−r2)+} r1+r2 <γ

1 r1+r2 ≥γ.

(C.2a)

When the relay fails to decode it remains silent at the next
transmission block, and hence, the ICR specializes to the
IC in such situations (recall that the receivers have Rx-CSI).
Note that the destinations can be made aware of this
(see, e.g., [6, Appendix II]) via a single bit sent from the relay
at no rate cost asymptotically. It follows that when the relay
fails to decodes, each receiver jointly decodes both messages
based on its received signal which is a sum of the desired
signal and the interfering signal. As the sources use mutually
independent, i.i.d. generated codebooks, then using the error
analysis of [17, Sec. IV-D] without superposition encoding
(i.e., setting T1 = T2 = 0 in [17, Sec. IV-D]) we obtain the
following rate region:

R1 ≤ I (X1; Y1|X2, h̃1) = log
(
1 + ρ|h11|2

)
(C.3a)

R2 ≤ I (X2; Y2|X1, h̃2) = log
(
1 + ρ|h22|2

)
(C.3b)

R1 + R2 ≤ I (X1, X2; Y1|h̃1) = log
(
1 + ρ|h11|2 + ρα|h21|2

)

(C.3c)

R1 + R2 ≤ I (X1, X2; Y2|h̃2) = log
(
1 + ρα|h12|2 + ρ|h22|2

)
.

(C.3d)
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Next, denote the target rates R1,T = r1 log ρ and R2,T =
r2 log ρ. An outage occurs if at least one of the inequalities
in (C.3) is not satisfied. Denote the probability of outage
at the destinations given that the relay fails to decode with
Pr(outage|OR). Since this corresponds to an outage event for
the IC ((C.3)), then we write

Pr(outage|OR)
.= ρ−dIC(r1,r2), (C.4)

where dIC(r1, r2) is the achievable DMT of the IC (without
relay) corresponding to (C.3). From [10, Th. 1] it follows that
dIC(r1, r2) is given by

dIC(r1, r2) = min
{
(1 − r1)

+, (1 − r2)
+,

(1 − r1 − r2)
+ + (α − r1 − r2)

+}.

Next, we consider the case where the relay decodes both mes-
sages successfully.Using relay encoding and receiver decoding
as in [4, Appendix A], and neglecting errors in decoding the
interfering message as in [17, Sec. IV-D], an achievable rate
region of the ICR is obtained as:

R1 ≤ I (X1, X3; Y1|X2, h̃1)= log(1+ρ|h11|2+ρβ |h31|2)
R2 ≤ I (X2, X3; Y2|X1, h̃2)= log(1+ρ|h22|2+ρβ |h32|2)

R1+ R2 ≤ I (X1, X2, X3; Y1|h̃1) = log(1+ρ|h11|2+ρα|h21|2
+ ρβ |h31|2)

R1+ R2 ≤ I (X1, X2, X3; Y2|h̃2) = log(1+ρ|h22|2+ρα|h12|2
+ ρβ |h32|2).

Evaluating the DMT region corresponding to the above rate
region similar to Appendix A, it follows that when the relay
decodes both messages successfully, the probability of outage
is given by

Pr(outage|Oc
R)

.= ρ−dCoop.(r1,r2), (C.5)

where

dCoop.(r1,r2)= min
{
(1−r1)

++(β−r1)
+, (1−r2)

++(β−r2)
+,

(1−r1−r2)
++(α−r1−r2)

++(β−r1−r2)
+}.

Finally, by substituting (C.2), (C.4), and (C.5) into (C.1), we
obtain

Pr(outage)

= Pr(outage|OR) Pr(OR) + Pr(outage|Oc
R) Pr(Oc

R)

≤̇
{

ρ−dIC(r1,r2)ρ−dRelay(r1,r2) + ρ−dCoop.(r1,r2) r1 + r2 < γ

ρ−dIC(r1,r2) r1 + r2 ≥ γ

which corresponds to the DMT region of Theorem 2. �

APPENDIX D
PROOF OF THEOREM 3

We first derive an achievable rate region for the ICR with
a full-duplex relay employing the AF scheme, and then we
evaluate the DMT region obtained with this scheme.

A. An Achievable Rate Region

Transmission is carried out in groups of B − 1 messages.
Each message is transmitted via a codeword of length n chan-
nel symbols and an entire group of B − 1 messages is
transmitted using nB channel symbols. Let Rk denote the rate
for the pair Txk-Rxk . Then, the overall rate is B−1

B Rk which
approaches Rk as B increases. Let Mk � {1, 2, . . . , 2nRk }
denote the message set for Txk, k ∈ {1, 2}, and let the
codebook for user k be the set

{
xk(mk)

}
mk∈Mk

of mutually
independent codewords selected according to f

(
xk(mk)

) =∏n
i=1 fXk (xk,i (mk)). At block b, Txk sends a new message

mk,b ∈ Mk by transmitting xk(mk,b) � x(b)
k , k ∈ {1, 2}, and

the relay transmits a scaled version of the signal received at the
previous block, i.e., at block b−1. Let H (b)

kl denote the channel

coefficient Hkl at block b and let G(b)
R denote the scaling

applied by the relay at block b. G(b)
R is determined solely

based on the Rx-CSI at the relay. The relationship between
the channel inputs and outputs at the i ’th symbol of block b,
i ∈ {1, 2, . . . , n}, is given by:

Y (b)
1,i = √

ρH (b)
11 X (b)

1,i +√
ρα H (b)

21 X (b)
2,i

+
√

ρβ H (b)
31 G(b)

R

(√
ρH (b−1)

13 X (b−1)
1,i

+ √
ρH (b−1)

23 X (b−1)
2,i + Z (b−1)

3,i

)
+ Z (b)

1,i (D.1a)

Y (b)
2,i = √

ρα H (b)
12 X (b)

1,i + √
ρH (b)

22 X (b)
2,i

+
√

ρβ H (b)
32 G(b)

R

(√
ρH (b−1)

13 X (b−1)
1,i

+ √
ρH (b−1)

23 X (b−1)
2,i + Z (b−1)

3,i

)
+ Z (b)

2,i (D.1b)

Y (b)
3,i = √

ρH (b)
13 X (b)

1,i + √
ρH (b)

23 X (b)
2,i + Z (b)

3,i . (D.1c)

Let H̃ (b)
k � (H (b)

1k , H (b)
2k , H (b)

3k ) ∈ C3 denote the available
Rx-CSI at Rxk at block b, k ∈ {1, 2}, and let H̃ (b)

3 �
(H (b)

13 , H (b)
23 ) ∈ C2 denote the Rx-CSI at the relay at block b.

As the receivers know the Rx-CSI at the relay, they know G(b)
R

as well.
The transmission scheme is inspired by the D-BLAST

scheme [24, Ch. 10.6.4]: Rxk decodes mk,b at block b + 1
as follows: Rxk first decodes the interference in blocks b and
b + 1 by treating the entire signal from the relay and its own
desired signal as i.i.d. additive white Gaussian noise. This can
be done reliably if n is large enough and

R(b)
1 ≤ I

(
X (b)

1 ; Y (b)
2 |h̃(b)

2

)
(D.2a)

R(b)
2 ≤ I

(
X (b)

2 ; Y (b)
1 |h̃(b)

1

)
. (D.2b)

Let ( ˆ̂m2,b, ˆ̂m2,b+1) denote the estimation of (m2,b, m2,b+1)

at Rx1. Rx1 now jointly processes
(
y(b)

1 , y(b+1)
1

)
to decode m1,b

as follows: From decoding at the previous block, Rx1 has an
estimation of (m1,b−1, m2,b−1) denoted by (m̂1,b−1, m̂2,b−1).
Rx1 now generates the signal

ỹ(b)
1,i = y(b)

1,i −
√

ρ1+β G(b)
R h(b)

31

(
h(b−1)

13 x1,i(m̂1,b−1)

+ h(b−1)
23 x2,i (m̂2,b−1)

)
−√

ραh(b)
21 x2,i ( ˆ̂m2,b) (D.3a)

ỹ(b+1)
1,i = y(b+1)

1,i −
√

ρ1+βG(b+1)
R h(b+1)

31 h(b)
23 x2,i ( ˆ̂m2,b)

−√
ραh(b+1)

21 x2,i ( ˆ̂m2,b+1), (D.3b)
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i ∈ {1, 2, 3, . . . , n}. Assuming correct decoding of

(m2,b, m2,b+1, m1,b−1, m2,b−1) at Rx1, we can write ỹ(b)
1,i and

ỹ(b+1)
1,i as:

ỹ(b)
1,i = √

ρh(b)
11 x1,i(m1,b) +

√
ρβG(b)

R h(b)
31 z(b−1)

3,i + z(b)
1,i

ỹ(b+1)
1,i = √

ρh(b+1)
11 x1,i(m1,b+1)

+
√

ρβG(b+1)
R h(b+1)

31

(√
ρh(b)

13 x1,i (m1,b)+z(b)
3,i

)
+z(b+1)

1,i .

It follows that ỹ(b)
1 is an interference free, noisy version of

the desired signal at Rx1 at block b (m1,b), and ỹ(b+1)
1 is a

noisy version of the codeword corresponding to message m1,b

which includes interference caused by transmission of m1,b+1
at block b + 1. Note that this interference cannot be cancelled
since Rx1 decodes m1,b+1 at block b + 2. We conclude that
m1,b can be reliably decoded if n is large enough and

R(b)
1 ≤ I

(
X (b)

1 ; Ỹ (b)
1 , Ỹ (b+1)

1 |h̃(b)
1 , h̃(b+1)

1 , h̃(b)
3

)
. (D.4a)

Following similar steps, we obtain that Rx2 can decode m2,b

reliably if

R(b)
2 ≤ I

(
X (b)

2 ; Ỹ (b)
2 , Ỹ (b+1)

2 |h̃(b)
2 , h̃(b+1)

2 , h̃(b)
3

)
, (D.4b)

where
(
Ỹ (b)

2 , Ỹ (b+1)
2

)
is defined similarly to

(
Ỹ (b)

1 , Ỹ (b+1)
1

)
.

Note that in general, in order to maximize the achievable rate
region, we should use the values of G(b)

R and G(b+1)
R which

maximize (D.2) and (D.4). However, since this computation
is very involved, we take here a suboptimal approach: Since
the power of the relay is limited to 1, then (G(b)

R )2 ≤
1

1+ρ|h(b−1)
13 |2+ρ|h(b−1)

23 |2 . Hence, as we define |h(b−1)
kl |2 = ρ−θ

(b−1)
kl

for θ
(b−1)
kl ≥ 0, then setting

(
G(b)

R

)2 = 1

1 + 2ρ
=̇ρ−1, (D.5)

for b = 1, 2, . . . , B , guarantees to satisfy the power constraint
at the relay. We conclude that the overall achievable rate region
is given by (D.2) and (D.4) subject to the assignment (D.5).

B. Evaluating the DMT of Full-Duplex AF Relaying

We begin by evaluating the rates and the DMT associated
with the transmission of the pair Tx1-Rx1. Note that with AF at
the relay, the outage events at consecutive transmission block
are correlated. To understand the reason for this, consider Rx1
and note that for decoding m1,b at block b + 1, Rx1 uses the
Rx-CSI at relay from blocks b − 1 and b, i.e., h̃b−1

3 and h̃b
3

(see (D.3)). For decoding m1,b+1 at block b + 2, Rx1 uses

h̃b
3 and h̃b+1

3 . As the realization h̃b
3 is used in decoding of

both m1,b and m1,b+1, then the outage events corresponding to
decoding of these two messages are correlated. Let Ob denote
the outage event at block b at Rx1. Then, the probability of
outage in transmission of B blocks is given by

Pr(O) = Pr
(
∪b=B−1

b=1 Ob

)
≤

b=B−1∑

b=1

Pr(Ob).

when the inequality is due to union bound. Hence, since the
probability of outage is upper bounded by the sum of per block

outage probabilities, we consider the asymptotical behaviour
of the outage probability for a single transmission. First, note
that for mutually independent complex Normal channel inputs,
i.i.d. in time, we have

I (X1; Y2|h̃2, h̃3) ≥̇ log

(
ρα−θ

(b)
12

ρ + ρβ

)

(D.6a)

I
(
X (b)

1 ; Ỹ (b)
1 , Ỹ (b+1)

1

∣
∣h̃1, h̃3

) ≥̇ log

(
ρ2−θ

(b)
11 −θ

(b+1)
11

ρ + ρβ + ρ2β−2

+ρ2β−1−θ
(b)
13 −θ

(b)
31 −θ

(b+1)
31

ρ + ρβ + ρ2β−2

)
.

(D.6b)

Hence, every nonnegative R1 satisfying

R1≤̇ min

{
log

(
ρα−θ

(b)
12 −max{1,β}),

log
(
ρ2−max{1,β,2β−2}−θ

(b)
11 −θ

(b+1)
11

+ ρ2β−1−max{1,β,2β−2}−θ
(b)
13 −θ

(b)
31 −θ

(b+1)
31

)}
,

is achievable. We therefore obtain the following DMT region
for transmission Tx1-Rx1 at block b:

d−
AFF D

(r1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
{
(1 − r1)

+, (α − 1 − r1)
+
}

β < 1

min
{
(2 − β − r1)

+ + (β − 1 − r1)
+,

(α − β − r1)
+
}

1 ≤ β < 2

min
{
(1 − r1)

+, (α − β − r1)
+
}

β > 2

Since Pr(Ob)
.= ρ

−d−
AFF D

(r1) is independent of b, then

Pr(O)
.= Bρ

−d−
AFF D

(r1) = ρ
logρ (B)−d−

AFF D
(r1) .= ρ

−d−
AFF D

(r1).
Following similar steps for Tx2-Rx2, we obtain the DMT
region d−

AFF D
(r1, r2) stated in (15). This completes the

proof. �
Comment D.1. In the high SNR regime, the logarithm in

(D.6b) is dominated by the summation of two terms. Note
that the first term contributes

(
2 − max{1, β, 2β − 2} − r1

)+
to the diversity gain corresponding to transmission Tx1-Rx1,
while the second term contributes

(
2β − 1 − max{1, β, 2β −

2} − r1
)+. Therefore, β does not affect the diversity gain for

values of β ≤ 1; For 1 < β < 2, increasing β decreases
the contribution of the first term due to noise amplification,
and increases the contribution of the second term, and for
β > 2 the diversity gain is again independent of β. Thus,
when the interference is strong enough to allow decoding the
interference without decreasing the achievable diversity gain,
the maximal achievable diversity gain for the AF-FD scheme
is min

{
(1 − r1)

+, (1 − r2)
+}.

APPENDIX E
PROOF OF THEOREM 4

We first construct a transmission scheme, and then analyze
its DMT region.
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A. Overview of the Transmission Scheme

We follow the principles of the scheme proposed in [18],
which studied HD-AF for the single relay channel: the relay
operation is done in consecutive pairs of channel symbols
(no overlap). At the first symbol time of each pair, the relay
receives the channel output while remaining silent. At the
second symbol time, the relay transmits a scaled version of
the symbol it received at the first symbol time. Without loss
of generality, assume that at time i , i ∈ {1, 3, 5, . . . , n−1}, the
relay receives, and at time i + 1 it transmits. We also assume
that n is even. Tx1 and Tx2 transmit only at the first n − 1
symbols. At the n’th symbol, Tx1 and Tx2 remain silent. The
corresponding rate loss is asymptotically negligible. Thus, we
have

Y1,i = √
ρH11X1,i +√

ρα H21X2,i + Z1,i

Y2,i = √
ρα H12X1,i + √

ρH22X2,i + Z2,i

Y3,i = √
ρH13X1,i + √

ρH23X2,i + Z3,i

Y1,i+1 = √
ρH11X1,i+1 +√

ρα H21X2,i+1

+
√

ρβ H31G R,i
(√

ρH13X1,i +√
ρH23X2,i + Z3,i

)

+Z1,i+1

Y2,i+1 = √
ρα H12X1,i+1 + √

ρH22X2,i+1

+
√

ρβ H32G R,i
(√

ρH13X1,i +√
ρH23X2,i + Z3,i

)

+ Z2,i+1.

The CSI assumptions are the same as those considered in
Section D-A. The code construction, encoding and decoding
are as follows:

1) Code Construction: Set Xk ∼ CN (0, 1), k ∈ {1, 2}. For
each mk ∈ Mk, k ∈ {1, 2} select a codeword xk(mk) according
to the p.d.f. fXk

(
xk(mk)

) = ∏n
i=1 fXk

(
xk,i (mk)

)
.

2) Encoding at the Sources and at the Relay: Txk trans-
mits mk using xk(mk), k ∈ {1, 2}. At each even time
index the relay transmits a scaled version of the sym-
bol it received at the previous time index: X3,i+1 =
G R,i

(√
ρH13X1,i + √

ρH23X2,i + Z3,i
)
, where G R,i is set as

in (D.5) to satisfy the power constraint at the relay. At odd
time indices the relay does not transmit.

3) Decoding at the Destinations: Each receiver jointly
decodes m1 and m2 using a maximum likelihood (ML)
decoder. However, note that as the relay transmits a scaled
version of its received signal, then each odd-indexed
channel output is correlated with its subsequent even-
indexed channel output. Thus, we consider consecutive
pairs of symbols to which we refer as double-symbols.
As the codewords are generated i.i.d., it follows that
each codeword of length n can be treated a vector of n

2
i.i.d.-generated double-symbols and the probability of error
can now be calculated using standard ML arguments as
in [18]. For k ∈ {1, 2}, define X(D)

k,i � (Xk,2i−1, Xk,2i )
T,

i ∈ {1, 2, 3, . . . , n
2 }. It follows that when the i ’th double-

symbol is transmitted by Txk , the odd-indexed symbol
Xk,2i−1 is transmitted while the relay listens to the sources,
and the even-indexed symbol Xk,2i is transmitted while the
relay transmits. Let Y(D)

k,i denote the received signal at Rxk

corresponding to the double-symbol X(D)
k,i . As discussed

above
{

Y(D)
k,i

} n
2

i=1
� Y(D)

k is a vector of the n
2 i.i.d.

double-symbols received at Rxk . Similarly define{
X(D)

k,i

} n
2

i=1
� X(D)

k . Applying the ML decoding rule,

Rxk , k = 1, 2, declares that (m̂1, m̂2) was transmitted if

(m̂1, m̂2)= arg max
(m1,m2)∈M1×M2

Pr
(
y(D)

k

∣
∣x(D)

1 (m1), x(D)
2 (m2), h̃k , h̃3

)
.

Using the same notation as in [19, Sec. IIV-C], we define for
each nonempty set S ⊆ {1, 2}, an error event ES � {m̂k �=
mk,∀k ∈ S and m̂k = mk,∀k ∈ Sc}. It follows that the event
of decoding error at Rxk consists of the union of the events E1,
E2 and E{1,2}. From [19, Eq. (28)] it follows that the asymptotic
probability of error can be evaluated by subtracting from the
received signal all signals corresponding to the messages in Sc.

In the following we evaluate the probability of error at Rx1
by considering each error event and deriving the corresponding
probability of error for an ML decoder which processes
double-symbols:

• E{1} � {m̂1 �= m1, m̂2 = m2}: Let (Ŷ1,2i−1, Ŷ1,2i ), i ∈
{1, 2, 3, . . . , n

2 } denote the interference-free signal
received at Rx1:

Ŷ1,2i−1 = √
ρH11X1,2i−1 + Z1,2i−1

Ŷ1,2i = √
ρH11X1,2i

+
√

ρβ H31G R,i
(√

ρH13X1,2i−1 + Z3,2i−1
)

+Z1,2i ,

i ∈ {1, 2, 3, . . . , n
2 }. This corresponds to a point-to-

point channel whose input is the double-symbol X(D)
1,i �

(X1,2i−1, X1,2i )
T and its output is the double-symbol

Ŷ(D)
1,i � (Ŷ1,2i−1, Ŷ1,2i )

T . Let H1,i , Z(D)
1,i , C

X (D)
1,i

, and

C
Z (D)

1,i
denote the channel matrix, the noise double-

symbol, the covariance matrix of X(D)
1,i and the covariance

matrix of the noise at Rx1, respectively:

H1,i �
[ √

ρh11 0√
ρ1+βh13h31G R,i

√
ρh11

]

Z(D)
1,i �

[
Z1,2i−1√

ρβh31G R,i Z3,2i−1 + Z1,2i

]
,

and

C
X (D)

1,i
� cov

(
X(D)

1,i

)
�
[

1 0
0 1

]
≡ C

X (D)
1

C
Z (D)

1,i
� cov

(
Z(D)

1,i

)
�
[

1 0
0 1 + ρβ |h31|2G2

R,i

]
.

Hence, Ỹ(D)
1,i = H1,i X

(D)
1,i +Z(D)

1,i . Note that the assignment
G2

R,i = ρ−1 ([18, Appendix B]) satisfies the power
constraint at the relay (see, Eq. (D.5)). Setting G2

R,i =
ρ−1 for all i = 1, 3, 5, . . . , n−1, we obtain that H1,i and
C

Z (D)
1,i

do not depend on i, hence we denote H1,i ≡ H1

and C
Z (D)

1,i
≡ C

Z (D)
1

. Next, following similar steps as

those used in [18], we conclude that an upper bound on
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pairwise error probability (PEP) for the ML decoding rule
associated with E{1} is

PP E 1 ≤
(

det
(
I2 + 1

2
H1C

(D)
X1

HH
1

(
C

(D)
Z1

)−1 ))− n
2

. (E.1)

Plugging H1, C(D)
X1

and C
(D)
Z1

into (E.1) we obtain

PP E1 ≤
(
1+ 1

2
ρ1−θ11 +

1
2ρβ−θ31−θ13

1 + ρβ−θ31−1

+
1
4ρ2−2θ11

1 + ρβ−θ31−1 +
1
2ρ1−θ11

1 + ρβ−θ31−1

)− n
2

(E.2)

(a)≤
(

1 + 1

2
ρ1−θ11 +

1
2ρβ−θ31−θ13

1 + ρβ−1

+
1
4ρ2−2θ11

1 + ρβ−1 +
1
2ρ1−θ11

1 + ρβ−1

)− n
2

(b)

≤̇

⎧
⎪⎪⎨

⎪⎪⎩

(
ρβ−θ31−θ13 + ρ2−2θ11

)− n
2 β ≤1

min
{(

ρ1−θ11+ ρ1−θ31−θ13
)− n

2,
(
ρ1−θ31−θ13+ ρ3−β−2θ11

)− n
2
}
β >1

where (a) follows as θ31 ≥ 0 and therefore, omitting
θ31 from the exponents in the denominators increases
the dominators and therefore, decreases the expression
in the parentheses in (E.2) and eventually increases the
entire expression; (b) follows since for β ≤ 1 we obtain
1 + ρβ−1 .= 1 as ρ → ∞. Recall that the target rate at
Tx1 is r1 log ρ bits per channel uses. As the target rate of
the double-symbols is set to R(D)

1,T = r (D)
1 log(ρ) bits per

two channel uses, then we have a total of ρ
n
2 r(D)

1 = ρ
n
2 2r1

codewords. Define θ̂1 � max{1 − θ11, 1 − θ31 − θ13} and
θ̂2 � max{1 − θ31 − θ13, 3 − β − 2θ11}. Then, applying
the union bound over all the codewords, the probability
of error in decoding the message from Tx1 at Rx1 can be
upper bounded by

Pr(E1)≤̇

⎧
⎪⎪⎨

⎪⎪⎩

ρ
− n

2

[(
max{β−θ31−θ13,2−2θ11}

)+−2r1

]

β ≤ 1

ρ
− n

2

[
max

{(
θ̂1

)+−2r1,
(
θ̂2

)+−2r1

}]

β >1

(E.3)

• E{2} � {m̂1 = m1, m̂2 �= m2}: Note that as decoding m2
is not required at Rx1, then an outage corresponding to
E{2} need not be accounted for at Rx1, and therefore E{2}
does not constrain the achievable DMT region at Rx1.

• E{1,2} � {m̂1 �= m1, m̂2 �= m2}: Define the super-
symbol X(S)

1,i � (X1,2i−1, X2,2i−1, X1,2i , X2,2i )
T , i ∈

{1, 3, 5, . . . , n
2 } as a vector of two consecutive pairs of

symbols transmitted by Tx1 and Tx2. The corresponding
received signal at Rx1 is

Y1,2i−1 = √
ρH11X1,2i−1 +√

ρα H21X2,2i−1 + Z1,2i−1

Y1,2i = √
ρH11X1,2i +√

ρα H21X2,2i

+
√
ρβ H31G R,i

(√
ρH13X1,2i−1+√

ρH23X2,2i−1

+ Z3,2i−1

)
+ Z1,2i .

Next, define Y(D)
1,i � (Y1,2i−1, Y1,2i )

T and note that
{

Y(D)
1,i

} n
2

i=1
are i.i.d. Define c1 = √

ρ1+βh13G R,i h31 and

c2 = √
ρ1+βh23G R,i h31. Additionally, define

H1,i �
[√

ρh11
√

ραh21 0 0
c1 c2

√
ρh11

√
ραh21

]

Z(D)
1,i �

[
Z1,2i−1√

ρβh31G R,i Z3,i−1 + Z1,2i

]

C
Z (D)

1,i
� cov

(
Z(D)

1,i

)
=
[

1 0
0 1 + ρβ−θ31 G2

R,i

]
,

C
X (S)

1,i
� cov

(
X(S)

1,i

)
= I4 ≡ C

X (S)
1

. Hence, Y(D)
1,i =

H1,i X
(S)
1,i +Z(D)

1,i . Setting G2
R,i = ρ−1 we satisfy the power

constraint at the relay, and obtain that H1,i and C
Z (D)

1,i
are

independent of i , thus, H1,i ≡ H1 and C
Z (D)

1,i
≡ C

Z (D)
1

.

Following steps similar to those used in [18], we obtain
that an upper bound on the PEP associated with E{1,2} is
given by

PP E12 ≤ det

(
I2 + 1

2
H1C

(S)
X1

HH
1

(
C

(D)
Z1

)−1
)− n

2

. (E.4)

Plugging H1, C(S)
X1

and C
(D)
Z1

into (E.4) we obtain

PP E12

≤
(

1+ 1

2

(
ρ1−θ11 +ρα−θ21

)+
1
2

(
ρ1−θ11 + ρα−θ21

)

1 + ρβ−θ31−1

+
1
4

(
ρ1−θ11 +ρα−θ21

)2

1+ρβ−θ31−1 +
1
2ρβ−θ31−1

(
ρ1−θ13 +ρ1−θ23

)

1+ρβ−θ31−1

+
1
4ρβ−θ31−1

∣
∣
√

ρ1+αh13h21−ρh23h11
∣
∣2

1 + ρβ−θ31−1

)− n
2

(E.5)

(a)≤
( 1

4

(
ρ1−θ11 +ρα−θ21

)2

1+ρβ−θ31−1

+
1
2ρβ−θ31−1

(
ρ1−θ13 +ρ1−θ23

)

1 + ρβ−θ31−1

)− n
2

(b)≤
( 1

4

(
ρ1−θ11 +ρα−θ21

)2

1+ρβ−1

+
1
2ρβ−θ31−1

(
ρ1−θ13 + ρ1−θ23

)

1 + ρβ−1

)− n
2

(E.6)

(c)
≤̇

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ρ2−2θ11 +ρ2α−2θ21 +ρβ−θ31−θ13

)− n
2

β ≤1
(

ρ3−β−2θ11 +ρ2α+1−β−2θ21 +ρ1−θ31−θ13

)− n
2

β >1,

where (a) follows since the expression in the parenthe-
ses in (E.5) is a summation of nonnegative terms and
thus, removing nonnegative terms from this summation
increases the expression on the right hand side of the
inequality; (b) follows since θ31 ≥ 0; and (c) is obtained
by omitting nonnegative terms from (E.6). Using similar
steps as those used to evaluate the probability of E{1}, set
the target rate to Rk,T = rk log(ρ), k ∈ {1, 2}, bits per
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channel use. Thus, when decoding both messages at Rx1,
there is a total of ρ

n
2 2(r1+r2) possible codewords. Define

θ̂1 � max
{
(2 − 2θ11), (2α − 2θ21), (β − θ31 − θ13)

}

and θ̂2 � max
{
(3 − β − 2θ11), (2α + 1 − β − 2θ21),

(1 − θ31 − θ13)
}
. By applying the union bound over all

the codewords we conclude that

Pr(E{1,2})≤̇

⎧
⎪⎪⎨

⎪⎪⎩

ρ
− n

2

[
θ̂1−2r1−2r2

]+

β ≤ 1

ρ
− n

2

[
θ̂2−2r1−2r2

]+

β > 1

(E.7)

B. Evaluating the DMT Region of
Half-Duplex AF Relaying

First, we evaluate the DMT region corresponding to E{1}:
Define PO,1 as the probability of the event in which the chan-
nel realizations are s.t. the probability of error corresponding
to E{1} cannot be made arbitrarily small. Following similar
arguments as those in [18, Proof of Th. 3], we conclude
that PO,1 can be upper bounded by PO,1≤̇ρ−dH D1 (r1) where
dH D1(r1) is obtained from (E.3) as follows: For β ≤ 1
the maximal Pr(E{1}) can be obtained from the following
minimization problem:

min θ11 + θ31 + θ13

s.t. max
{
(β − θ31 − θ13), (2 − 2θ11)

}
< 2r1,

θ11 ≥ 0, θ31 ≥ 0, θ13 ≥ 0.

This results in the following DMT for β ≤ 1:

d1(r1) = (1 − r1)
+ + (β − 2r1)

+. (E.8)

Next, for β > 1 we observe that the DMT region is given
as the maximum of two expressions. The first expression is
d2(r1) = θ∗

11 + θ∗
31 + θ∗

13, where (θ∗
11, θ

∗
31, θ

∗
13) are the optimal

arguments of the minimization problem:

min θ11 + θ31 + θ13

s.t. max
{
(1 − θ11), (1 − θ31 − θ13)

}
< 2r1,

θ11 ≥ 0, θ31 ≥ 0, θ13 ≥ 0,

for which we obtain the DMT region:

d2(r1) = 2(1 − 2r1)
+. (E.9)

The second expression is given by d3(r1) = θ∗
11 +θ∗

31 + θ∗
13,

where (θ∗
11, θ

∗
31, θ

∗
13) are the optimal arguments of the

optimization problem:

min θ11 + θ31 + θ13

s.t. max
{
(1 − θ31 − θ13), (3 − β − 2θ11)

}
< 2r1,

θ11 ≥ 0, θ31 ≥ 0, θ13 ≥ 0,

which results in the DMT region:

d3(r1) = (1 − 2r1)
+ +

(
3 − β

2
− r1

)+
. (E.10)

Combining (E.8), (E.9), and (E.10) we conclude that dH D1(r1)
is given by:

dH D1(r1) =

⎧
⎪⎨

⎪⎩

(1 − r1)
+ + (β − 2r1)

+ β ≤ 1

max
{
2(1 − 2r1)

+,

(1 − 2r1)
+ + ( 3−β

2 − r1)
+} β > 1

(E.11)

Using similar arguments we obtain the DMT corresponding to
the error event E{1,2} from (E.7):

dH D12(r1, r2)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1−r1−r2)
++(α−r1−r2)

+

+(β−2r1−2r2)
+ β ≤1

( 3−β
2 −r1−r2)

++( 2α+1−β
2 −r1−r2)

+

+(1−2r1−2r2)
+ β >1

(E.12)

Repeating the same derivations for decoding at Rx2 and
combining with (E.11) and (E.12) we obtain (16). This
completes the proof. �
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