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On Joint Source-Channel Coding for Correlated
Sources Over Multiple-Access Relay Channels

Yonathan Murin, Ron Dabora, and Deniz Gündüz

Abstract— We study the transmission of correlated sources
over discrete memoryless (DM) multiple-access-relay channels
(MARCs), in which both the relay and the destination have access
to side information arbitrarily correlated with the sources. As the
optimal transmission scheme is an open problem, in this paper,
we propose a new joint source-channel coding scheme based on a
novel combination of the correlation preserving mapping (CPM)
technique with Slepian–Wolf (SW) source coding, and obtain
the corresponding sufficient conditions. The proposed coding
scheme is based on the decode-and-forward strategy, and utilizes
CPM for encoding information simultaneously to the relay and
the destination, whereas the cooperation information from the
relay is encoded via SW source coding. It is shown that there
are cases in which the new scheme strictly outperforms the
schemes available in the literature. This is the first instance of
a source-channel code that uses CPM for encoding information
to two different nodes (relay and destination). In addition to
sufficient conditions, we present three different sets of single-
letter necessary conditions for reliable transmission of correlated
sources over DM MARCs. The newly derived conditions are
shown to be at least as tight as the previously known necessary
conditions.

Index Terms— Multiple-access relay channel, joint source
and channel coding, correlation preserving mapping, correlated
sources, side information, decode-and-forward.

I. INTRODUCTION

THE multiple-access relay channel (MARC) is a multiuser
network in which several sources communicate with a

single destination with the help of a relay [1], [2]. This model
represents cooperative uplink communication in wireless net-
works. In this work, we study the lossless transmission of
arbitrarily correlated sources over MARCs, in which both
the relay and the destination have access to side information
correlated with the sources.

It is well known [3] that a source can be reliably transmitted
over a memoryless point-to-point (PtP) channel, if its entropy
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is less than the channel capacity. Conversely, if the source
entropy is larger than the channel capacity, then reliable
transmission is not possible. Therefore, for memoryless PtP
channels, a separate design of the source and channel codes
achieves the optimal end-to-end performance. However, the
optimality of separate designs does not generalize to multiuser
networks [4]–[6].

Since the MARC combines both the multiple access
channel (MAC) and the relay channel models, and since
separate source-channel coding is not optimal for MAC with
correlated sources [4], we conclude that separate designs
are not optimal for MARCs. Therefore, it is important to
develop methods for joint source-channel coding (JSCC) for
this network. In this work we derive separate sets of sufficient
and necessary conditions, which are not necessarily tight.
In deriving our sufficiency conditions we focus on cooperation
schemes based on the decode-and-forward (DF) protocol, such
that the sequences of both sources are decoded at the relay.
Accordingly, transmission to both the relay and the destination
can benefit from joint design of the source and channel codes.

A. Prior Work

The MARC has received a lot of attention in recent
years, especially from a channel coding perspective. In [1],
Kramer et al. derived an achievable rate region for the MARC
with independent messages, using a coding scheme based on
DF relaying, regular encoding, successive decoding at the
relay, and backward decoding at the destination. In [2] it was
shown that for the MARC, in contrast to the relay channel, DF
schemes with different decoding techniques at the destination
yield different rate regions. Specifically, backward decoding
can support a larger rate region than sliding window decoding.
Another DF-based coding scheme, which uses offset encoding,
successive decoding at the relay and sliding window decoding
at the destination, was presented in [2]. This scheme was
shown to be at least as good as sliding window decoding.
Moreover, this scheme achieves the corner points of the
backward decoding rate region, but with a smaller delay. While
the focus of [1] and [2] was mainly on achievable rate regions,
outer bounds on the capacity region of MARCs were derived
in [7]. More recently, in [8], Tandon and Poor derived the
capacity region of two classes of MARCs, which include a
primitive relay assisting the transmitters through an orthogonal
finite-capacity link to the destination.

While the works [1], [2], [7], and [8] considered channel
coding for MARCs, in [9] we studied source-channel coding
for MARCs with correlated sources. In [6] we presented an
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explicit example in which separate source and channel code
design is suboptimal for this model. The suboptimality of
separate source and channel coding for multiuser scenario was
first shown by Shannon in [10] by considering the transmission
of correlated sources over a two-way channel.

Lossless transmission of correlated sources over relay chan-
nels with correlated side information was studied in [11]–[14].
Specifically, in [11] Gündüz and Erkip proposed a DF based
achievability scheme and showed that separation is optimal for
physically degraded relay channels as well as for cooperative
relay-broadcast channels. This work was later extended to
multiple relay networks in [12]. The relay channel with
arbitrarily correlated sources, in which one of the sources
is available at the transmitter while the other is known
at the relay, and the destination is interested in a lossless
reconstruction of both sources, was considered in [15]–[17].
The work [15] used block Markov irregular encoding with
list decoding (based on [18]), at both the relay and the
destination, to characterize sufficient conditions for reliable
transmission using a separation-based source-channel code.
The works [16] and [17] used block Markov regular encoding
with backward decoding, in which the relay partially decodes
the sequence transmitted from the transmitter prior to sending
both its own source sequence and the cooperation information
to the destination.

As shown in [6], source-channel separation is suboptimal
for general MARCS. Therefore, optimal performance require
employing a joint source-channel code. An important tech-
nique for JSCC is the correlation preserving mapping (CPM)
technique in which the channel codewords are correlated with
the source sequences. CPM was introduced in [4] in which
it was used to obtain single-letter sufficiency conditions for
reliable transmission of discrete, memoryless (DM) arbitrarily
correlated sources over a MAC. CPM typically enlarges the
set of feasible input distribution, thereby enlarging the set of
sources which can be reliably transmitted compared to separate
source and channel coding.

The CPM technique of [4] was extended to source coding
with side information for MACs in [19], to broadcast channels
with correlated sources in [20] (with a correction in [21]),
and to the transmission of correlated sources over interference
channels (ICs) in [22]. However, when the sources are inde-
pendent, the region obtained from [22] does not specialize to
the Han and Kobayashi (HK) region of [23]. Sufficient condi-
tions for reliable transmission, based on the CPM technique,
which specialize to the HK region were derived in [24]. The
transmission of independent sources over ICs with correlated
receiver side information was studied in [25], where it was
shown that separation is optimal when each receiver has access
to side information correlated only with its own desired source.
When each receiver has access to side information correlated
only with the interfering transmitter’s source, [25] provided
sufficient conditions for reliable transmission based on the
CPM technique together with the HK superposition encoding
and partial interference cancellation.

Although CPM implements JSCC, in [26] Dueck observed
that the sufficiency conditions derived in [4] are not necessary.
Therefore, in this work, in addition to sufficient conditions,

necessary conditions are considered as well. Observe that the
feasible joint distributions of the sources and the respective
channel inputs for the MAC (and for the MARC), must
satisfy a Markov relationship which reflects the fact that the
channel inputs at the transmitters are correlated only via the
correlation of the sources. In [4], in addition to the single-
letter sufficient conditions, multi-letter necessary and sufficient
conditions, which account for the above constraint, were also
presented. However, as noted in [4], these conditions are based
on n-letter mutual information expressions, and thereby not
computable. The work [27] followed the lines of [4], and
established necessary conditions for reliable transmission of
correlated sources over DM MARCs, which are based on
n-letter expressions. Furthermore, [27] showed that in some
cases source-channel separation is optimal and the n-letter
expressions specialize to single-letter expressions. In contrast
to [4], in [28] Kang and Ulukus used the above constraint
to derive a new set of single-letter necessary conditions for
reliable transmission of correlated sources over a MAC.

B. Main Contributions

This work has a number of important contributions:
1) We derive a novel JSCC achievable scheme for MARCs.

The scheme uses CPM for encoding information from
the sources to both the relay and the destination. The
relay, on the other hand, uses SW source coding1 for
forwarding its cooperation information. Therefore, the
sources and the relay send different types of informa-
tion to the destination: the sources send source-channel
codewords, while the relay sends binning information
(SW bin indices). This is in contrast to the schemes
of [6, Thm. 1 and 2], and to [16], in which the same
type of information is sent to the destination from the
sources as well as from the relay (either SW bin indices
or source-channel codewords). The new scheme uses the
DF strategy with successive decoding at the relay and
simultaneous backward decoding of both cooperation
information and source sequences at the destination.
This scheme achieves the best known results for all
previously characterized special cases.

2) We show that, similarly to the capacity analysis for
MARCs, also for JSCC simultaneous backward decod-
ing of the cooperation information and source sequences
at the destination, outperforms sequential backward
decoding at the destination. We also show that simul-
taneous backward decoding at the destination outper-
forms the scheme derived in [6, Thm. 1]. Additionally,
we show that there are cases in which simultaneous
backward decoding at the destination strictly outperform
the schemes derived in [6]. This is proved through an
explicit analysis of the error probability for a specific
MARC model.

3) We derive three new sets of single-letter necessary
conditions for reliable transmission of correlated sources
over DM MARCs. The first set of conditions is a

1Throughout this work we refer to separate source-channel coding (i.e., a
source code followed by a channel code) as encoding using SW source coding.
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“MAC-type” bound, considering the cut around the
sources and the relay, while the other two sets are
“broadcast-type” bounds, derived using the cut around
the destination and the relay. The new sets of necessary
conditions are shown to be at least as tight as previously
known conditions, and in some scenarios, the new sets
are strictly tighter than known conditions.

The rest of this paper is organized as follows: in
Section II we introduce the notations and the channel model.
In Section III we briefly review the existing schemes and give
motivation for a new JSCC scheme. In Section IV we present
the new achievability scheme and derive it’s corresponding set
of sufficiency conditions. In Section V a comparison between
the existing schemes and the new scheme is presented. Nec-
essary conditions are presented in Section VI, and concluding
remarks are provided in Section VII.

II. PRELIMINARIES

A. Notations

In this work, we denote random variables (RVs) with upper
case letters, e.g. X , Y , and their realizations with lower case
letters, e.g., x , y. A discrete RV X takes values in a set X .
|X | is used to denote the cardinality of a finite, discrete set X .
We use pX (x) to denote the probability mass function (p.m.f.)
of a discrete RV X on X ; for brevity we may omit the
subscript X when it is the uppercase version of the sample
symbol x . We denote vectors with boldface letters, e.g. x, y,
the i ’th element of a vector x is denoted by xi , and we use x j

i
where i < j to denote (xi , xi+1, . . . , x j−1, x j ); x j is a short
form notation for x j

1 , and unless specified otherwise x � xn .
Matrices are denoted by doublestroke font, e.g. P. We denote
the empty set with φ, and the complement of the set B by Bc.
We use H (·) to denote the entropy of a discrete RV and
I (·; ·) to denote the mutual information between two RVs, as
defined in [29, Ch. 2.2]. We use A∗(n)

ε (X) to denote the set of
ε-strongly typical sequences with respect to (w.r.t.) the p.m.f
pX (x) on X , as defined in [29, Ch. 6.1]. When referring to a
typical set we may omit the RVs from the notation when these
variables are obvious from the context. We use X ↔ Y ↔ Z
to denote a Markov chain formed by the RVs X, Y, Z as
defined in [29, Ch. 2.1]. Finally, we use X ⊥⊥ Y to denote
that X is statistically independent of Y , N+ is used to denote
the set of positive integers, R is used to denote the set of real
numbers and E{·} is used to denote stochastic expectation.

B. System Model

The MARC consists of two transmitters (sources), a receiver
(destination) and a relay. Transmitter i observes the source
sequence Sn

i , for i = 1, 2. The receiver is interested in a
lossless reconstruction of the source sequences observed by
the two transmitters, and the objective of the relay is to
help the transmitters and the receiver in reconstructing the
source sequences. The relay and the receiver each observes its
own side information, denoted by W n

3 and W n , respectively,
correlated with the source sequences. Figure 1 depicts the
MARC with side information scenario.

Fig. 1. The multiple-access relay channel with correlated side information.
(Ŝn

1 , Ŝn
2 ) are the reconstructions at the destination.

The sources and the side information sequences,
{S1,k, S2,k , Wk , W3,k}n

k=1, are arbitrarily correlated
at each sample index k, according to the joint
distribution p(s1, s2, w,w3) defined over a finite alphabet
S1 × S2 × W × W3, and independent across different
sample indices k. This joint distribution is known at
all nodes. For transmission, a DM MARC with inputs
Xi ∈ Xi , i = 1, 2, 3, and outputs Y, Y3 over finite output
alphabets Y,Y3, respectively, is available. The MARC is
causal and memoryless in the sense of [30]:

p(yk, y3,k|yk−1, yk−1
3 , xk

1 , xk
2 , xk

3 , sn
1 , sn

2 , wn
3 , wn)

= p(yk, y3,k|x1,k, x2,k, x3,k), k = 1, 2, . . . , n. (1)

Definition 1: A source-channel code for the MARC with
correlated side information consists of two encoding functions
at the transmitters,

f (n)
i : Sn

i �→ X n
i , i = 1, 2, (2)

a set of causal encoding functions at the relay, { f (n)
3,k }n

k=1, such
that

x3,k = f (n)
3,k (yk−1

3,1 , wn
3,1), k = 1, 2, . . . , n, (3)

and a decoding function at the destination

g(n) :Yn × Wn �→ Sn
1 × Sn

2 . (4)

Definition 2: Let Ŝn
i , i = 1, 2, denote the reconstruction of

Sn
i , i = 1, 2, respectively, at the receiver, i.e., (Ŝn

1 , Ŝn
2 ) =

g(n)(Y n, W n). The average probability of error, P(n)
e , of a

source-channel code for the MARC is defined as:

P(n)
e � Pr

(
(Ŝn

1 , Ŝn
2 ) �= (Sn

1 , Sn
2 )

)
. (5)

Definition 3: The sources S1 and S2 can be reliably trans-
mitted over the MARC with side information if there exists
a sequence of source-channel codes such that P(n)

e → 0 as
n → ∞.

C. The Primitive Semi-Orthogonal MARC

The DM semi-orthogonal MARC (SOMARC) is a MARC
in which the relay-destination link is orthogonal to the chan-
nels from the sources to the relay and the destination. Let
YR denote the signal received at the destination due to the
relay channel input X3, and YS denote the signal received at
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Fig. 2. Primitive semi-orthogonal multiple-access relay channel
(PSOMARC).

the destination due to the transmission of X1 and X2. The
conditional distribution function of the SOMARC is:

p(yR, yS, y3|x1, x2, x3) = p(yR|x3)p(yS, y3|x1, x2). (6)

A special case of the SOMARC, called the primitive
SOMARC (PSOMARC), was considered by Tandon and Poor
in [8]. In this channel the relay-destination link X3 − YR

is replaced with a finite-capacity link whose capacity is C3.
This model is depicted in Figure 2. Observe that in the
PSOMARC setup there is no side-information at either the
relay or destination.

D. Implementing JSCC via CPM

JSCC is implemented via CPM by generating the channel
inputs (codewords) statistically dependent with the source
sequences, thus, the channel codewords “preserve” some of
the correlation exhibited among the sources. For example, if
two sources (S1, S2) are to be transmitted over a MAC with
channel inputs (X1, X2), then the CPM encoded channel code-
words are generated according to

∏n
k=1 p(x1,k|s1,k). The main

benefit of the CPM technique is enlarging the set of possible
joint input distributions, thereby improving the performance
compared to separately constructing the source code and the
channel code. For an illustrative example we refer the reader to
the example presented in [4, p. 649], which demonstrates the
sub-optimality of separate source-channel coding, compared to
the CPM technique, for the transmission of correlated sources
over a DM MAC.

III. PREVIOUS SCHEMES AND MOTIVATION

FOR A NEW SCHEME

Before introducing the new coding scheme we motivate
our work by briefly reviewing the two sets of sufficient
conditions for reliable transmission of correlated sources over
DM MARCs derived in [6] and in [9].

A. Previously Derived Joint Source-Channel Coding
Schemes for DM MARCs

In [6] two JSCC schemes for reliable transmission of
correlated sources over DM MARCs were derived. The cor-
responding sufficient conditions are as follows:

Theorem 1 ([6, Thm. 1]): A source pair (S1, S2) can be
reliably transmitted over a DM MARC with relay and receiver

side information as defined in Section II-B if,

H (S1|S2, W3) < I (X1; Y3|S2, V1, X2, X3, W3) (7a)

H (S2|S1, W3) < I (X2; Y3|S1, V2, X1, X3, W3) (7b)

H (S1, S2|W3) < I (X1, X2; Y3|V1, V2, X3, W3) (7c)

H (S1|S2, W ) < I (X1, X3; Y |S1, V2, X2) (7d)

H (S2|S1, W ) < I (X2, X3; Y |S2, V1, X1) (7e)

H (S1, S2|W ) < I (X1, X2, X3; Y |S1, S2), (7f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(v1)p(x1|s1, v1)

×p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (8)

Theorem 2 ([6, Thm. 2]): A source pair (S1, S2) can be
reliably transmitted over a DM MARC with relay and receiver
side information as defined in Section II-B if,

H (S1|S2, W3) < I (X1; Y3|S1, X2, X3) (9a)

H (S2|S1, W3) < I (X2; Y3|S2, X1, X3) (9b)

H (S1, S2|W3) < I (X1, X2; Y3|S1, S2, X3) (9c)

H (S1|S2, W ) < I (X1, X3; Y |S2, X2, W ) (9d)

H (S2|S1, W ) < I (X2, X3; Y |S1, X1, W ) (9e)

H (S1, S2|W ) < I (X1, X2, X3; Y |W ), (9f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(x1|s1)p(x2|s2)

×p(x3|s1, s2)p(y3, y|x1, x2, x3). (10)

Remark 1: Thm. 1 and Thm. 2 differ in both the decoding
constraints and the admissible joint distribution chains, i.e., (8)
and (10). The main difference between Thm. 1 and Thm. 2 is
the target nodes for CPM and SW coding: In Thm. 1, CPM
is used for encoding information from the transmitters to the
relay and SW coding is used for encoding information cooper-
atively from the transmitters and the relay to the destination.
Thus, in Thm. 1 the cooperation between the relay and the
transmitters is based on the binning information. The RVs V1
and V2 in Thm. 1 carry the bin indices of the SW source code.
In Thm. 2, SW coding is used for encoding information from
the transmitters to the relay and CPM is used for cooperatively
encoding information to the destination. Thus, in Thm. 2 the
cooperation between the transmitters and the relay is based on
the sources S1 and S2.

Recall that in [4] it was shown that separate source and
channel coding is generally suboptimal for transmitting cor-
related sources over MACs. Thus, it follows that the relay
decoding constraints of Thm. 1 are generally looser compared
to the relay decoding constraints of Thm. 2. Using similar rea-
soning we conclude that the destination decoding constraints
of Thm. 2 are looser compared to the destination decoding
constraints of Thm. 1 (as long as coordination is possible, see
[9, Remark 18]).

Remark 2: The work [16] considered JSCC for the relay
channel, in which one of the sources is available at the
transmitter while the other is known at the relay. The authors
presented a transmission scheme similar to Thm. 2, where
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Fig. 3. The multiple-access broadcast relay channel with correlated side
information. (S̃n

1 , S̃n
2 ) are the reconstructions at the relay, and (Ŝn

1 , Ŝn
2 ) are

the reconstructions at the destination.

CPM is utilized to transmit the sources from the transmitters to
the destination while the relay applies binning for cooperation.

Remark 3: In the multiple-access broadcast relay channel
(MABRC) [9], the relay also wants to reconstruct the sources
in a lossless fashion. This channel model is depicted in
Figure 3. As both Thm. 1 and Thm. 2 use the DF protocol, the
conditions of Thm. 1 and Thm. 2 are also sufficient conditions
for reliable transmission over the MABRC.

B. The Motivation for a New JSCC Scheme

1) Motivating Observation 1: As stated in Remark 1, the
achievability schemes of Thm. 1 and Thm. 2 use different
combinations of the CPM technique with a SW source code
paired with a channel code. The achievability scheme of
Thm. 1 uses SW source coding for cooperatively encoding
information from the transmitters and the relay to the des-
tination while CPM is used for encoding information from
the transmitters to the relay. In Thm. 2, CPM is used for
cooperatively encoding information from the transmitters and
the relay to the destination while SW source coding is used for
encoding information from the transmitters to the relay. Since
CPM can generally support the transmission of sources with
higher entropies compared to separate source-channel coding,
a natural question that arises is whether the CPM technique
can be used for simultaneously encoding information to both
the relay and the destination.

2) Motivating observation 2: It was observed in [18] that
for the relay channel, when decoding at the relay does not
constrain the rate, DF as implemented in [18, Thm. 1] is capac-
ity achieving. It follows that cooperation based on binning is
optimal in this case.2 This raises the question whether it is
possible to construct a scheme that combines CPM from the
sources to the destination with binning from the relay to the
destination, and how does such a scheme compare with Thm. 1
and Thm. 2.

3) Motivating observation 3: The cooperative relay-
broadcast channel (CRBC) model is a special case of the
MABRC obtained by setting S2 =X2 =φ, such that there is
a single transmitter [11]. Figure 4 depicts the CRBC model.
For this channel model [11] presented the following necessary
and sufficient conditions:

2We note that in the channel coding problem for the relay channel, other
schemes, e.g. the regular encoding schemes of [31] and [32], achieve the
DF-rate without binning, but these schemes are not directly applicable for
this scenario, see also [9].

Fig. 4. The cooperative relay broadcast channel. S̃n
1 and Ŝn

1 are the
reconstructions of the source sequence, Sn

1 , at the relay and the destination,
respectively.

Proposition 1 ([11, Thm. 3.1]): A source S1 can be reliably
transmitted over a DM CRBC with relay and receiver side
information if:

H (S1|W3) < I (X1; Y3|X3) (11a)

H (S1|W ) < I (X1, X3; Y ), (11b)

for some input distribution p(s1, w3, w)p(x1, x3). Conversely,
if a source S1 can be reliably transmitted over the CRBC then
the conditions in (11a) and (11b) are satisfied with < replaced
by ≤ for some input distribution p(s1, w3, w)p(x1, x3).

In [6, Remark 6] it is shown that for a CRBC, the con-
ditions of Thm. 1 can be specialized to the conditions of
[11, Thm. 3.1], while the conditions obtained from Thm. 2
are generally more restrictive. The reason is that when spe-
cializing Thm. 2 to the case of a single transmitter, the set
of joint distributions of the source and relay channel inputs
which satisfy (10) does not exhaust the entire space of joint
distributions, and in particular, does not include the optimal
distribution according to [11, Thm. 3.1]. We conclude that the
downside of using CPM for encoding information to the des-
tination, as implemented in Thm. 2, is that it restricts the
set of admissible joint distributions; thereby constrains the
achievable coordination between the sources and the relay
when cooperating to send information to the destination. This
leads to the question whether it is possible to construct a
scheme in which CPM is used for encoding information to the
destination, while the constraints on the source-relay coordi-
nation imposed by the distribution chain (10) are relaxed or
entirely removed.
In the next section a new JSCC scheme is derived which gives
affirmative answers to the above three questions.

IV. A NEW JOINT SOURCE-CHANNEL CODING SCHEME

We now present a new set of sufficient conditions for reli-
able transmission of correlated sources over DM MARCs with
side information. The achievability scheme (Thm. 3) is based
on DF at the relay, and uses CPM for encoding information to
both the relay and the destination and successive decoding at
the relay. Cooperation in the new scheme is based on binning
implemented via SW source coding. The decoding method
applied at the destination in the new scheme is simultane-
ous backward decoding of the cooperation information and
the transmitted source sequences. By combining cooperation
based on binning with CPM for encoding information to the
destination, the constraints on the distribution chain imposed
by the scheme of Thm. 2 are removed.
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Fig. 5. Types of information sent to the destination in the schemes of (a) Thm. 1; (b) Thm. 2; and (c) the new proposed scheme of Thm. 3. Solid arrows
indicate bin indices, while dashed arrows indicate source-channel codewords.

Note that in the schemes implemented in Thm. 1 and in
Thm. 2 the same type of information is sent to the destination
from both the relay and from the sources, while in the new
scheme implemented in Thm. 3 different types of information
are sent to the destination from the relay and from the sources.
This is illustrated in Figure 5. It can be observed that in Thm. 1
(Figure 5a) both the relay and the sources send bin indices to
the destination, while in Thm. 2 (Figure 5b) both the relay and
the sources send source-channel codewords. However, this is
not the case in Thm. 3 (Figure 5c), in which the relay sends
bin indices while the sources send source-channel codewords.

A. Sufficient Conditions for Simultaneous Backward
Decoding at the Destination

Using simultaneous backward decoding the following suf-
ficient conditions are obtained:

Theorem 3: A source pair (S1, S2) can be reliably transmit-
ted over a DM MARC with relay and receiver side information
as defined in Section II-B if the conditions

H (S1|S2, W3) < I (X1; Y3|S2, V1, X2, X3, W3) (12a)
H (S2|S1, W3) < I (X2; Y3|S1, V2, X1, X3, W3) (12b)
H (S1, S2|W3) < I (X1, X2; Y3|V1, V2, X3, W3) (12c)

H (S1|S2, W ) < min
{

I (X1, X3; Y |S2, V2, X2, W ),

I (X1, X3; Y |S1, V2, X2)

+ I (X1; Y |S2, V1, X2, X3, W )
}

(12d)

H (S2|S1, W ) < min
{

I (X2, X3; Y |S1, V1, X1, W ),

I (X2, X3; Y |S2, V1, X1)

+ I (X2; Y |S1, V2, X1, X3, W )
}

(12e)

H (S1, S2|W ) < I (X1, X2, X3; Y |W ), (12f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(v1)p(x1|s1, v1)

×p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (13)
Proof: The proof is given in Appendix A.

B. Discussion

Remark 4: The achievability schemes of Thm. 1 and
Thm. 3 require the same joint distribution (cf. equations (8)
and (13)).

Remark 5: Conditions (12a)–(12c) in Thm. 3 are con-
straints due to decoding at the relay, while conditions

(12d)–(12f) are decoding constraints at the destination. Note
that the decoding constraints at the relay in Thm. 3 are
identical to (7a)–(7c) in Thm. 1.

Remark 6: Note that as Thm. 3 uses the DF scheme, the
conditions of Thm. 3 are also sufficient conditions for reliable
transmission over the MABRC.

Remark 7: In Thm. 3, V n
1 and V n

2 represent the binning
information for Sn

1 and Sn
2 , respectively. Consider Thm. 3

which uses simultaneous backward decoding: condition (12d)
can be written as follows:

H (S1|S2, W ) < I (X1; Y |S2, V1, X2, X3, W )

+ min
{

I (V1, X3; Y |S2, V2, X2, W ),

I (X1, X3; Y |S1, V2, X2)
}
. (14)

On the right-hand side (RHS) of (14), the mutual information
expression I (X1; Y |S2, V1, X2, X3, W ) represents the avail-
able rate for encoding information on the source sequence Sn

1 ,
in excess of the bin index conveyed by the sequence V n

1 . This
is because S2, V1, X2, X3 and W are known. The expres-
sion I (V1, X3; Y |S2, V2, X2, W ) represents the rate of binning
information on S1 that can be utilized at the destination.
Also the expression I (X1, X3; Y |S1, V2, X2), as S1 and V2
are known, represents the rate for sending the bin index of
the source sequence S1, cooperatively from Transmitter 1 and
the relay to the destination. The reason for the two possible
binning rates is that I (V1, X3; Y |S2, V2, X2, W ) represents the
maximal rate increase that can be achieved due to the binning
information available on the current message in the backward
decoding scheme, while I (X1, X3; Y |S1, V2, X2) represents
the maximal rate for decoding the binning information for
the next step in the backward decoding scheme. Therefore,
decoding via simultaneous backward decoding results in two
constraints on the binning rate.

Remark 8: Thm. 3 can be specialized to the MAC with
correlated sources by letting V1 = V2 = X3 = W = φ.
For this setting the conditions (12d)–(12f) specialize to the
ones in [4, eq. (12)] with Y as the destination. Similarly, the
MABRC, under V1 = V2 = X3 = W3 = W = φ, specializes
to the compound MAC [5, Sec. VI], and Thm. 3 specializes to
[5, Thm. 6.1]. We conclude that Thm. 3 implements a CPM
encoding for both the relay and the destination. This is in
contrast to the previous results of Thm. 1 and Thm. 2 in which
CPM is used for encoding information either to the relay or
to the destination.
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Remark 9: The CRBC model with correlated relay and
destination side information can be obtained as a special
case of the MABRC model by letting X2 = S2 = φ.
The sufficient conditions for the CRBC given in
[11, Thm. 3.1] can also be obtained from Thm. 3 by
letting V1 = X3, S2 = X2 = V2 = φ, and considering an
input distribution independent of the sources. This is in
contrast to Thm. 2 which specializes to more restrictive
conditions (see Subsection III-B). We conclude that Thm. 3
allows more flexibility in the achievable coordination between
the sources and the relay compared to Thm. 2.

Remark 10: Using successive backward decoding at the
destination the following sufficient conditions are obtained:

Proposition 2: A source pair (S1, S2) can be transmitted
reliably over a DM MARC with relay and receiver side
information as defined in Section II-B if,

H (S1|S2, W3) < I (X1; Y3|S2, V1, X2, X3, W3) (15a)

H (S2|S1, W3) < I (X2; Y3|S1, V2, X1, X3, W3) (15b)

H (S1, S2|W3) < I (X1, X2; Y3|V1, V2, X3, W3) (15c)

H (S1|S2, W ) < I (X1; Y |S2, V1, X2, X3, W )

+I (V1, X3; Y |V2, W ) (15d)

H (S2|S1, W ) < I (X2; Y |S1, V2, X1, X3, W )

+I (V2, X3; Y |V1, W ) (15e)

H (S1, S2|W ) < I (X1, X2; Y |V1, V2, X3, W )

+I (V1, V2, X3; Y |W ), (15f)

are satisfied for some joint distribution that factorizes as:

p(s1, s2, w3, w)p(v1)p(x1|s1, v1)

×p(v2)p(x2|s2, v2)p(x3|v1, v2)p(y3, y|x1, x2, x3). (16)
Proof: The proof is given in Appendix B.

Remark 11: As the scheme of Thm. 3 applies simultane-
ous backward decoding at the destination, then the source
vectors and the binning information are jointly decoded (see
Appendix A-C). On the other hand, the scheme of Prop. 2
applies successive backward decoding at the destination, thus,
first the binning information is decoded, and then, the source
vectors are decoded (see Appendix B-B). Since in the latter
scheme decoding the binning information uses only part of
the available information, the sufficient conditions obtained for
the scheme of Prop. 2 are more restrictive than those obtained
for the scheme of Thm. 3. This is rigorously shown in the
following section.

V. COMPARISON OF THE DIFFERENT

ACHIEVABILITY SCHEMES

We now present a detailed comparison of the sufficient
conditions established by Thm. 3, Thm. 1, Thm. 2 and Prop. 2.
Specifically, we show the following:

• In Subsection V-A we show that for correlated sources
and side information the scheme of Thm. 3 outperforms
the schemes of Thm. 1 and Prop. 2.

• In Subsection V-B we show that there are scenarios for
which the scheme of Thm. 3 strictly outperforms the
schemes of Thm. 1 and Thm. 2.

A. Correlated Sources and Side Information

We now compare Thm. 1, Thm. 3 and Prop. 2 for the general
input distributions (8), (13) and (16). As stated in Remark 5,
the decoding constraints at the relay in Thm. 3 are identical
to the decoding constraints at the relay in Thm. 1 and Prop. 2.
Therefore, in the following we compare only the decoding
constraints at the destination. The conclusion is summarized
in the following proposition:

Proposition 3: The scheme of Thm. 3 is at least as good
as the schemes of Thm. 1 and Prop. 2.

Proof: The proof is given in Appendix C.
Remark 12: We emphasize that Prop. 3 implies that the

superiority of the scheme of Thm. 3 over the scheme of Thm. 1
and the scheme of Prop. 2 holds in general.

Proposition 3 implies that for JSCC for MARCs, simul-
taneous backward decoding outperforms sequential backward
decoding. For the case of separate source and channel codes,
[9, Thm. 1] presented a separation-based achievability scheme
subject to the input distribution:

p(s1, s2, w3, w, v1, v2, x1, x2, x3)

= p(s1, s2, w3, w)p(v1)p(x1|v1)

× p(v2)p(x2|v2)p(x3|v1, v2). (17)

In this case, we have p(xi |si , vi ) = p(xi |vi ), i = 1, 2, the
joint distributions in (8) and (13) specialize to the one in (17),
and the sufficient conditions of Thm. 1 and Thm. 3 specialize
to the conditions of [9, Thm. 1].

Remark 13: When the source and side information
sequences are independent, that is p(s1, s2, w3, w) = p(s1)
p(s2)p(w3)p(w), the joint distributions in (13) and (16) spe-
cialize to p(s1)p(s2)p(w3)p(w)p(v1)p(x1|v1)p(v2)p(x2|v2)
p(x3|v1, v2). In this case, the conditions of Prop. 2 specialize
to the conditions obtained for sending independent messages
over the MARC using sliding-window decoding at the des-
tination [2, Section. III.B], while the conditions of Thm. 3
specialize to the conditions obtained for sending independent
messages over the MARC using backward decoding at the
destination [2, Section. III.A].3

B. Mixed JSCC Can Strictly Outperform the Schemes
of Thm. 1 and Thm. 2

Recall Remark 4, which states that the underlying input
distributions of Thm. 3 and Thm. 1 are identical, while the
underlying input distribution for Thm. 2 is different. Here,
we present a comparison of all three schemes for a special
case in which the two input distribution chains are the same.
In this example the sources can be reliably transmitted by
using the scheme of Thm. 3, while reliable transmission is not
possible via the schemes of Thm. 1 and Thm. 2. Consider a
PSOMARC, defined by X1 = X2 = {0, 1},Y3 = {0, 1, 2},
YS = {0, 1}. Let C3 = 1, and consider the deterministic
channel mapping (X1, X2) �→ (Y3, YS) specified in Table I.

The sources (S1, S2) are defined over the sets S1 = S2 =
{0, 1} with the joint distribution specified in Table II.

3The same observation holds when the side information is not present. This
follows since when the side information is independent of the sources then it
cannot help in decoding the sources. Thus, we can set W = W3 = φ.
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TABLE I

A DETERMINISTIC CHANNEL MAPPING (X1, X2) �→ (Y3, YS)

FOR THE PSOMARC

TABLE II

THE JOINT DISTRIBUTION OF (S1, S2). THE ENTRY IN THE j TH ROW AND

mTH COLUMN, j, m = 0, 1, CORRESPONDS TO Pr ((S1, S2) = ( j, m))

These sources can be reliably transmitted by letting X1 = S1
and X2 = S2. The probability of decoding error at the relay is
zero since there is a one-to-one mapping between the channel
inputs from the sources and the channel output at the relay. The
probability of decoding error at the destination can be made
arbitrarily small by using the fact that each channel output
at the destination corresponds only to two possible pairs of
channel inputs. This ambiguity can be resolved using the relay-
destination link whose capacity is 1 bit per channel use.

Next, consider the transmission via the schemes of Thm. 1,
Thm. 2 and Thm. 3. For transmission via the schemes of
Thm. 1 and Thm. 2 we have the following proposition:

Proposition 4: The sources defined in Table II cannot be
reliably transmitted over the PSOMARC defined in Table I,
by using the schemes of Thm. 1 and Thm. 2.

Proof: First we make the following claim:
Claim 1: If an inequality sign in the conditions of Thm. 1

and Thm. 2 is reversed, then reliable transmission is not
possible with the corresponding schemes.
Proof sketch: The average probability of error for decoding the
sources transmitted via the scheme of Thm. 1 can be lower
bounded by using the properties of jointly typical sequences,
[29, Ch. 6.3]. This can be done by following arguments similar
to those used in [9, Appendix B.D], but instead of upper
bounding the different quantities in the calculation of the
probability of error, we apply lower bounds, see the left-hand
side (LHS) of [29, eqs. (6.106)–(6.108)]. In particular it fol-
lows that if conditions (7) hold with opposite strict inequality,
e.g., H (S1|S2, W3) > I (X1; Y3|S2, V1, X2, X3, W3), see (7a),
then reliable transmission is not possible via the scheme of
Thm. 1. These arguments also apply to Thm. 2, that is,
if conditions (9) hold with opposite strict inequality, e.g.,
H (S1|S2, W3) > I (X1; Y3|S1, X2, X3) , see (9a), then reliable
transmission is not possible via the scheme of Thm. 2.

In Appendix D we show that indeed evaluating both Thm. 1
and Thm. 2 for the example in this section, some conditions
in Thm. 1 and Thm. 2 hold with opposite strict inequality
to what is required by the theorems. This shows that reliable
transmission of the sources is not possible via the schemes of
Thm. 1 and Thm. 2.

In contrast to Thm. 1 and Thm. 2, we have the following
proposition for Thm. 3:

Proposition 5: The sources defined in Table II can be
reliably transmitted over the PSOMARC specified in Table I,
by using the scheme of Thm. 3.

Proof: Conditions (12) can be specialized to the
PSOMARC by letting V1 = V2 = W3 = W = φ and
I (X3; YR) = C3. In particular, a specialization of the condi-
tions of Thm. 3 which involve H (S1, S2), i.e. (12c) and (12f),
gives the following condition:

H (S1, S2) < min{I (X1, X2; Y3), I (X1, X2; YS) + C3}, (18)

where the joint distribution (13) specializes to p(s1, s2)
p(x1|s1)p(x2|s2)p(y3, yS |x1, x2). Next, note that for the
sources defined in Table II we have H (S1, S2) = log2 3.
Moreover, as |Y3| = 3, |YS | = 2 and C3 = 1, the RHS of (18)
is upper bounded by log2 3, thus, the LHS of (18) equals
to the RHS of (18). However, as condition (18) requires
strict inequality, the conditions provided in the statement of
Thm. 3 do not imply that reliable transmission is possible
in the present example. Note that this case is different than
the case of Prop. 4, see Remark 14 below. In Appendix E-D
we specify an explicit p.m.f p(xi |si ), i = 1, 2, for which we
show, through an explicit calculation of the probability of
decoding error, that reliable transmission is possible via the
scheme of Thm. 3.

Remark 14: The case of Prop. 5 is different than the case of
Prop. 4. In the case of Prop. 5 we have an equality between the
LHS and RHS,4 while for Prop. 4, evaluating the conditions
of Thm. 1 and Thm. 2 we show that the inequality sign is
reversed compared to what is required by the theorems. Then,
in the proof of Prop. 4 we show that such reversal implies that
reliable transmission is impossible (see Appendix D). Since in
the case of Prop. 5 we have an equality between the LHS and
the RHS quantities, we examine the situation in more detail
in Appendix E.

VI. NECESSARY CONDITIONS FOR RELIABLE

TRANSMISSION OF CORRELATED SOURCES

OVER DM MARCS

In this section three sets of necessary conditions for reliable
transmission of correlated sources over DM MARCs with side
information are derived. These new converse results are based
on the fact that only certain joint input distributions p(x1, x2)
can be achieved. Observe that from Def. 1 it follows that valid
channel input distributions must obey the Markov chain:

X1 ↔ Sn
1 ↔ Sn

2 ↔ X2. (19)

In the following we use the technique introduced by Kang
and Ulukus in [28] to constrain the achievable joint input
distributions to take into account (19). We start by reviewing
some basic definitions and results from [28] and [33].

A. Definitions and Known Results

Definition 4 (Maximal Correlation, [33, Sec. 2]): The max-
imal correlation between the RVs X and Y is defined as
ρ∗

XY � supE { f (X)g(Y )}, where the supremum is taken over
f : X �→ R, g : Y �→ R, s.t E { f (X)} = E {g(Y )} = 0,
E

{
f 2(X)

} = E
{

g2(Y )
} = 1, and with the convention that

4Conditions (12), specialized to the PSOMARC, evaluated by setting
p(xi |si ), i = 1, 2, to be the deterministic distribution p(xi |si ) = δ(xi − si ),
where δ(x) is the Kronecker Delta function, hold with an equality.
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the supremum over the empty set equals to 0. The conditional
maximal correlation ρ∗

XY |z is defined similarly.
Definition 5 (Matrix Notation for Probability Distributions,

[28, eq. (6)]): Let X ∈ X , and Y ∈ Y , be two discrete
random variables with finite cardinalities. The joint proba-
bility distribution matrix PXY is defined as PXY (i, j) �
Pr

(
X = xi , Y = y j

)
, i = 1, 2, . . . , |X |, j = 1, 2, . . . , |Y|. The

marginal distribution matrix of an RV X is defined as the
diagonal matrix PX such that PX (i, i) = Pr (X = xi ) , xi ∈ X ;
PX (i, j) = 0, i �= j . This marginal distribution can also
be represented in a vector form denoted by pX . The i ’th
element of pX is pX (i) � Pr (X = xi). The conditional joint
probability distribution matrix PXY |z is defined similarly.

Definition 6 (Spectral Representation, [28, eqs. (12)
and (13)]): We define the matrix P̃XY as P̃XY �
P

− 1
2

X PXYP
− 1

2
Y , and the vector p̃X as p̃X = p

1
2
X , where

p
1
2
X stands for an element-wise square root of pX . The

conditional distributions P̃XY |z and p̃X |y are defined similarly.
Note that not every matrix P̃XY can correspond to a given

joint distribution matrix PXY . This is because a valid joint
distribution matrix PXY must have all its elements to be
nonnegative and add to 1. [28, Thm. 1] gives a necessary
and sufficient condition for P̃XY to correspond to a joint
distribution matrix PXY :

Theorem [28, Thm. 1]: Let PX and PY be a pair of marginal
distributions. A nonnegative matrix PXY is a joint distribution
matrix with marginal distributions PX and PY if and only if
the singular value decomposition (SVD) of the corresponding
nonnegative matrix P̃XY satisfies:

P̃XY = MDNT = p
1
2
X

(
p

1
2
Y

)T

+
l∑

i=2

σiμiν
T
i , (20)

where l = min{|X |, |Y|}, M � [μ1,μ2, . . .μl ] and N �
[ν1, ν2, . . . νl ] are two matrices such that MTM = I and

NTN = I, and D � diag[σ1, σ2, . . . , σl ]5; μ1 = p
1
2
X , ν1 = p

1
2
Y ,

and σ1 = 1 ≥ σ2 ≥ · · · ≥ σl ≥ 0. That is, all the singular
values of P̃XY are non-negative and smaller than or equal to 1.
We sometime denote σi = σi (P̃XY ) to explicitly indicate the
matrix for which the singular value is computed. The largest
singular value of P̃XY is 1, and its corresponding left and right

singular vectors are p
1
2
X and p

1
2
Y .

Next, we define the set of all possible conditional
distributions p(x1,x2|s1,1,s2,1) satisfying the Markov

5We use D = diag[a] to denote a rectangular matrix D s.t Di,i = ai ,
Di, j = 0,∀i �= j .

chain (19), BX1 X2|S1S2 , at the bottom of the page, where
pSn

1 ,Sn
2
(sn

1 , sn
2 ) = ∏n

k=1 pS1,S2(s1,k, s2,k). Note that as n can
be arbitrarily large, the set of all conditional distributions
pX1|Sn

1
(x1|sn

1 ) and pX2|Sn
2
(x2|sn

2 ), for all positive integers n,
is countably infinite. Therefore, we are interested in a
characterization of the n-letter Markov chain (19) via a set
which has a bounded and finite cardinality.

In order to achieve this, we first note that as pS1,S2(s1,1, s2,1)
is given, pX1,X2(x1, x2), pX1,X2|S1(x1, x2|s1,1) and
pX1,X2|S2(x1, x2|s2,1) are all uniquely determined by
pX1,X2|S1,S2(x1, x2|s1,1, s2,1). Furthermore, in [33, Sec. 4]
it is shown that σ2(P̃X1 X2) = ρ∗

X1 X2
. Therefore, ρ∗

X1 X2
,

ρ∗
X1 X2|s1,1

, ρ∗
X1 X2|s2,1

and ρ∗
X1 X2|s1,1,s2,1

are all functions of
pX1,X2|S1,S2(x1, x2|s1,1, s2,1) for a given pS1,S2(s1,1, s2,1). The
following theorem characterizes constraints on these maximal
correlations, and thereby gives a necessary condition for the
n-letter Markov chain (19):6

Theorem [28, Thm. 4]: Let (Sn
1 , Sn

2 ) be a pair of length-n
independent and identically distributed (i.i.d.) sequences such
that pS1,k,S2,k (a, b) = pS1,S2(a, b),∀(a, b) ∈ S1 × S2,∀k ∈
{1, 2, . . . , n}, and let the variables X1 and X2 satisfy the
Markov chain (19). Let S1,k and S2, j be arbitrary elements of
Sn

1,1 and Sn
2,1, respectively, that is, k, j ∈ {1, 2, . . . , n}, then

ρ∗
X1 X2|s1,k ,s2,k

≤ ρ∗
S1S2

. (21)

Now, we define the set B′
X1 X2|S1S2

as follows:

B′
X1 X2|S1S2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pX1,X2|S1,S2(x1, x2|s1,1, s2,1) :
∀(s1,1, s2,1) ∈ S1 × S2
ρ∗

X1 X2
≤ ρ∗

S1S2
,

ρ∗
X1 X2|s1,1

≤ ρ∗
S1S2

,

ρ∗
X1 X2|s2,1

≤ ρ∗
S1S2

,

ρ∗
X1 X2|s1,1,s2,1

≤ ρ∗
S1S2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that by [28, Thm. 4] the set B′
X1 X2|S1S2

is invariant to the
symbol index, that is, s1,1 and s2,1 can be replaced by s1,k and
s2,k for any k ∈ {2, 3, . . . , n}. Since [28, Thm. 4] gives neces-
sary conditions for the n-letter Markov chain (19), it follows
that BX1 X2|S1S2 ⊆ B′

X1 X2|S1S2
. Furthermore, the set B′

X1 X2|S1S2

is characterized by the singular values7 of the matrices
P̃X1 X2, P̃X1 X2|s1,1, P̃X1 X2|s2,1 and P̃X1 X2|s1,1,s2,1 . Therefore,
while the set BX1 X2|S1S2 has countably infinite dimensions,
the set B′

X1 X2|S1S2
has finite and bounded dimensions.

6Here we present a simplified version of [28, Thm. 4].
7Recall that σ2(P̃X1 X2 ) = ρ∗

X1 X2
.

BX1 X2|S1S2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pX1,X2|S1,S2(x1, x2|s1,1, s2,1) :
∃n ∈ N+, pX1|Sn

1
(x1|sn

1 ), pX2|Sn
2
(x2|sn

2 )

s.t. ∀(x1, x2, s1,1, s2,1) ∈ X1 × X2 × S1 × S2,
pX1,X2|S1,S2(x1, x2|s1,1, s2,1)

= 1
pS1,S2 (s1,1,s2,1)

∑

sn
1,2∈Sn−1

1

sn
2,2∈Sn−1

2

pX1|Sn
1
(x1|sn

1 )pX2|Sn
2
(x2|sn

2 )pSn
1 ,Sn

2
(sn

1 , sn
2 )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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B. A MAC Bound

Next, we derive a new set of necessary conditions which
is a reminiscent of the so-called “MAC bound” for the relay
channel, [34, Ch. 16], that takes into account (19).

Theorem 4: Any source pair (S1, S2) that can be reliably
transmitted over the DM MARC with receiver side informa-
tion W , as defined in Section II-B, must satisfy the constraints:

H (S1|S2, W ) ≤ I (X1, X3; Y |S2, X2, W, Q) (22a)
H (S2|S1, W ) ≤ I (X2, X3; Y |S1, X1, W, Q) (22b)
H (S1, S2|W ) ≤ I (X1, X2, X3; Y |W, Q), (22c)

for a joint distribution that factorizes as:

p(q, s1, s2, w, x1, x2, x3, y)

= p(q)p(s1, s2, w)p(x1, x2|s1, s2, q)

×p(x3|x1, x2, s1, s2, q)p(y|x1, x2, x3), (23)

with |Q| ≤ 4, and for every q ∈ Q, it follows that:

p(x1, x2|s1, s2, Q = q) ∈ BX1 X2|S1S2 ⊆ B′
X1 X2|S1S2

. (24)

Proof: The proof is given in Appendix F-A.
Remark 15: This bound does not include W3 because

decoding is done based only on the information available at
the destination, while the relay channel input is allowed to
depend on X1, X2, S1 and S2. Therefore, W3 does not add
any useful information for generating the relay channel input.

C. Broadcast Bounds

The next two new sets of necessary conditions are a
reminiscent of the so-called “broadcast bound” for the relay
channel, [34, Ch. 16].

Proposition 6: Any source pair (S1, S2) that can be reliably
transmitted over the DM MARC with relay side informa-
tion W3 and receiver side information W , as defined in
Section II-B, must satisfy the constraints:

H (S1|S2, W, W3) ≤ I (X1; Y, Y3|S2, X2, W, V ) (25a)
H (S2|S1, W, W3) ≤ I (X2; Y, Y3|S1, X1, W, V ) (25b)
H (S1, S2|W, W3) ≤ I (X1, X2; Y, Y3|W, V ), (25c)

for some joint distribution of the form:

p(v, s1, s2, w,w3, x1, x2, x3, y, y3)

= p(v, s1, s2, w,w3)p(x1, x2|s1, s2, v)

×p(x3|v)p(y, y3|x1, x2, x3), (26)

with |V| ≤ 4.
Proof: The proof is given in Appendix F-B.

Remark 16: In Prop. 6 we did not place restrictions on
p(x1, x2|s1, s2) as in Thm. 4. This is because [28, Thm. 4]
requires (Sn

1 , Sn
2 ) to be a pair of i.i.d sequences of length n.

However, in the proof of Prop. 6 V n is not an i.i.d sequence,
and therefore (Sn

1 , Sn
2 , V n) is not a triplet of i.i.d sequences.

Hence, it is not possible to use the approach of [28] to tighten
Prop. 6. It is possible, however, to establish a different set of
“broadcast-type” necessary conditions which benefits from the
results of [28]. This is stated in Thm. 5.

Theorem 5: Any source pair (S1, S2) that can be reliably
transmitted over the DM MARC with relay side informa-
tion W3 and receiver side information W , as defined in
Section II-B, must satisfy the constraints:

H (S1|S2, W, W3) ≤ I (X1; Y, Y3|S2, X2, X3, W, Q) (27a)

H (S2|S1, W, W3) ≤ I (X2; Y, Y3|S1, X1, X3, W, Q) (27b)

H (S1, S2|W, W3) ≤ I (X1, X2; Y, Y3|X3, W, Q), (27c)

for a joint distribution that factorizes as:

p(q, s1, s2, w,w3, x1, x2, x3, y, y3)

= p(q)p(s1, s2, w,w3)p(x1, x2|s1, s2, q)

×p(x3|x1, x2, w3, q)p(y, y3|x1, x2, x3), (28)

with |Q| ≤ 4, and for every q ∈ Q, it follows that:

p(x1, x2|s1, s2, Q = q) ∈ BX1 X2|S1S2 ⊆ B′
X1 X2|S1S2

, (29)

Proof: The proof follows similar arguments to the proofs
of Thm. 4 and Prop. 6, thus, it is omitted here.

D. Discussion

Remark 17: Note that the side information may affect the
corresponding chain, see e.g., Thm. 5.

Remark 18: For independent sources ( p(s1, s2) = p(s1)
p(s2)) and W = W3 = φ, a combination of Thm. 4
and Thm. 5 specializes to the cut-set bound for the MARC
derived in [7, Thm. 1]. To see this, note that in this case the
RHSs of (27) are identical to the first term on the RHS of
[7, eq. (7)], while the RHSs of (22) are identical to the second
term on the RHS of [7, eq. (7)], for G = {1}, {2}, {1, 2},
respectively. Furthermore, we have that (23) and (28) are the
same. Next, note that for independent sources, ρ∗

S1S2
= 0,

which implies that ρ∗
X1 X2

= ρ∗
X1 X2|s1,1

= ρ∗
X1 X2|s2,1

=
ρ∗

X1 X2|s1,1,s2,1
= 0. Therefore, X1 and X2 are independent and

conditions (24) and (29) are satisfied for any pS1,S2(s1, s2) =
pS1(s1)pS2(s2). Finally, letting R1 � H (S1), R2 � H (S2)
implies that H (S1, S2) = R1 + R2, and therefore for indepen-
dent sources the combination of Thm. 4 and Thm. 5 coincides
with [7, eq. (7)].

Remark 19: For Gaussian MARCs subject to i.i.d phase
fading, and for the channel inputs that maximize the achievable
region at the destination obtained via DF, the achievable
region at the destination is a subset of the corresponding
achievable region at the relay (i.e., decoding at the relay
does not constrain the rate to the destination). In this case,
Thm. 4 specializes to [35, Prop. 1].8 From [1, Thm. 8] it
follows that in this case mutually independent channel inputs
simultaneously maximize the RHSs of [35, eqs. (3)]. Addi-
tionally, note that for mutually independent channel inputs,
eqs. (22) coincide with [35, eqs. (3)]. Lastly we observe
that the mutual independence of the channel inputs implies
that ρ∗

X1 X2
= ρ∗

X1 X2|s1,1
= ρ∗

X1 X2|s2,1
= ρ∗

X1 X2|s1,1,s2,1
= 0,

thus (24) is satisfied for any joint distribution of the sources.

8In [9, Thm. 4] we showed that for Gaussian MARCs subject to i.i.d
phase fading, when decoding at the relay does not constrain the rate to the
destination, then source-channel separation is optimal.
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TABLE III

THE TRANSITION PROBABILITY (X1, X2) �→ Y3

TABLE IV

THE TRANSITION PROBABILITY (X1, X2) �→ Y

Remark 20: When specialized to the MAC with correlated
sources Thm. 4 and Thm. 5 coincide and both are tighter than
Prop. 6. Setting X3 = Y3 = W3 = φ, the expressions in (22),
(25) and (27) become identical. However, note that in (26) a
general joint distribution p(v, s1, s2, w) is considered, while
in (23) and (28) Q ⊥⊥ (S1, S2, W ). Moreover, the required
Markov chain of (19) is not accounted for by the chain
of Prop. 6, contrary to Thm. 4 and Thm. 5. Therefore, we
conclude that when specialized to the MAC scenario, Thm. 4
and Thm. 5 give the same bound which is tighter then the one
in Prop. 6.

Setting X3 = Y3 = W3 = φ as well as W = φ,
specializes our model to the MAC with no side information at
the receiver. For this model, both Thm. 4 and Thm. 5 specialize
to [28, Thm. 7], which establishes necessary conditions for the
MAC with correlated sources.

E. Numerical Examples

We now demonstrate the improvement of Thm. 4 and
Thm. 5 upon the cut-set bound of [34, Ch. 18.1]. In order
to simplify the arguments, we consider a scenario with no
side information W = W3 = φ, and focus on the bound
on H (S1, S2). In the following, we consider explicit PSO-
MARC and sources for which we show that the cut-set bound
fails to indicate whether reliable transmission of the sources
over the channel is possible, while a relaxed version of our
outer bounds do indicate that reliable transmission of the
sources over the channel is impossible.

Consider the PSOMARC defined by X1 = X2 = Y3 =
YS = {0, 1}, the channel transition probabilities detailed in
Tables III and IV, and let C3 = 0.1.

Next, consider the cut-set bound for the sum-rate of
the PSOMARC, [8, eq. (9)]. When evaluated for the
PSOMARC defined in Tables III, IV the necessary conditions
of [8, eq. (9)] result in (30) at the bottom of the page.9 The

9Note that the cut-set bound in (30) depends only on the channel transition
probabilities and not on the joint distribution of the sources.

TABLE V

THE JOINT DISTRIBUTION p(s1, s2)

maximum in (30) is achieved by Pr ((X1, X2) = (0, 0)) ≈ 0.1,
Pr ((X1, X2) = (0, 1)) ≈ 0.39, Pr ((X1, X2) = (1, 0)) ≈ 0,
Pr ((X1, X2) = (1, 1)) ≈ 0.51. This and the following opti-
mizations are done numerically using an exhaustive search
over all relevant parameters with a step size of 0.01 in each
variable. Next, we consider the combination of the relaxed
versions of (22c) and (27c), with W = W3 = φ, specialized
to the PSOMARC, given in (31) at the bottom of the page.
Note that (31) is less restrictive than (22c) and (27c), as
the maximization in (31) includes only the restriction due to
P̃X1 X2 , while the restrictions due to the conditional distribu-
tions P̃X1 X2|S1, P̃X1 X2|S2 and P̃X1 X2|S1,S2 are ignored. Finally,
we recall the sum-rate condition of Thm. 3 stated in (18)
obtained by combining (12c) and (12f) and specializing the
expressions to the PSOAMRC, given in (32) at the bottom of
the page.

Let (S1, S2) be a pair of sources such that S1 = S2 = {0, 1},
and their joint distribution is given in Table V. For this
joint distribution we evaluate H (S1, S2) ≈ 0.504, there-
fore, the cut-set necessary condition (30) does not indicate
whether these sources can be transmitted reliably or not.
Furthermore, for the joint distribution given in Table V, the
RHS of (32) is evaluated as Isuff ≈ 0.274. This value is
achieved by Pr (X1 = 0|S1 = 0) ≈ 0, Pr (X1 = 0|S1 =1)≈1,
Pr (X1 = 1|S1 = 0) ≈ 0.84, Pr (X1 = 1|S1 = 1) ≈ 0.16,
Pr (X2 = 0|S2 = 0) ≈ 0.98, Pr (X2 = 0|S2 = 1) ≈ 0.02,
Pr (X2 = 1|S2 = 0) ≈ 0.49, Pr (X2 = 1|S2 = 1) ≈ 0.51.
Thus, the scheme of Thm. 3 cannot transmit these sources
reliably since condition (32) is not satisfied.

In contrast to (30), which is larger than H (S1, S2), for the
joint distribution given in Table V we have Inew ≈ 0.485.
This value is achieved by Pr ((X1, X2) = (0, 0)) ≈ 0.08,
Pr ((X1, X2) = (0, 1)) ≈ 0.41, Pr ((X1, X2) = (1, 0)) ≈ 0.07,
Pr ((X1, X2) = (1, 1)) ≈ 0.44. Hence, our new necessary
condition (31), explicitly indicates that reliable transmission
of these sources is impossible.

This demonstrates the improvement of Thm. 4 and Thm. 5
upon the cut-set bound.

Remark 21: This numerical example does not follow imme-
diately from the results of Kang and Ulukus for the MAC,
detailed in [28, Sec. III-C]. To see this, consider the PSO-
MARC and sources as defined in Tables III, IV and V, and

H (S1, S2) ≤ Icut-set � max
p(x1,x2)

{
I (X1, X2; YS) + min

{
C3, I (X1, X2; Y3|YS)

}} ≈ 0.516. (30)

H (S1, S2) ≤ Inew � max
p(x1,x2):ρ∗

X1 X2
≤ρ∗

S1S2

{
I (X1, X2; YS) + min

{
C3, I (X1, X2; Y3|YS)

}}
. (31)

H (S1, S2) < Isuff � max
p(s1,s2)p(x1|s1)p(x2|s2)

min
{

I (X1, X2; Y3), I (X1, X2; YS) + C3
}
. (32)
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let C3 = 0.2 (instead of 0.1). Here, (30) is evaluated as
Icut-set ≈ 0.60010, while (31) is evaluated as Inew ≈
0.51411. Moreover, recall that H (S1, S2) ≈ 0.504. Hence,
for C3 = 0.2, (31) does not indicate whether reliable trans-
mission of the sources is possible, while for C3 = 0.1, (31)
explicitly indicates that reliable transmission is impossible.
Observe that the necessary conditions are affected by the
presence of the relay. Also note that the cut-set conditions (30)
does not indicate whether reliable transmission is possible or
not, for either value of C3.

Remark 22: In the above numerical example we assume
that side information is not present. To see the effect of side
information at the relay on (31) consider the PSOMARC and
sources as defined in Tables III, IV and V, and let C3 = 0.5.
Here, I (X1, X2; Y2|YS) ≈ 0.185, I (X1, X2; YS) ≈ 0.329 and
Inew ≈ 0.51412. Therefore, in this case I (X1, X2; Y2|YS)
is the dominant term in the minimization on the RHS
of (31). Now, let W3 = (S1, S2), which makes (27c)
redundant.13 In this case, the RHS of (31) becomes

max
p(x1,x2):ρ∗

X1 X2
≤ρ∗

S1S2

I (X1, X2; YS) + C3, and we have Inew ≈
0.91914. To conclude, in this case, the presence of side
information at the relay significantly enlarges Inew.

Remark 23: We note that the necessary conditions pre-
sented in Thm. 4 and Thm. 5 are not tight in general.
For instance, consider the PSOMARC specified in Table I
with C3 = 1, and the pair of sources defined in Table II.
Prop. 5 implies that the sources defined in Table II can
be reliably transmitted over this PSOMARC by using the
scheme of Thm. 3. Here, the maximal sum-rate sufficient
condition which is evaluated using (32) is Isuff = log2 3.
For this combination of sources and channel, the sum-
rate necessary condition due to the cut-set bound is eval-
uated via (30) as Icut-set = 2, which is achieved by
setting Pr ((X1, X2) = (0, 0)) = Pr ((X1, X2) = (0, 1)) =
Pr ((X1, X2) = (1, 0)) = Pr ((X1, X2) = (1, 1)) = 0.25.
Furthermore, using the same pX1,X2(x1, x2) we also eval-
uate the newly derived sum-rate necessary condition
(from either Thm. 4 or Thm. 5) via (31) as Inew =
2. Thus, for this combination of channel and sources the
RHSs of (30) and (31) are strictly larger than the RHS
of (32).

On the other hand, there are sources and channels for which
Icut-set = Inew = Isuff. As an example, consider a PSOMARC,

10This value was found via an exhaustive search over over all p(x1, x2) and
can be achieved by Pr ((X1, X2) = (0, 0)) ≈ 0.26, Pr ((X1, X2) = (0, 1)) ≈
0.24, Pr ((X1, X2) = (1, 0)) ≈ 0, Pr ((X1, X2) = (1, 1)) ≈ 0.5.

11This value was found via an exhaustive search over over all p(x1, x2)
s.t ρ∗

X1 X2
≤ ρ∗

S1S2
, and can be achieved by Pr ((X1, X2) = (0, 0)) ≈

0.2, Pr ((X1, X2) = (0, 1)) ≈ 0.36, Pr ((X1, X2) = (1, 0)) ≈ 0.14,
Pr ((X1, X2) = (1, 1)) ≈ 0.3.

12These value were found via an exhaustive search over over all p(x1, x2)
s.t ρ∗

X1 X2
≤ ρ∗

S1S2
, and can be achieved by Pr ((X1, X2) = (0, 0)) ≈

0.04, Pr ((X1, X2) = (0, 1)) ≈ 0.46, Pr ((X1, X2) = (1, 0)) ≈ 0.03,
Pr ((X1, X2) = (1, 1)) ≈ 0.47.

13When W3 = (S1, S2) the chains (23) and (28) are the same, and
H (S1, S2|W, W3) = 0.

14This value is found via an exhaustive search over over all p(x1, x2)
s.t ρ∗

X1 X2
≤ ρ∗

S1S2
, and can be achieved by Pr ((X1, X2) = (0, 0)) ≈

0.01, Pr ((X1, X2) = (0, 1)) ≈ 0.47, Pr ((X1, X2) = (1, 0)) ≈ 0.01,
Pr ((X1, X2) = (1, 1)) ≈ 0.51.

TABLE VI

A DETERMINISTIC CHANNEL MAPPING (X1, X2) �→ (Y3, YS)

FOR THE PSOMARC

TABLE VII

THE JOINT DISTRIBUTION OF (S1, S2). THE ENTRY IN THE j TH ROW AND

mTH COLUMN, j, m = 0, 1, 2, CORRESPONDS TO Pr ((S1, S2) = ( j, m))

defined by X1 = X2 = {0, 1, 2},Y3 = {0, 1, 2, 3, 4, 5} and
YS = {0, 1, 2}. Let C3 = 1, and consider the deterministic
channel mapping (X1, X2) �→ (Y3, YS) specified in Table VI.
The sources (S1, S2) are defined over the sets S1 = S2 =
{0, 1, 2} with the joint distribution specified in Table VII.

Following the arguments presented in Appendix E, it can be
shown that, using the scheme of Thm. 3 the sources defined
in Table VII can be reliably transmitted over the PSOMARC
defined in Table VI, with C3 = 1. In particular, we have
H (S1, S2) = Isuff = log2 6 (note that since |Y3| = 6, it follows
from (32) that Isuff ≤ log2 6). For the channel mapping
specified in Table VI, we also have Inew ≤ log2 6 and Icut-set ≤
log2 6. This follows from the fact that |YS | = 3 and from the
fact that C3 = 1. In fact, Icut-set = Inew = log2 6 is obtained by
setting p(x1, x2) = p(s1, s2). Hence, for this combination of
channel and sources the RHSs of (30), (31) and (32) coincide
and tightness in sum-rate is achieved. Furthermore, for every
C3 ≥ 1 we obtain Inew = Isuff. To understand this equality,
first recall from the above discussion that Isuff ≤ log2 6 with
equality obtained with the assignment p(x1, x2) = p(s1, s2).
For evaluating Inew, we recall the expression for Inew given
by (31), repeated here for ease of reference:

Inew = max
p(x1,x2):

ρ∗
X1 X2

≤ρ∗
S1S2

{
I (X1, X2; YS)

+ min
{
C3, I (X1, X2; Y3|YS)

}}
.

Now, since |YS | = 3 we have that I (X1, X2; YS) ≤
log2 3, and this is achieved with equality by the assignment
p(x1, x2) = p(s1, s2). For I (X1, X2; Y3|YS) we write:

I (X1, X2; Y3|YS)
(a)= H (Y3|YS)

(b)≤ 1,

where (a) follows from the the fact that in the considered
PSOMARC the mapping from (X1, X2) to Y3 is deterministic,
and (b) follows from the fact that for every possible value of
YS there are only two possible values of Y3. An equality in (b)
is achieved with the assignment p(x1, x2) = p(s1, s2). Hence,
for C3 ≥ 1 the active term in the minimization on the RHS
of (31) is I (X1, X2; Y3|YS), and we have Inew = Isuff, both
maximized with the assignment p(x1, x2) = p(s1, s2). Finally,
note that if C3 < 1 then the necessary conditions (30) and (31)
are not satisfied.
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VII. CONCLUSIONS

In this work we studied JSCC for lossless transmission
of correlated sources over DM MARCs. We derived a new
DF-based JSCC scheme which uses the CPM technique for
encoding the correlated source sequences for transmission to
both the relay and the destination, while SW source coding
is used for cooperation between the sources and the relay.
This combination allows removing the constraints on the
distribution chain required by a previously derived scheme
which used CPM to the destination [6, Thm. 2] (quoted as
Thm. 2 in this manuscript). The new scheme of Thm. 3 applies
simultaneous backward decoding at the destination to simul-
taneously decode both source sequences and the cooperation
information. As the scheme implements CPM-based encoding
of the source sequences at the transmitters, both the relay and
the destination benefit from the joint source-channel encoding.
This is in contrast to the JSCC schemes derived in [6] (quoted
as Thm. 1 and Thm. 2 in this manuscript), in which either the
relay or the destination benefits from the CPM encoding, but
not both simultaneously.

We then provided a detailed comparison of the new scheme
of Thm. 3 with the two JSCC schemes of [6] and with
the scheme of Prop. 2 which apply sequential decoding of
the source sequences and the cooperation information at the
destination. We showed that the scheme of Thm. 3 is better
than the scheme derived in [6, Thm. 1] and the scheme of
Prop. 2. We also showed that there are cases in which the
scheme of Thm. 3 strictly outperforms the schemes of Thm. 1
and Thm. 2. However, we cannot show that the new scheme
of Thm. 3 is universally better than the scheme of [6, Thm. 2].
This follows from the different admissible joint distributions
(see Remarks 1 and 4).

Finally, we derived three different sets of necessary con-
ditions for reliable transmission of correlated sources over
DM MARCs. We also showed that the newly derived sets
are at least as tight as previously known results. One of the
new sets is in the spirit of the “MAC bound” for the classic
relay channel, while the other two sets are in the spirit of
the “broadcast bound" for the relay channel. Two of the new
sets use the Markov relationship between the sources and the
channel inputs to restrict the set of feasible distributions.

APPENDIX A
PROOF OF THEOREM 3

A. Codebook Construction
• For each i = 1, 2, consider a set of 2nRi bins and let
Ui � {1, 2, . . . , 2nRi }, i = 1, 2, be the corresponding set
of bin indices. For i = 1, 2, assign every si ∈ Sn

i to one
of the 2nRi bins independently according to a uniform
distribution over the bin indices. Denote this assignment
by fi : Sn

i �→ Ui , i = 1, 2.
• For i = 1, 2, generate 2nRi codewords vi (ui ), ui ∈ Ui ,

by choosing the letters vi,k (ui ), k = 1, 2, . . . , n, inde-
pendently according to the p.m.f pVi (vi,k (ui )). For each
pair (si , ui ) ∈ Sn

i × Ui , i = 1, 2, generate one codeword
xi (si , ui ) by choosing the letters xi,k(si , ui ) indepen-
dently according to the p.m.f pXi |Si ,Vi (xi,k |si,k , vi,k (ui )),

k = 1, 2, . . . , n. Finally, generate one relay codeword
x3(u1, u2) for each pair (u1, u2) ∈ U1 ×U2, by choosing
the letters x3,k(u1, u2) independently according to the
p.m.f pX3|V1,V2(x3,k|v1,k(u1), v2,k(u2)), k = 1, 2, . . . , n.

B. Encoding

Consider two source sequences each of length Bn, s Bn
i,1 ∈

SBn
i , i = 1, 2. Partition each sequence into B length-n

subsequences, si,b ∈ Sn
i , b = 1, 2, . . . , B . Similarly partition

the side information sequences wBn
3,1 and wBn into B length-n

subsequences w3,b ∈ Wn
3 , wb ∈ Wn, b = 1, 2, . . . , B ,

respectively. A total of Bn source samples is transmitted over
B + 1 blocks, such that at each block n channel symbols are
transmitted.

At block 1, transmitter i, i = 1, 2, transmits the channel
codeword xi (si,1, 1). At block b, b = 2, 3, . . . , B , transmit-
ter i transmits the channel codeword xi (si,b, ui,b−1), where
ui,b−1 = fi (si,b−1) ∈ Ui is the bin index of source
vector si,b−1. Let (a1, a2) ∈ Sn

1 × Sn
2 be two sequences

generated according to p(a1, a2) = ∏n
k=1 pS1,S2(a1,k, a2,k).

These sequences are known to all nodes. At block B + 1,
transmitter i, i = 1, 2, transmits xi (ai , ui,B ).

At block b = 1, the relay transmits x3(1, 1). Assume
that at block b, b = 2, 3, . . . , B, B + 1, the relay has the
estimates (s̃1,b−1, s̃2,b−1) of (s1,b−1, s2,b−1). It then finds the
corresponding bin indices ũi,b−1 = fi (s̃i,b−1) ∈ Ui , i = 1, 2,
and transmits the channel codeword x3(ũ1,b−1, ũ2,b−1) at
time b.

C. Decoding

The relay decodes the source sequences sequentially. At the
end of channel block b the relay decodes si,b, i = 1, 2, as
follows: Using the estimates (ũ1,b−1, ũ2,b−1), the received
signal y3,b and the side information w3,b, the relay decodes
(s1,b, s2,b) by looking for a unique pair (s̃1, s̃2) ∈ Sn

1 × Sn
2

such that:
(
s̃1, s̃2, v1(ũ1,b−1), v2(ũ2,b−1), x1(s̃1, ũ1,b−1),

x2(s̃2, ũ2,b−1), x3(ũ1,b−1, ũ2,b−1), w3,b, y3,b
) ∈ A∗(n)

ε .

(A.1)

Decoding at the destination is done via simultaneous back-
ward decoding. Let α ∈ Wn be an i.i.d sequence such
that each letter αk is selected independently according to
pW |S1,S2(αk |a1,k, a2,k), k = 1, 2, . . . , n. The destination node
waits until the end of channel block B + 1. It first tries to
decode (u1,B, u2,B) using the received signal at channel block
B + 1, yb+1, and using a1, a2, and α. Going backwards from
the last channel block to the first, we assume that at block b
the destination has estimates (û1,b, û2,b) of (u1,b, u2,b). The
destination simultaneously decodes (s1,b, s2,b, u1,b−1, u2,b−1)
based on the received signal yb, and the side information wb,
by looking for a unique combination (ŝ1, ŝ2, û1, û2) ∈ Sn

1 ×
Sn

2 × U1 × U2 such that:
(
ŝ1, ŝ2, v1(û1), v2(û2), x1(ŝ1, û1),

x2(ŝ2, û2), x3(û1, û2), wb, yb
) ∈ A∗(n)

ε , (A.2)
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and f1(ŝ1) = û1,b, f2(ŝ2,b) = û2. Denote the decoded
variables by (ŝ1,b, ŝ2,b, û1,b−1, û2,b−1).

D. Error Probability Analysis

Relay error probability: The relay error probability analy-
sis follows the same arguments as the relay error probability
analysis detailed in [9, Appendix B].

Destination error probability: The average probability
of error in decoding at the destination at block b, P̄(n)

dest,b,
is defined by:

P̄(n)
dest,b � Pr

(
(Ŝ1,b, Ŝ2,b) �= (S1,b, S2b)

)
.

Due to backward decoding, the pair of source sequences
sent at time b is decoded after the pair at time b + 1
is decoded. Let Fb �

{(
Ŝ1,b, Ŝ2,b, Û1,b−1, Û2,b−1

) �=(
S1,b, S2,b, U1,b−1, U2,b−1

)}
. Then, as in [18, eq. (40)],

we write:

P̄(n)
dest ≤

B∑
b=1

Pr
(Fb ∩ Fc

b+1

)
.15 (A.3)

Let ε0, ε1, . . . , ε8 be positive numbers such that ε0 ≥ ε1 > ε,
εm > ε and εm → 0 as ε → 0, for m = 0, 1, . . . , 8.
Now, define two error events at block b:

• Joint-typicality fails:

E1,b �
{(

S1,b, S2,b, V1(U1,b−1), V2(U2,b−1),

X1(S1,b, U1,b−1), X2(S2,b, U2,b−1),

X3(U1,b−1, U2,b−1), Wb, Yb
)

/∈ A∗(n)
ε

}
.

• Simultaneous decoding of the bin indices (for the next
step) and the source sequences fails:

E2,b �
{
∃(

ŝ1, ŝ2, û1, û2
) ∈ Sn

1 × Sn
2 × U1 × U2,(

ŝ1, ŝ2, û1, û2
) �= (

S1,b, S2,b, U1,b−1, U2,b−1
)
,

f1(s̃1) = Û1,b, f2(s̃2) = Û2,b,(
ŝ1, ŝ2, V̂1(û1), V̂2(û2), X̂1(ŝ1, û1),

X̂2(ŝ2, û2), X̂3(û1, û2), Wb, Yb
) ∈ A∗(n)

ε

}
.

Then, Fb = E1,b ∪ E2,b, and we bound:

Pr
(Fb ∩ Fc

b+1

) ≤ Pr
(E1,b ∪ E2,b

∣∣Fc
b+1

)

= Pr
(E1,b

∣∣Fc
b+1

) + Pr
(E2,b

∣∣Ec
1,b ∩ Fc

b+1

)
.

By applying the properties of strong typicality,
[29, Thm. 6.9] we have that for n sufficiently large,
Pr

(E1,b
∣∣Fc

b+1

) ≤ ε. For bounding Pr
(E2,b

∣∣Ec
1,b ∩ Fc

b+1

)
we

15As stated in Subsection VII-B, at block B +1, source terminal i transmits
xi (ai , ui,B ), where ai ∈ Sn

i , i = 1, 2, is known to all nodes. Therefore, at
block B + 1 we define FB+1 � {(

Û1,B , Û2,B
) �= (

U1,B , U2,B
)}

.

consider the following error events:

E (1)
2,b �

{
∃û1 ∈ U1, û1 �= U1,b−1,
(

S1,b, S2,b, V̂1(û1), V2(U2,b−1),

X̂1(S1,b, û1), X2(S2,b, U2,b−1),

X̃3(û1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (2)
2,b �

{
∃û2 ∈ U2, û2 �= U2,b−1,
(

S1,b, S2,b, V1(U1,b−1), V̂2(û2),

X1(S1,b, U1,b−1), X̂2(S2,b, û2),

X̂3(U1,b−1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (3)
2,b �

{
∃û1 ∈ U1, û1 �= U1,b−1, ∃û2 ∈ U2, û2 �= U2,b−1,
(

S1,b, S2,b, V̂1(û1), V̂2(û2),

X̂1(S1,b, û1), X̂2(S2,b, û2),

X̂3(û1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (4)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,
(

ŝ1, S2,b, V1(U1,b−1), V2(U2,b−1),

X̂1(ŝ1, U1,b−1), X2(S2,b, U2,b−1),

X3(U1,b−1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (5)
2,b �

{
∃ŝ2 ∈ Sn

2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,
(

S1,b, ŝ2, V1(U1,b−1), V2(U2,b−1),

X1(S1,b, U1,b−1), X̂2(s̃2, U2,b−1),

X3(U1,b−1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (6)
2,b �

{
∃(ŝ1, ŝ2) ∈ Sn

1 × Sn
2 , ŝ1 �= S1,b, ŝ2 �= S2,b,

f1(ŝ1) = Û1,b, f2(ŝ2) = Û2,b,(
ŝ1, ŝ2, V1(U1,b−1), V2(U2,b−1),

X̂1(ŝ1, U1,b−1), X̂2(ŝ2, U2,b−1),

X3(U1,b−1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (7)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃û1 ∈ U1, û1 �= U1,b−1,(
ŝ1, S2,b, V̂1(û1), V2(U2,b−1), X̂1(ŝ1, û1),

X2(S2,b, U2,b−1), X̂3(û1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (8)
2,b �

{
∃ŝ2 ∈ Sn

2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,

∃û2 ∈ U2, û2 �= U2,b−1,(
S1,b, ŝ2, V1(U1,b−1), V̂2(û2), X1(S1,b, U1,b−1),

X̂2(ŝ2, û2), X̂3(U1,b−1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.
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E (9)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃û2 ∈ U2, û2 �= U2,b−1,(
ŝ1, S2,b, V1(U1,b−1), V̂2(û2),

X̂1(ŝ1, U1,b−1), X̂2(S2,b, û2),

X̂3(U1,b−1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (10)
2,b �

{
∃ŝ2 ∈ Sn

2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,

∃û1 ∈ U1, û1 �= U1,b−1,(
S1,b, ŝ2, V̂1(û1), V2(U2,b−1),

X̂1(S1,b, û1), X̂2(ŝ2, U2,b−1),

X̂3(û1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (11)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃û1 ∈ U1, û1 �= U1,b−1, ∃û2 ∈ U2, û2 �= U2,b−1,(
ŝ1, S2,b, V̂1(û1), V̂2(û2),

X̂1(ŝ1, û1), X̂2(S2,b, û2),

X̂3(û1, û2), Wb, Yb
) ∈ A∗(n)

ε

}
.

E (12)
2,b �

{
∃ŝ2 ∈ Sn

2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,

∃û1 ∈ U1, û1 �= U1,b−1, ∃û2 ∈ U2, û2 �= U2,b−1,(
S1,b, ŝ2, V̂1(û1), V̂2(û2),

X̂1(S1,b, û1), X̂2(ŝ2, û2),

X̂3(û1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (13)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃ŝ2 ∈ Sn
2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,

∃û1 ∈ U1, û1 �= U1,b−1,(
ŝ1, ŝ2, V̂1(û1), V2(U2,b−1), X̂1(ŝ1, û1),

X̂2(ŝ2, U2,b−1), X̂3(û1, U2,b−1), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (14)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃ŝ2 ∈ Sn
2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,

∃û2 ∈ U2, û2 �= U2,b−1,(
ŝ1, ŝ2, V1(U1,b−1), V̂2(û2), X̂1(ŝ1, U1,b−1),

X̂2(ŝ2, û2), X̂3(U1,b−1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.

E (15)
2,b �

{
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃ŝ2 ∈ Sn
2 , ŝ2 �= S2,b, f2(ŝ2) = Û2,b,

∃û1 ∈ U1, û1 �= U1,b−1, ∃û2 ∈ U2, û2 �= U2,b−1,(
ŝ1, ŝ2, V̂1(û1), V̂2(û2),

X̂1(ŝ1, û1), X̂2(ŝ2, û2),

X̂3(û1, û2), Wb, Yb

)
∈ A∗(n)

ε

}
.

Following the same arguments as in the error probability
analysis detailed in [9, Appendix B, eqs. (B.37)–(B.45)],
we have that the probability Pr

(E (m)
2,b

∣∣Ec
1,b ∩ Fc

b+1

)
can be

made arbitrarily small for m = 1, 2, 3, by increasing the block
length n, if the following conditions are satisfied correspond-
ingly:

R1 < I (X1, X3; Y |S1, V2, X2) − 2ε2 (A.4a)

R2 < I (X2, X3; Y |S2, V1, X1) − 2ε2 (A.4b)

R1 + R2 < I (X1, X2, X3; Y |S1, S2) − 2ε2. (A.4c)

The bounds for Pr
(E (m)

2,b

∣∣Ec
1,b ∩ Fc

b+1

)
, 4 ≤ m ≤ 15, follow

similar arguments. We demonstrate the technique for m = 7.
We begin by writing:

Pr
(E (7)

2,b|Ec
1,b ∩ Fc

b+1

)

= Pr
(
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = Û1,b,

∃ û1 ∈ U1, û1 �= U1,b−1,(
ŝ1, S2,b, V̂1(û1), V2(U2,b−1),

X̂1(ŝ1, û1), X2(S2,b, U2,b−1),

X̂3(û1, U2,b−1), Wb, Yb
) ∈ A∗(n)

ε

∣∣∣Ec
1,b ∩ Fc

b+1

)

=
∑

û1,b∈U1,u1,b−1∈U1,
u2,b−1∈U2

pU1(û1,b)pU1U2(u1,b−1, u2,b−1)

× Pr
(
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = û1,b,

∃û1 ∈ U1, û1 �= u1,b−1,(
ŝ1, S2,b, V̂1(û1), V2(u2,b−1),

X̂1(ŝ1, û1), X2(S2,b, u2,b−1),

X̂3(û1, u2,b−1), Wb, Yb
) ∈ A∗(n)

ε

∣∣∣Ec
1,b ∩ Fc

b+1

)
.

We now bound:

Pr
(
∃ŝ1 ∈ Sn

1 , ŝ1 �= S1,b, f1(ŝ1) = û1,b,

∃û1 ∈ U1, û1 �= u1,b−1,(
ŝ1, S2,b, V̂1(û1), V2(u2,b−1),

X̂1(ŝ1, û1), X2(S2,b, u2,b−1),

X̂3(û1, u2,b−1), Wb, Yb
) ∈ A∗(n)

ε

∣∣∣Ec
1,b ∩ Fc

b+1

)
.

(a)=
∑

(
s1,b,s2,b,v2(u2,b−1),

x2(s2,b,u2,b−1),

wb,yb

)
∈A∗(n)

ε

p
(
s1,b, s2,b, v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb

)

×
∑

û1∈U1,
û1 �=u1,b−1

∑

ŝ1∈A∗(n)
ε

(
S1

∣∣s2,b,v2(u2,b−1),

x2(s2,b,u2,b−1),wb,yb

)
,

ŝ1 �=s1,b

Pr
(

f1(ŝ1) = û1,b,
(
ŝ1, V̂1(û1),

X̂1(ŝ1, û1), X̂3(û1, u2,b−1)
) ∈

A∗(n)
ε

(
S1, V1, X1, X3

∣∣s2,b,

v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb
))
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(b)=
∑

(
s1,b,s2,b,v2(u2,b−1),

x2(s2,b,u2,b−1),

wb,yb

)
∈A∗(n)

ε

p
(
s1,b, s2,b, v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb

)

×
∑

û1∈U1,
û1 �=u1,b−1

∑

ŝ1∈A∗(n)
ε

(
S1

∣∣s2,b,v2(u2,b−1),

x2(s2,b,u2,b−1),wb,yb

)
,

ŝ1 �=s1,b

2−nR1 Pr
((

V̂1(û1), X̂1(ŝ1, û1),

X̂3(û1, u2,b−1)
) ∈ A∗(n)

ε

(
V1, X1, X3

∣∣ŝ1,

s2,b, v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb
))

,

where (a) follows from the conditioning on Ec
b,1 which

implies that the sequences at block b are jointly typical, and
from consistency of strong typicality [29, Thm. 6.7]:
Let zb �

(
s2,b, v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb

)
.

By [29, eq. (6.110)], when zb ∈ A∗(n)
ε (S2, V2, X2, W, Y ), the

conditionally typical set A∗(n)
ε (S1, V1, X1, X3|zb) is defined

as:

A∗(n)
ε (S1, V1, X1, X3|zb)

�
{
(ŝ1, v̂1, x̂1, x̂3) ∈ A∗(n)

ε (S1, V1, X1, X3) :
(ŝ1, v̂1, x̂1, x̂3, zb) ∈ A∗(n)

ε

}
.

Next, note that due to consistency

(ŝ1, v̂1, x̂1, x̂3, zb) ∈ A∗(n)
ε ⇒ (ŝ1, zb) ∈ A∗(n)

ε ,

hence if ŝ1 /∈ A∗(n)
ε (S1|zb), then (ŝ1, v̂1, x̂1, x̂3) /∈

A∗(n)
ε (S1, V1, X1, X3|zb), and we therefore can restrict the

summation over ŝ1 to the set A∗(n)
ε (S1|zb). Step (b) follows

as when ŝ1 ∈ A∗(n)
ε

(
S1

∣∣zb
)
, then joint typicality is achieved

when:

(
V̂1(û1), X̂1(ŝ1, û1), X̂3(û1, u2,b−1)

)

∈ A∗(n)
ε

(
V1, X1, X3

∣∣ŝ1, s2,b, v2(u2,b−1),

x2(s2,b, u2,b−1), wb, yb
)
.

Next, we bound:

Pr
((

V̂1(û1), X̂1(ŝ1, û1), X̂3(û1, u2,b−1)
)

∈ A∗(n)
ε

(
V1, X1, X3

∣∣ŝ1, s2,b, v2(u2,b−1),

x2(s2,b, u2,b−1), wb, yb
))

=
∑

(
v̂1(û1),x̂1(ŝ1,û1),x̂3(û1,u2,b−1)

)
∈

A∗(n)
ε

(
V1,X1,X3

∣∣ŝ1,s2,b,v2(u2,b−1),

x2(s2,b,u2,b−1),wb,yb

)

p
(
v̂1(û1), x̂1(ŝ1, û1), x̂3(û1, u2,b−1)

∣∣ŝ1,

s2,b, v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb
)

(a)≤ 2n
(

H(V1,X1,X3|S1,S2,V2,X2,W,Y )+ε0

)

×2−n
(

H(V1,X1,X3|S1,V2)−ε1

)
,

where (a) follows from the properties of conditionally typical
sequences, [29, Thm. 6.9] and [29, Thm. 6.10]. Thus, we

have:

Pr
(E (7)

2,b

∣∣Ec
1,b ∩ Fc

b+1

)

≤
∑

(
s1,b,s2,b,v2(u2,b−1),x2(s2,b,u2,b−1),

wb,yb

)
∈A∗(n)

ε

p
(
s1,b, s2,b, v2(u2,b−1), x2(s2,b, u2,b−1), wb, yb)

×
∑

û1∈U1,
û1 �=u1,b−1

∑

ŝ1∈A∗(n)
ε

(
S1

∣∣s2,b,v2(u2,b−1),

x2(s2,b,u2,b−1),wb,yb

)
,

ŝ1 �=s1,b

2−nR1 2n
(

H(V1,X1,X3|S1,S2,V2,X2,W,Y )+ε0

)

× 2−n
(

H(V1,X1,X3|S1,V2)−ε1

)

= 2n
(

H(S1,V1,X1,X3|S2,V2,X2,W,Y )+2ε0

)

×2−n
(

H(V1,X1,X3|S1,V2)−ε1

)
,

which implies that in order to get an arbitrarily small proba-
bility of error as n increases, it must hold that:

H (S1, V1, X1, X3|S2, V2, X2, W, Y )

− H (V1, X1, X3|S1, V2) + 3ε0 < 0. (A.5)

Note that the LHS pf (A.5) can also be written as:

H (S1, V1, X1, X3|S2, V2, X2, W, Y ) − H (V1, X1, X3|S1, V2)

= H (S1, V1, X1, X3|S2, V2, X2, W, Y )

−H (S1, V1, X1, X3|V2) + H (S1|V2)
(a)= H (S1) − I (S1, V1, X1, X3; S2, X2, W, Y |V2)

= H (S1) − I (S1, V1, X1, X3; S2, X2, W |V2)

−I (S1, V1, X1, X3; Y |S2, V2, X2, W )

= H (S1) − I (S1; S2, X2, W |V2)

−I (V1, X1, X3; S2, X2, W |S1, V2)

−I (S1, V1, X1, X3; Y |S2, V2, X2, W )
(b)= H (S1) − H (S1|V2) + H (S1|S2, V2, X2, W )

−I (S1, V1, X1, X3; Y |S2, V2, X2, W )
(c)= H (S1|S2, W ) − I (X1, X3; Y |S2, V2, X2, W ),

where (a) follows form the independence S1 and V2; (b) fol-
lows from the Markov relationship (S2, X2, W ) ↔ (S1, V2) ↔
(V1, X1, X3); and (c) follows from the Markov relationship
(V2, X2) ↔ (S2, W ) ↔ S1 and from the Markov relationship
(S1, V1) ↔ (S2, V2, X1, X2, X3, W ) ↔ Y . Therefore, we
conclude that as long as:

H (S1|S2, W ) < I (X1, X3; Y |S2, V2, X2, W ) − 3ε0, (A.6)

then Pr
(E (7)

2,b

∣∣Ec
1,b ∩ Fc

b+1

)
can be made arbitrarily small by

taking n large enough.
Using similar arguments we can show that Pr

(E (m)
2,b

∣∣Ec
1,b ∩

Fc
b+1

)
, m = 4, 5, 6, 8, 9 . . . , 15, can be made arbitrarily small

by taking n large enough, if the following conditions are
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satisfied correspondingly:

H (S1|S2, W )

< I (X1; Y |S2, V1, X2, X3, W ) + R1 − 3ε3 (A.7a)

H (S2|S1, W )

< I (X2; Y |S1, V2, X1, X3, W ) + R2 − 3ε3 (A.7b)

H (S1, S2|W )

< I (X1, X2; Y |V1, V2, X3, W ) + R1 + R2 − 3ε3, (A.7c)

H (S2|S1, W )

< I (X2, X3; Y |S1, V1, X1, W ) − 3ε4 (A.7d)

R2 + H (S1|S2, W )

< I (X1, X2, X3; Y |S2, V1, W ) + R1 − 3ε5 (A.7e)

R1 + H (S2|S1, W )

< I (X1, X2, X3; Y |S1, V2, W ) + R2 − 3ε5 (A.7f)

R2 + H (S1|S2, W )

< I (X1, X2, X3; Y |S2, W ) − 3ε6 (A.7g)

R1 + H (S2|S1, W )

< I (X1, X2, X3; Y |S1, W ) − 3ε6 (A.7h)

H (S1, S2|W )

< I (X1, X2, X3; Y |V2, W ) + R2 − 3ε7 (A.7i)

H (S1, S2|W )

< I (X1, X2, X3; Y |V1, W ) + R1 − 3ε7 (A.7j)

H (S1, S2|W )

< I (X1, X2, X3; Y |W ) − 3ε8. (A.7k)

Now, define ε′ = max{ε0, ε1, . . . , ε8}, then it follows that
constraints (A.4)–(A.7) hold with εk, k = 0, 1, . . . , 8, replaced
by ε′. Finally, by using Fourier-Motzkin algorithm to eliminate
R1 and R2 from the constraints (A.4a)–(A.7), we obtain
(12d)–(12f).

APPENDIX B
PROOF OF PROPOSITION 2

A. Codebook Construction and Encoding

The codebook construction and encoding are identical to
Thm. 3, see Appendix A.

B. Decoding

Decoding at the relay is identical to Thm. 3, see
Appendix A. Decoding at the destination is done using suc-
cessive backward decoding. Let α ∈ Wn be an i.i.d sequence
such that each letter αk is selected independently according to
pW |S1,S2(αk |a1,k, a2,k), k = 1, 2, . . . , n. The destination node
waits until the end of channel block B + 1. It first tries
to decode (u1,B, u2,B) using the received signal at channel
block B + 1, yB+1, and α. Going backwards from the last
channel block to the first, the destination has the estimates
(û1,b, û2,b) of (u1,b, u2,b) when decoding at block b. Now,
for decoding at block b the destination first recovers the bin
indices ûi,b−1, i = 1, 2, corresponding to si,b−1, based on its
received signal yb and the side information wb. This is done
by looking for a unique pair (û1, û2) ∈ U1 × U2 such that:

(
v1(û1), v2(û2), x3(û1, û2), wb, yb

) ∈ A∗(n)
ε . (B.1)

Denote the decoded indices by (û1,b−1, û2,b−1). Next, the
destination decodes

(
s1,b, s2,b

)
by looking for a unique pair(

ŝ1, ŝ2
)

such that:
(
ŝ1, ŝ2, v1(û1,b−1), v2(û2,b−1), x1(ŝ1, û1,b−1),

x2(ŝ2, û2,b−1), x3(û1,b−1, û2,b−1), wb, yb
) ∈ A∗(n)

ε , (B.2)

and f1(ŝ1) = û1,b, f2(ŝ2) = û2,b. Denote the decoded
sequences with

(
ŝ1,b, ŝ2,b

)
.

C. Error Probability Analysis

Following arguments similar to those in Appendix A-D it
can be shown that decoding the source sequences at the relay
can be done reliably as long as (15a)–(15c) hold, and decoding
the source sequences at the destination can be done reliably
as long as (15d)–(15f) hold.

APPENDIX C
PROOF OF PROPOSITION 3

A. Thm. 3 Vs. Thm. 1

First we compare (12d) and (7d). The first term on the RHS
of (12d) can be written as:

I (X1, X3; Y |S2, V2, X2, W )
(a)= I (S1; Y |S2, V2, X2, W ) + I (X1, X3; Y |S1, V2, X2)

≥ I (X1, X3; Y |S1, V2, X2), (C.1)

where (a) follows from the Markov chains S1 ↔
(S2, V2, X1, X2, X3, W ) ↔ Y , (S2, W ) ↔ (S1, V2, X2) ↔
Y and from the chain rule for mutual information. From
the non-negativity of mutual information it follows that the
second term on the RHS of (12d), I (X1, X3; Y |S1, V2, X2) +
I (X1; Y |S2, V1, X2, X3, W ) is greater than or equal to
I (X1, X3; Y |S1, V2, X2). As the LHSs of (12d) and (7d) are
the same, we conclude that (12d) is less restrictive than (7d).
Using similar arguments it also follows that (12e) is less
restrictive than (7e). Next, compare (12f) and (7f):

I (X1, X2, X3; Y |W ) ≥ I (X1, X2, X3; Y |S1, S2), (C.2)

where (C.2) follows from the Markov chain (S1, S2) ↔
(X1, X2, X3, W ) ↔ Y , and from the non-negativity of mutual
information. As the LHSs of (12f) and (7f) are the same, we
conclude that (12f) is less restrictive than (7f). In conclusion:
Thm. 3 is at least as good as Thm. 1.

B. Thm. 3 Vs. Prop. 2

First consider (12d) and (15d). We begin with the first term
on the RHS of (12d):

I (X1, X3; Y |S2, V2, X2, W )

−I (X1; Y |S2, V1, X2, X3, W ) − I (V1, X3; Y |W, V2)
(a)= I (V1, X3; Y |S2, V2, X2, W ) − I (V1, X3; Y |W, V2)
(b)= I (V1, X3; S2, X2|V2, W, Y ) ≥ 0, (C.3)

where (a) follows from the chain rule for mutual infor-
mation; and (b) follows from the Markov relationship
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(S2, X2) ↔ (V2, W ) ↔ (V1, X3). Next, consider the second
term on the RHS of (12d):

I (X1, X3; Y |S1, V2, X2) + I (X1; Y |S2, V1, X2, X3, W )

−I (X1; Y |S2, V1, X2, X3, W ) − I (V1, X3; Y |V2, W )
(a)= I (X1; Y |S1, V2, X1, X2, W )

+I (V1, X3; Y |S1, V2, X2, W ) − I (V1, X3; Y |W, V2)
(b)= I (X1; Y |S1, V2, X1, X2, W )

+I (V1, X3; S1, X2|V2, W, Y ) ≥ 0, (C.4)

where (a) follows from the chain rule for mutual information;
and (b) follows from the Markov relationship (S1, X2) ↔
(V2, W ) ↔ (V1, X3). As the LHS of (12d) and (15d) is the
same, we conclude that (12d) is less restrictive than (15d).
Using similar arguments it follows that (12e) is less restrictive
than (15e). For the expressions involving H (S1, S2|W ), note
that the RHS of (12f) equals to the RHS of (15f). Therefore,
we conclude that Thm. 3 is at least as good as Prop. 2.

APPENDIX D
PROOF OF PROPOSITION 4

It is enough to show that if at least one of the conditions
in (7) holds with opposite strict inequality, then reliable
transmission is not possible via the scheme of Thm. 1. The
same statement holds for (9) and Thm. 2. Furthermore, note
that for the deterministic PSOMARC specified in Table I, and
for the pair of correlated sources specified in Table II, reliable
transmission to the destination requires assistance from the
relay. To see this note that H (S1, S2) = log2 3, while |YS | = 2,
which implies that the sources cannot be decoded at the
destination without the help of the relay. In Appendix D-A we
show that when the scheme of Thm. 1 is used, if the sources
can be decoded at the relay then they cannot be decoded at
the destination, i.e., condition (7f) holds with strict inequality.
In Appendix D-B we show that when the scheme of Thm. 2
is used, then the sources cannot be decoded at the relay, i.e.,
condition (9c) holds with strict inequality.

A. Transmission Using the Scheme of Theorem 1

We begin with specializing the conditions of Thm. 1
in (7a)–(7f) to the PSOMARC by letting W3 = W = φ
and I (X3; YR) = C3. From the orthogonality of the relay-
destination link it follows that the scheme of Thm. 1 is
optimized by letting V1 = V2 = φ. This fact and the
resulting sufficient conditions are stated in the following
proposition:

Proposition D.1: The sufficient conditions of Thm. 1
in (7a)–(7f), specialized to the PSOMARC, are optimized by
letting V1 = V2 = φ. The resulting conditions are:

H (S1|S2)

< min{I (X1; Y3|S2, X2), I (X1; YS|S1, X2)+C3} (D.1a)

H (S2|S1)

< min{I (X2; Y3|S1, X1), I (X2; YS|S2, X1)+C3} (D.1b)

H (S1, S2)

< min{I (X1, X2; Y3), I (X1, X2; YS|S1, S2)+C3}, (D.1c)

subject to a joint distribution that factorizes as

p(s1, s2)p(x1|s1)p(x2|s2)p(y3, yS |x1, x2). (D.2)

Proof: We begin with the constraints due to decoding at
the relay given by (7a)–(7c). For the RHS of condition (7a)
(with W3 = φ) we write:

I (X1; Y3|S2, V1, X2, X3)
(a)= H (Y3|S2, V1, X2, X3) − H (Y3|S2, X1, X2)
(b)≤ H (Y3|S2, X2) − H (Y3|S2, X1, X2)

= I (X1; Y3|S2, X2), (D.3a)

where (a) follows from the definition of the PSOMARC which
implies that the Markov chain (V1, X3) ↔ (S2, X1, X2) ↔ Y3
holds; and (b) follows from the fact the conditioning reduces
entropy. Similarly, for the RHS of conditions (7b)–(7c) we
have:

I (X2; Y3|S1, V2, X1, X3) ≤ I (X2; Y3|S1, X1) (D.3b)
I (X1, X2; Y3|V1, V2, X3) ≤ I (X1, X2; Y3). (D.3c)

Next, consider the constraints due to decoding at the desti-
nation given by (7d)–(7f), and recall that for the PSOMARC
the channel output at the destination, Y , is replaced by the pair
of channel outputs (YR, YS). For the RHS of (7d) we write:

I (X1, X3; YR, YS |S1, V2, X2)

= I (X1; YR, YS |S1, V2, X2) + I (X3; YR|S1, V2, X1, X2)

+I (X3; YS|S1, V2, X1, X2, YR)
(a)= I (X1; YS|S1, V2, X2) + I (X1; YR|S1, V2, X2, YS)

+I (X3; YR|S1, V2, X1, X2)

= I (X1; YS |S1, V2, X2) + H (YR|S1, V2, X2, YS)

−H (YR|S1, V2, X1, X2, YS) + H (YR|S1, V2, X1, X2)

−H (YR|S1, V2, X1, X2, X3)
(b)= I (X1; YS |S1, V2, X2) + H (YR|S1, V2, X2, YS)

−H (YR|X3)
(c)≤ I (X1; YS|S1, X2) + I (X3; YR), (D.4a)

where (a) follows from the fact that YS is uniquely
determined by X1 and X2, and therefore it follows that
I (X3; YS |S1, V2, X1, X2, YR) = 0; (b) follows from the
Markov chain YS ↔ (S1, V2, X1, X2) ↔ YR (which
directly follows from the definition of the conditional distrib-
ution function of the SOMARC: p(yR, yS, y3|x1, x2, x3) =
p(yR|x3)p(yS, y3|x1, x2)), and from the Markov chain
(S1, V2, X1, X2) ↔ X3 ↔ YR ; and (c) follows from the
arguments leading to (D.3a) and from the fact that conditioning
reduces entropy. Similarly, for the RHS of conditions (7e)–(7f)
we have:

I (X2, X3; YR, YS |S2, V1, X1)

≤ I (X2; YS|S2, X1) + I (X3; YR) (D.4b)

I (X1, X2, X3; YR, YS |S1, S2)

≤ I (X1, X2; YS|S1, S2) + I (X3; YR). (D.4c)

Finally, substituting I (X3; YR) = C3 in (D.4) and combining
with (D.3), we obtain the RHSs of conditions (D.1). Note that
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conditions (D.1) are subject to the chain:

p(s1, s2, v1, v2, x1, x2, y3, ys)

= p(s1, s2)p(v1)p(x1|s1, v1)

×p(v2)p(x2|s2, v2)p(y3, yS|x1, x2).

Furthermore, as (D.1) is independent of (V1, V2) then the
resulting chain is:

∑
(v1,v2)∈V1×V2

p(s1, s2, v1, v2, x1, x2, y3, ys)

= p(s1, s2)p(x1|s1)p(x2|s2)p(y3, yS |x1, x2). (D.5)

Lastly, note that the upper bounds (D.3)–(D.4), subject to
the chain (D.5), are obtained by letting V1 = V2 = φ
in (7) and (8). Thus, V1 = V2 = φ maximizes the sufficient
conditions of Thm. 1.

Next, note that the LHS of condition (D.1c), evaluated for
the sources defined in Table II, equals log2 3 bits. Therefore,
for successfully transmitting S1 and S2 we must have that
the RHS of (D.1c) is greater than (or equals to) log2 3. Now,
consider the RHS of condition (D.1c) for these sources and
the PSOMARC defined in Table I: finding the maximum of
I (X1, X2; Y3) over all p(x1|s1)p(x2|s2) we have:

max
p(x1|s1)p(x2|s2)

I (X1, X2; Y3) = max
p(x1|s1)p(x2|s2)

H (Y3), (D.6)

which follows as the channel from (X1, X2) to Y3 is determin-
istic. As |Y3| = 3, it follows that max

p(x1|s1)p(x2|s2)
H (Y3) = log2 3

if and only if Pr{Y3 = j} = 1/3, j = 0, 1, 2. This requires
that Pr{(X1, X2) = (0, 0)} = Pr{(X1, X2) = (1, 1)} = 1/3
and Pr{((X1, X2) = (0, 1)) ∪ ((X1, X2) = (1, 0))} = 1/3.
Since the sources distribution is given, Pr{(X1, X2) = (i, j)}
depends only on p(x1|s1)p(x2|s2), which consists of four
unknowns. This corresponds to an algebraic equations system
with three equations, four unknowns, and the constraint that
all the variables are in the range [0, 1]. The two possible
solutions of this system, solved using Mathematica16, are
deterministic mappings from si to xi : Let pij � Pr{Xi =
j |Si = 0}, i, j = 0, 1. The following system of algebraic
equations is solved:

Solve[p00 · p10 + p00 · p11 + p01 · p11 == 1&&

(1− p00) · (1− p10) + (1− p00) · (1− p11)

+(1− p01) · (1− p11) == 1&&

p00 · (1− p10) + p00 · (1− p11)

+p01 · (1− p11) + (1− p00) · p10
+ (1− p00) · p11 + (1− p01) · p11 == 1&&

0 <= p00 <= 1&&0 <= p01 <= 1&&

0 <= p10 <= 1&&0 <= p11 <= 1, {p00,
p01,p10,p11}],

⇒ {{p00 = 0,p01 = 1,p10 = 0,p11 = 1},
{p00 = 1,p01 = 0,p10 = 1,p11 = 0}}.

16This is also validated via an exhaustive search.

The expression I (X1, X2; YS |S1, S2) + C3, evaluated
using each of these conditional distributions, equals 1 bit.
Therefore, the RHS of condition (D.1c), when evaluated
using these conditional distributions, is strictly smaller than
log2 3. This implies that for these sources and PSOMARC,
condition (D.1c) holds with opposite strict inequality, and we
conclude that reliable transmission via the scheme of Thm. 1
is impossible.

B. Transmission Using the Scheme of Theorem 2

Specializing the conditions of Thm. 2 in (9a)–(9f) to the
PSOMARC by letting W3 = W = φ and I (X3; YR) = C3,
results in the following sufficient conditions:

H (S1|S2)

< min{I (X1; Y3|S1, X2), I (X1; YS |S2, X2)+C3} (D.7a)

H (S2|S1)

< min{I (X2; Y3|S2, X1), I (X2; YS|S1, X1)+C3} (D.7b)

H (S1, S2)

< min{I (X1, X2; Y3|S1, S2), I (X1, X2; YS)+C3}, (D.7c)

subject to the input distribution (D.2). The maximization of
the mutual information expression I (X1, X2; Y3|S1, S2) on
the RHS of condition (D.7c) for the considered sources and
PSOMARC, over all p(x1|s1)p(x2|s2) is given in (D.8) at
the bottom of the next page, where (D.8a) follows from the
fact that Y3 is a deterministic function of (X1, X2); (D.8b)
follows from the definition of conditional entropy; (D.8c)
follows from the joint distribution of the sources in Table II
and the fact that the maximum of a sum is less than the
sum of the maximum of the summands; (D.8d) follows from
the Markov chain (S1, S2) − (X1, X2) − Y3; (D.8e) follows
from the fact that since s̃1 and s̃2 appear only in the con-
ditioning of the conditional distributions p(x1|s̃1), p(x2|s̃2),
the maximizing p(x1|s̃1)p(x2|s̃2) is the same for any pair
(s̃1, s̃2). Thus, the maximizing p(x1|s̃1)p(x2|s̃2) is indepen-
dent of the value of (s̃1, s̃2); and finally, (D.8a) follows
from [4].

Recall that H (S1, S2) = log2 3 bits. Thus, H (S1, S2) >
maxp(x1|s1)p(x2|s2) I (X1, X2; Y3|S1, S2), and (D.7c) holds with
strict opposite inequality. Therefore we conclude that reliable
transmission via the scheme of Thm. 2 is impossible. This
concludes the proof of Prop. 4.

APPENDIX E
PROOF OF PROPOSITION 5

Here, instead of specializing the conditions of Thm. 3 to
the PSOAMRC, we analyze the decoding rules of Thm. 3
given in (A.1)–(A.2) for a specific p(xi |si ), i = 1, 2. Let
p(xi |si ), i = 1, 2, be the deterministic distribution p(xi |si ) =
δ(xi − si ), where δ(x) is the Kronecker Delta function, and
set V1 =V2 =φ. Hence, there is no superposition encoding
at the sources, and the cooperation between the sources and
the relay is based only on the codeword transmitted by
the relay.
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A. Encoding at the Relay

Let Q � {1, 2, . . . , 2n}, and let f3 : (s1, s2) �→ Q, be the
encoding function at the relay. At block b = 1, the relay
transmits the codeword 1. Assume that at block b, b =
2, 3, . . . , B, B + 1, the relay has the estimates (s̃1,b−1, s̃2,b−1)
of (s1,b−1, s2,b−1). Then, at time b, the relay transmits the
channel codeword qb−1 = f3(s̃1,b−1, s̃2,b−1), qb−1 ∈ Q.

B. Decoding at the Relay

1) Decoding Rule: For the mapping defined in Table I
and the specified p(xi |si ), the relay decoding rule (A.1) is
specialized to the following decoding rule: the relay decodes
(s1,b, s2,b) by looking for a unique pair (s̃1, s̃2) ∈ Sn

1 ×Sn
2 such

that
(
s̃1, s̃2, y3,b

) ∈ A∗(n)
ε . Denote the decoded sequences by

(s̃1,b, s̃2,b).
2) Error Probability Analysis: Let Er �

{(
S̃1,b, S̃2,b

) �=(
S1,b, S2,b

)}
. The average probability of error for decoding at

the relay at block b, P̄(n)
r,b , is defined as:

P̄(n)
r,b �

∑
(s1,b,s2,b)∈Sn

1 ×Sn
2

p(s1,b, s2,b) Pr
(
Er |s1,b, s2,b

)

≤
∑

(s1,b,s2,b)/∈A∗(n)
ε (S1,S2)

p(s1,b, s2,b)

+
∑

(s1,b,s2,b)∈A∗(n)
ε (S1,S2)

p(s1,b, s2,b) Pr
(
Er |(s1,b, s2,b) ∈ A∗(n)

ε

)
. (E.1)

From [29, Thm. 6.9] the first sum in (E.1) can be bounded
by ε. Next, by the union bound we write:

Pr
(
Er |(s1,b, s2,b) ∈ A∗(n)

ε

)

≤ Pr
((

s1,b, s2,b, Y3,b
)

/∈ A∗(n)
ε |(s1,b, s2,b) ∈ A∗(n)

ε

)

+ Pr
(
∃(s̃1, s̃2) �= (s1,b, s2,b) :

(s̃1, s̃2, Y3,b
) ∈ A∗(n)

ε |(s1,b, s2,b) ∈ A∗(n)
ε

)
. (E.2)

For the specified p(xi |si ), i = 1, 2, and the channel mapping
defined in Table I, Y3 is a deterministic function of the
sources S1 and S2. Moreover, there is one-to-one mapping
between the source pairs (S1, S2) and Y3. Hence, for each
possible source pair (S1, S2) there is a unique value of Y3,
and we conclude that:

Pr
((

s1,b, s2,b, Y3,b
)

/∈ A∗(n)
ε |(s1,b, s2,b) ∈ A∗(n)

ε

)
= 0. (E.3)

From the one-to-one mapping between the source pairs
(S1, S2) and Y3, and from the definition of strong typicality,
[29, Ch. 6.1], it follows that:

Pr
(
∃(s̃1, s̃2) �= (s1,b, s2,b) :
(s̃1, s̃2, Y3,b

) ∈ A∗(n)
ε |(s1,b, s2,b) ∈ A∗(n)

ε

)
= 0. (E.4)

Combining (E.2)–(E.4) yields P̄(n)
r,b ≤ ε for sufficiently large n.

We conclude that the sources of Table II can be reliably
transmitted over the channel to the relay.

max
p(x1|s1)p(x2|s2)

I (X1, X2; Y3|S1, S2)

= max
p(x1|s1)p(x2|s2)

H (Y3|S1, S2) (D.8a)

= max
p(x1|s1)p(x2|s2)

∑
(s̃1,s̃2)∈S1×S2,

p(s̃1,s̃2) �=0

p(s̃1, s̃2) · H
(
Y3|(S1, S2) = (s̃1, s̃2)

)
(D.8b)

≤ 1

6
·

∑
(s̃1,s̃2)∈S1×S2,

p(s̃1,s̃2) �=0

max
p(x1|s̃1)p(x2|s̃2)

⎧⎨
⎩−

∑
y3∈Y3

p(y3|s̃1, s̃2) · log2 p(y3|s̃1, s̃2)

⎫⎬
⎭ (D.8c)

= 1

6
·

∑
(s̃1,s̃2)∈S1×S2,

p(s̃1,s̃2) �=0

max
p(x1|s̃1)p(x2|s̃2)

⎧
⎨
⎩−

∑
y3∈Y3

∑
(x1,x2)∈X1×X2

p(y3, x1, x2|s̃1, s̃2) · log2

⎛
⎝ ∑

(x1,x2)∈X1×X2

p(y3, x1, x2|s̃1, s̃2)

⎞
⎠

⎫
⎬
⎭

= 1

6
·

∑
(s̃1,s̃2)∈S1×S2,

p(s̃1,s̃2) �=0

max
p(x1|s̃1)p(x2|s̃2)

⎧
⎨
⎩−

∑
y3∈Y3

∑
(x1,x2)∈X1×X2

p(x1|s̃1)p(x2|s̃2)p(y3|x1, x2) · log2

⎛
⎝ ∑

(x1,x2)∈X1×X2

p(x1|s̃1)p(x2|s̃2)p(y3|x1, x2)

⎞
⎠

⎫
⎬
⎭ (D.8d)

= 1

6
·
∑

(s̃1,s̃2)∈S1×S2,
p(s̃1,s̃2) �=0

max
p(x1)p(x2)

⎧
⎨
⎩−

∑
y3∈Y3

∑
(x1,x2)∈X1×X2

p(x1)p(x2)p(y3|x1, x2) · log2

⎛
⎝ ∑

(x1,x2)∈X1×X2

p(x1)p(x2)p(y3|x1, x2)

⎞
⎠

⎫
⎬
⎭ (D.8e)

= max
p(x1)p(x2)

H (Y3)

= 1.5. (D.8f)
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C. Decoding at the Destination

1) Decoding Rule: Recall that qb is available at the des-
tination assuming the relay correctly decoded the source
sequences. The destination decoding rule of Thm. 3, see (A.2),
is specialized to the following decoding rule:17 the destination
decodes (s1,b, s2,b), by looking for a unique pair (ŝ1, ŝ2) ∈
Sn

1 × Sn
2 such that

(
ŝ1, ŝ2, yS,b

) ∈ A∗(n)
ε and f3(ŝ1, ŝ2) = qb.

Denote the decoded sequences by (ŝ1,b, ŝ2,b).
2) Error Probability Analysis: Let Ed �

{(
Ŝ1,b, Ŝ2,b

) �=(
S1,b, S2,b

)}
. Following the same arguments that led to (E.1),

the average probability of decoding error at the destination at
block b, P̄(n)

d,b can be upper bounded as:

P̄(n)
d,b ≤ ε+

∑

(s1,b,s2,b)∈A∗(n)
ε

p(s1,b, s2,b) Pr
(
Ed

∣∣(s1,b, s2,b) ∈ A∗(n)
ε

)
. (E.5)

Using the union bound Pr
(
Ed

∣∣(s1,b, s2,b) ∈ A∗(n)
ε

)
can be

upper bounded by:

Pr
((

s1,b, s2,b, YS,b
)

/∈ A∗(n)
ε

∣∣(s1,b, s2,b) ∈ A∗(n)
ε

)

+ Pr
(
∃(ŝ1, ŝ2) �= (s1,b, s2,b) : {

(ŝ1, ŝ2, YS,b
) ∈ A∗(n)

ε

}

∩{
f3(ŝ1, ŝ2) = qb

}∣∣(s1,b, s2,b) ∈ A∗(n)
ε

)
. (E.6)

Since xi = si , i = 1, 2, and YS is a deterministic func-
tion of (X1, X2) then as (s1,b, s2,b) ∈ A∗(n)

ε it follows that
(s1,b, s2,b, YS,b) ∈ A∗(n)

ε , thus

Pr
((

s1,b, s2,b, YS,b
)
/∈ A∗(n)

ε

∣∣((s1,b, s2,b)∈ A∗(n)
ε

)
=0. (E.7)

The channel to the destination does not provide a one-to-one
mapping between the pair (S1, S2) and YS . Let θ(yS) denote
the inverse mapping from the channel output YS to the sources,
e.g., θ(0) = {(0, 0), (0, 1)}. From [29, Def. 6.6] it follows that
if

(
s1, s2, YS

) ∈ A∗(n)
ε then:

∀yS,k : (s1,k, s2,k) ∈ θ(yS,k), k = 1, 2, . . . , n. (E.8)

Furthermore, ∀yS ∈ YS : ‖θ(yS)‖ = 2. Therefore, by mapping
the two elements of θ(yS) into different symbols transmitted
from the relay we can guarantee that the condition f3(ŝ1, ŝ2) =
qb holds only for the transmitted source sequences.18 Hence,
we conclude that the combination of the codeword transmitted
by the relay and YS uniquely identifies the transmitted source
pair. Thus,

Pr
(
∃(ŝ1, ŝ2) �= (s1,b, s2,b) :
{
(ŝ1, ŝ2, YS,b

) ∈ A∗(n)
ε

}

∩{
f3(ŝ1, ŝ2) = qb

}∣∣∣(s1,b, s2,b) ∈ A∗(n)
ε

)
= 0. (E.9)

Combining (E.5)–(E.9) yields P̄(n)
d,b ≤ ε for n large enough.

We conclude that the sources of Table II can be reliably
transmitted over the channel to the destination.

17This follows from the fact that the relay’s information is transmitted via
an orthogonal link.

18From the fact that ∀y ∈ Y : ‖θ(y)‖ = 2 it follows that resolving the
ambiguity in θ(y) requires 1 bit per source pair, and therefore, this information
can be transmitted from the relay via the relay-destination link with capacity
C3 = 1 bit.

APPENDIX F
PROOFS OF THEOREM 4 AND PROPOSITION 6

A. Proof of Thm. 4

Assume a sequence of encoders f (n)
i , i = 1, 2, 3, and

decoders g(n) is specified such that P(n)
e → 0 as n → ∞.

Fano’s inequality [29, Ch. 2.8], in the context of the current
scenario, states that:

H (Sn
1 , Sn

2 |Ŝn
1 , Ŝn

2 ) ≤ 1 + n P(n)
e log2 |S1 × S2|

� nγ (P(n)
e ), (F.1)

where γ (x) is a non-negative function that approaches 1
n as

x → 0. We also obtain:

H (Sn
1 , Sn

2 |Ŝn
1 , Ŝn

2 )
(a)≥ H (Sn

1 , Sn
2 |W n, Y n)

(b)≥ H (Sn
1 |Sn

2 , W n , Y n), (F.2)

where (a) follows from the fact that conditioning reduces
entropy, and from the fact that (Ŝn

1 , Ŝn
2 ) is a deterministic

function of (Y n, W n); (b) follows from non-negativity of the
entropy function for discrete sources. Constraint (22a) is a
consequence of the following chain of inequalities:

n∑
k=1

I (X1,k, X3,k; Yk|S2,k, X2,k , Wk)

(a)=
n∑

k=1

[
H (Yk|S2,k, X2,k, Wk)

−H
(
Yk |Sn

1 , Sn
2 , Xk

1,1, Xk
2,1, Xk

3,1,

W n, W n
3,1, Y k−1, Y k−1

3,1

)]

(b)≥
n∑

k=1

[
H (Yk|Sn

2 , X2,k, W n , Y k−1)

−H (Yk|Sn
1 , Sn

2 , W n , W n
3,1, Y k−1)

]

(c)= I (Sn
1 , W n

3,1; Y n|Sn
2 , W n)

(d)≥ H (Sn
1 |Sn

2 , W n) − H (Sn
1 |Sn

2 , W n, Y n)
(e)≥ nH (S1|S2, W ) − nγ (P(n)

e ), (F.3)

where (a) follows from the memoryless channel assump-
tion (see (1)) and the causal Markov relation (Sn

1 , Sn
2 , W n,

W n
3,1) ↔ (Xk

1,1, Xk
2,1, Xk

3,1, Y k−1, Y k−1
3,1 ) ↔ Yk (see [30]);

(b) follows from the fact that conditioning reduces entropy;
(c) follows from the fact that X2,k is a deterministic function
of Sn

2 ; (d) follows from the non-negativity of the mutual
information; and (e) follows from the memoryless sources and
side information assumption and from (F.1)–(F.2).

Following arguments similar to those that led to (F.3) we
obtain:

H (S2|S1, W )

≤ 1

n

n∑
k=1

I (X2,k, X3,k; Yk |S1,k, X1,k, Wk)+γ (P(n)
e ) (F.4a)

H (S1, S2|W )

≤ 1

n

n∑
k=1

I (X1,k, X2,k, X3,k; Yk |Wk)+γ (P(n)
e ). (F.4b)
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Note that the following three expressions, I (X1,k, X3,k; Yk|
S2,k, X2,k, Wk), I (X2,k, X3,k; Yk |S1,k, X1,k, Wk), and
I (X1,k, X2,k, X3,k; Yk |Wk), depend on the marginal
conditional distribution:

p(x1,k, x2,k, x3,k|s1,k, s2,k)

= p(x1,k, x2,k|s1,k, s2,k)p(x3,k|s1,k, s2,k, x1,k, x2,k),

and on p(s1,k, s2,k, wk) and p(yk|x1,k, x2,k, x2,k). Moreover,
note that X1,k is a function of Sn

1 while X2,k is a function
of Sn

2 , and therefore the Markov chain in (19) holds. Thus, it
follows that:

p(x1,k, x2,k |s1,k, s2,k) ∈ BX1 X2|S1S2 ⊆ B′
X1 X2|S1S2

. (F.5)

Next, we introduce the time-sharing random variable Q uni-
formly distributed over {1, 2, . . . , n} and independent of all
other random variables. We can write the following:

1

n

n∑
k=1

I (X1,k, X3,k; Yk|S2,k, X2,k, Wk)

= I (X1,Q, X3,Q; YQ |S2,Q , X2,Q , WQ , Q)

= I (X1, X3; Y |S2, X2, W, Q), (F.6)

where X1 � X1,Q , X2 � X2,Q , X3 � X3,Q , Y � YQ , S2 �
S2,Q and W � WQ . Furthermore, since for all values of q we
have p(x1,q, x2,q |s1,q, s2,q , Q = k) = p(x1,k, x2,k|s1,k, s2,k)
which satisfies (F.5), then we have that for k = 1, 2, . . . , n it
holds that:

p(x1,q, x2,q |s1,q , s2,q , Q = k) ∈ B′
X1 X2|S1S2

. (F.7)

Finally, note that for all k, the expressions and structural con-
straints on the distribution chain are identical. Thus, repeating
the steps leading to (F.6) for (F.4a) and (F.4b), and taking the
limit n→∞, leads to the constraints in (22).

B. Proof of Proposition 6

First, define the auxiliary RV Vk � (W n
3,1, Y k−1

3,1 ), k =
1, 2, . . . , n. Constraint (25a) is a consequence of the following
chain of inequalities:

n∑
k=1

I (X1,k; Yk, Y3,k |S2,k, X2,k, Wk , Vk)

(a)=
n∑

k=1

[
H (Yk, Y3,k |S2,k, X2,k, Wk , W n

3,1, Y k−1
3,1 )

−H (Yk, Y3,k |S2,k, Xk
1,1, Xk

2,1, Xk
3,1,

Wk , W n
3,1, Y k−1, Y k−1

3,1 )
]

(b)≥
n∑

k=1

[
H (Yk, Y3,k |Sn

2 , X2,k , Y k−1, W n , W n
3,1, Y k−1

3,1 )

−H (Yk, Y3,k |Sn
1 , Sn

2 , Xk
1,1, Xk

2,1, Xk
3,1,

W n , W n
3,1, Y k−1, Y k−1

3,1 )
]

(c)≥
n∑

k=1

[
H (Yk, Y3,k |Sn

2 , W n , W n
3,1, Y k−1, Y k−1

3,1 )

−H (Yk, Y3,k |Sn
1 , Sn

2 , W n , W n
3,1, Y k−1, Y k−1

3,1 )
]

≥ H (Sn
1 |Sn

2 , W n, W n
3,1) − H (Sn

1 |Sn
2 , W n , W n

3,1, Y n)

(d)≥ nH (S1|S2, W, W3) − nγ (P(n)
e ), (F.8)

where (a) follows from the definition of Vk , the fact that
Xk

3,1 is a deterministic function of (W n
3,1, Y k−1

3,1 ) and from the
memoryless channel assumption, see (1); (b) follows from the
fact that conditioning reduces entropy and, [30]; (c) follows
from the fact that X2,k is a deterministic function of Sn

2 , and
from the property that conditioning reduces entropy; (d) fol-
lows again from the fact that conditioning reduces entropy,
the memoryless sources and side information assumption, and
(F.1)–(F.2).

Following arguments similar to those that led to (F.8) we
can also show that:

H (S2|S1, W, W3)

≤ 1

n

n∑
k=1

I (X2,k; Yk, Y3,k |S1,k, X1,k, Wk, Vk)+γ (P(n)
e ) (F.9a)

H (S1, S2|W, W3)

≤ 1

n

n∑
k=1

I (X1,k, X2,k; Yk, Y3,k |Wk, Vk)+γ (P(n)
e ). (F.9b)

Next, we define the time-sharing random variable Q uniformly
distributed over {1, 2, . . . , n} and independent of all other
random variables. We can write the following:

1

n

n∑
k=1

I (X1,k; Yk, Y3,k |S2,k, X2,k, Wk, Vk)

= I (X1,Q; YQ, Y3,Q |S2,Q , X2,Q , WQ , VQ , Q)

= I (X1; Y, Y3|S2, X2, W, V ), (F.10)

where X1 � X1,Q , X2 � X2,Q , Y � YQ , Y3 � Y3,Q , S2 �
S2,Q , W � WQ and V � (VQ , Q). Since (X1,k, X2,k) and
X3,k are independent given (S1,k, S2,k , Vk), for v̄ = (v, k) we
have:

Pr
(
X1 = x1, X2 = x2, X3 = x3|S1 = s1, S2 = s2, V = v̄

)

= Pr
(
X1 = x1, X2 = x2|S1 = s1, S2 = s2, V = v̄

)

× Pr
(
X3 = x3|V = v̄

)
. (F.11)

Hence, the probability distribution is of the form given in (26).
Finally, repeating the steps leading to (F.10) for (F.9a) and
(F.9b), and taking the limit n → ∞, leads to the constraints
in (25).
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